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The broadstripe cleaning goby Elacatinus prochilos has two alternative ecotypes:
sponge-dwellers, which live in large groups and feed mainly upon nematode parasites;
and coral-dwellers, that live in small groups or in solitude and behave as cleaners.
Recent studies focusing on the skin and gut microbiomes of tropical fish showed
that microbial communities are influenced mainly by diet and host species. Here,
we compare the skin and gut microbiomes of the Caribbean broadstripe cleaning
goby E. prochilos alternative ecotypes (cleaners and non-cleaners) from Barbados
and predict that different habitat use and behavior (cleaning vs. non-cleaning) will
translate in different bacterial profiles between the two ecotypes. We found significant
differences in both alpha- and beta-diversity of skin and gut microbiomes belonging
to different ecotypes. Importantly, the skin microbiome of obligate cleaners showed
greater intra-sample diversity and harbored a significantly higher prevalence of potential
fish pathogens. Likewise, potential pathogens were also more prevalent in the gut of
obligate cleaners. We suggest that habitat use, diet, but also direct contact with potential
diseased clientele during cleaning, could be the cause for these patterns.

Keywords: E. prochilos, ecotypes, pathogens, coral-dwellers, sponge-dwellers, social contamination

INTRODUCTION

Cleaner fish are pivotal players in marine ecosystems, providing a valuable service to other fish
(known as clients) by removing ectoparasites and dead or damaged tissue (Côté, 2000). Classically
described as “doctors of the sea,” these usually smaller-sized fish are conspicuously colorful
organisms (Cheney et al., 2009) and are easily identified by client species. Clients then visit their
territories (referred as cleaning stations) to be relieved of parasites, and to gain in stress reduction
and other putative fitness benefits (Ros et al., 2011; Soares et al., 2011). Indeed, these cleaning
interactions influence client growth rate (Clague et al., 2011; Waldie et al., 2011) and affect local
populations mobility contributing to the diversity and abundance of juvenile and adult fish (Bshary,
2003; Grutter et al., 2003; Waldie et al., 2011). Additionally, the presence of cleaners is known
to influence habitat selection (e.g., processes of settlement and recruitment) of young reef fishes
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(Sun et al., 2015a,b). Cleaners are primary agents in these
mutualistic exchanges, choosing when and how to inspect clients,
and determining the quality of these inspections. They can,
for instance, select the number and size of the parasites they
ingest (Grutter, 1997), decide whether to provide or not physical
contact (tactile stimulation, Bshary and Würth, 2001) or the
amount of bites given to fish mucus, which is harmful to the
clients because mucus protects fish from disease and sunburn
(Bshary and Grutter, 2002; Eckes et al., 2015). While there seems
to be a great benefit of having such a decisive role, there is
also vulnerability when one needs to wait for the food (clients)
to visit. For instance, the amount of potential clientele could
be determinant to the number of visits and dietary value may
fluctuate, as parasite load of clients may change from reef to reef
(Cheney and Côté, 2005), but also amongst client species (Soares
et al., 2007) or between seasons (Grutter, 1994). Moreover, some
clients could actually eat the cleaner (Côté, 2000), and cleaners are
not indifferent to the risk involved (Soares et al., 2012). Finally,
clients may also be vectors of parasites, bacterial contamination,
and disease to cleaners (Grutter, 2002; Jones et al., 2004; Sasal
et al., 2005). For example, cleaner fish (e.g., Ctenolabrus rupestris
and Centrolabrus exoletus) used in salmon farms can become
infected by pathogenic Vibrio sp. and Aeromonas salmonicida, as
well as by pancreatic necrosis virus (Treasurer and Laidler, 1994),
although little empirical evidence is available on this matter.

Bacterial consortia play an important role at all biological
scales from individuals to ecosystems (McFall-Ngai et al., 2013;
Gibbons and Gilbert, 2015; Delgado-Baquerizo et al., 2016). Fish
microbiome studies have generally shown a high degree of host
specificity and specialization across organs (e.g., Lowrey et al.,
2015; Pratte et al., 2018; Rosado et al., 2019), as well as a close
association between microbiome composition and host ecology.
Specifically, host factors (ontogeny and genetic background),
environment and diet are considered to be the main drivers of
the bacteria consortia present in the fish gut (Tarnecki et al.,
2017; Egerton et al., 2018) and skin (Larsen et al., 2013; Chiarello
et al., 2018). Recent studies have also revealed crucial connections
between animal microbiomes and social behavior; those studies
have shown that social interactions and physical proximity can
modulate the composition and function of animal microbiomes
(White et al., 2010; Koch and Schmid-Hempel, 2011; Tung et al.,
2015), and that the microbiome affects social communication
by influencing the host central nervous system and peripheral
chemical communication (Sharon et al., 2010; Theis et al., 2013;
Venu et al., 2014). In fact, microbial transfer between socially
interacting partners is beginning to be considered a key driver
in the cost–benefit calculus of group network interactions (Koch
and Schmid-Hempel, 2011; Tung et al., 2015). While microbe
transmission may be beneficial by promoting disease resistance
(Endt et al., 2010; Stecher et al., 2010; Koch and Schmid-Hempel,
2011), it may also facilitate pathogen transmission between
interacting hosts (Garrett et al., 2010; Elinav et al., 2011). In
this respect, cleaners could become good animal models to study
the role of microbiome in mutualistic behavior, as both partners
come in close physical contact during interactions, allowing for
direct microbe transmission (skin-to-skin) and potentially also
modulating the gut microbiome of cleaners (Soares et al., 2019).

In gobies, cleaner species occur exclusively in the genus
Elacatinus, which include 27 described species that are
distributed throughout the western Atlantic Ocean, from
North Carolina (United States) to Brazil (Colin, 1975, 2010;
Taylor and Hellberg, 2005, 2006; Randall and Lobel, 2009). In
Elacatinus gobies there is an association of cleaning behavior
with habitat, morphology, and color (Taylor and Hellberg, 2005).
The absence of cleaning is associated with sponge-dwelling,
while the occurrence of cleaning is related to inhabiting other
substrata (Rüber et al., 2003; Taylor and Hellberg, 2005), ideally
(but not exclusively) live-coral (Sazima et al., 2000, 2008;
Whiteman and Côté, 2002). These alternative ecotypes may
also occur intra-specifically (Côté and Soares, 2011), like in the
case of the broadstripe cleaning goby E. prochilos (Böhlke and
Robins, 1968), which in Barbados is known to occupy sponges
(sponge-dwellers) and other alternative substrates (mostly
live coral) – herein referred to as coral-dwellers (Whiteman
and Côté, 2004b). Remarkable changes occur between these
two ecotypes of E. prochilos; sponge-dwellers live in variable
(10 up to 80 individuals), dominance-structured groups of
conspecifics, foraging on Haplosyllis polychaete worms which
parasitize sponges (Colin, 1975; Whiteman and Côté, 2004a).
Coral-dwellers, however, are most frequently found in solitary,
paired (usually a male-female couple) or in smaller groups of
conspecifics, and rely heavily on client-gleaned material as food
source (Arnal and Côté, 2000; Whiteman and Côté, 2002). This
intraspecific alternative system has been found in other fish
species such as Elacatinus evelynae from St. Croix, United States
Virgin Islands (White et al., 2007) and Elacatinus figaro from
Brazil (Rocha et al., 2000).

Here, we compare the bacterial communities from the skin
and gut of the Barbadian E. prochilos alternative ecotypes
(sponge- vs. coral-dwelling) sampled in two different localities
(biological replicates), to test the hypothesis that different habitat
use and behavior will lead to different bacterial profiles in the
two ecotypes. Specifically, we hypothesize that the microbiome of
cleaners will be enriched by potential pathogens due to frequent
contact with diseased clients. To accomplish this aim we will
couple high-throughput sequencing of the bacterial 16S rRNA
gene V4 region with amplicon sequence variant analysis.

MATERIALS AND METHODS

Sample Collection and DNA Extraction
Twenty-three E. prochilos specimens were collected in two
reefs located on the west coast of Barbados (13 km apart):
Speightstown (sponge-dwellers N = 6; coral-dwellers N = 6)
(13◦15′31.8′′N 59◦38′42.6′′W) and Batts Rock (sponge-dwellers
N = 6; coral-dwellers N = 5) (13◦08′12.6′′N 59◦38′16.2′′W).
Sponge-dwellers formed groups of 5 up to 80 individuals and
were associated to giant barrel sponges (Xestospongia muta) in
the patch reef zone (6–10 m depth). In contrast, coral-dwellers
were either solitary or in pairs, mainly associated to live coral,
but also other substrates like coralline algae and dead coral from
the spurs and grooves zone (3–8 m deep). Sponge-dwellers and
coral-dwellers were usually found from 50 to 100 m apart. Fish
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were captured by SCUBA using individual hand nets or plastic
bags and transported to the lab inside sealed plastic bags. In
the lab, fish were carefully removed from the bags, and without
further manipulation, had their skin swiped with cotton swabs at
least two times on each body side. Gloves were used during the
procedure. Fish were then sacrificed with an overdose of clove
oil mixture. Specimens and cotton swabs were then immediately
frozen and kept at −20◦C until further analysis. Three weeks
later, fish were dissected with sterile material and the whole
gut was taken. DNA from 23 skin to 23 guts was extracted
using the PowerSoil DNA Isolation Kit (QIAGEN, Netherlands),
following the manufacturer’s protocol. DNA concentration and
quality was measured in a NanoDropTM 2000 Spectrophotometer
(Thermo Fisher Scientific, United States). Each DNA sample
was PCR amplified for the V4 hypervariable region of the 16S
rRNA gene (∼250 bp) using the primers F515/R806 developed
by Caporaso et al. (2011). This gene region has been widely
used to characterize the bacterial communities from vertebrates
(Earth Microbiome Project, Gilbert et al., 2014), including fish
(Llewellyn et al., 2015; Carlson et al., 2017; Nielsen et al., 2017;
Chiarello et al., 2018). Amplicon libraries were prepared using
the Dual-Index Sequencing Strategy in Kozich et al. (2013) and
sequenced in a single run of the Illumina MiSeq sequencing
platform at the Center for Microbial Systems of the University
of Michigan Medical School (United States).

Data and Statistical Analyses
Raw FASTQ files were analyzed using the Quantitative Insights
Into Microbial Ecology 2 (QIIME2; release 2018.4) platform.
Clean sequences were aligned against the Silva (132) reference
database (Quast et al., 2012) with DADA2 pipeline (Callahan
et al., 2016). Samples were rarefied to the minimum read count
and two feature tables containing amplicon sequence variants
(ASVs) from the skin and gut were constructed. The core
microbiome was assessed for the skin and gut considering
ASVs present in 100% of the samples from each tissue. For
the most abundant ASVs in each tissue (>1% of representative
sequences), a heatmap was created using the -p-normalize option
in QIIME2, which normalizes the feature table by adding a
pseudocount of 1 and uses the log10 frequency for the phylum
and genus levels.

Bacterial taxonomic alpha-diversity (intra-sample) was
calculated using Shannon, Fisher, Faith’s phylogenetic diversity
(PD), Evenness, and Simpson indices as implemented in the
R package phyloseq (McMurdie and Holmes, 2013). Species
beta-diversity (inter-sample) was estimated using Bray–Curtis
and phylogenetic Unifrac (unweighted and weighted) distances.
Dissimilarity between samples was assessed by principal
coordinates analysis (PCoA).

Differences in alpha-diversity across habitat and locality were
analyzed by performing a linear model analysis and model
effects were evaluated by using 1,000 residual randomizations
in a permutation procedure using the R package RRPP (Collyer
et al., 2015). Beta-diversity differences across locality and habitat
were assessed using permutational analysis of variance (1,000
permutations), as implemented in the adonis function of the
vegan R package. Differences in community composition between

ecotypes were tested using linear regression models for the most
abundant taxa (with >1% representative sequences).

RESULTS

Taxonomic Composition and Core
Bacterial Communities in E. prochilos
A total of 954,109 raw reads were generated (537,084 for the skin
and 417,025 for the gut), with a minimum of 8,991 reads per
sample and a maximum of 39,640. These sequences corresponded
to 1,155 unique ASVs, from which 662 and 579 were found in the
skin and the gut of E. prochilos, respectively.

Twenty-two of the 25 bacterial phyla were detected in
the skin, but only five were represented by more than
1% of sequences (Figure 1 and Supplementary Table S1).
Members of Proteobacteria (80% of the sequences), Bacteroidetes
(7.1%), and Firmicutes (2.2%) occurred in all individuals
(Supplementary Table S1), thus forming the core bacterial
communities of the skin. Members of Tenericutes (1.6% of
the sequences) only occurred in coral-dwellers (but only

FIGURE 1 | Heatmap depicting absolute abundance of ASVs identified at the
phylum and genus levels for the skin microbiome of the two ecotypes.
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in 6 out of 11 individuals) (Figure 1 and Supplementary
Table S1). Eleven families dominated the core bacterial
communities of the skin, with Pseudomonadaceae (ca. 18.5%
of the sequences) and Beijerinckiaceae (ca. 47.2%) being the
most abundant (Supplementary Table S1). At the genus
level, 10 identified genera were represented by >1% of the
sequences, with Methylobacterium (41.8% of the sequences),
Pseudomonas (18.5%), and Janthinobacterium (1.5%) comprising
the core microbiome (Figure 1). It is worth noticing that
potential pathogens from the genera Photobacterium and
Vibrio, were more prevalent in coral-dwellers, with the
first genus only occurring in this ecotype (Figure 1 and
Supplementary Table S1).

Nineteen phyla were detected in the gut, but only six were
represented by more than 1% of the sequences (Figure 2

FIGURE 2 | Heatmap depicting absolute abundance of ASVs identified at the
phylum and genus levels for the gut microbiome of the two ecotypes.

and Supplementary Table S2). Only ASVs belonging to
Proteobacteria (68% of the sequences) were found in all
individuals sampled (Figure 2 and Supplementary Table S2).
The core bacterial communities present in the gut were only
composed by Beijerinckiaceae, which accounted for 50% of
the sequences (Figure 2 and Supplementary Table S2). Seven
genera were considered abundant in the gut (Figure 2 and
Supplementary Table S2) and from these only Methylobacterium
(Beijerinckiaceae) (ca. 50% of the sequences) was present
in all individuals. As in the skin, potential pathogens from
Photobacterium and Vibrio had higher prevalence in the coral-
dwellers (Figure 2).

Bacterial Diversity Analyses
Skin microbiome alpha-diversity was significantly different
between ecotypes, with coral-dwellers showing consistently
higher alpha-diversity indices as assessed by Shannon (F = 13.786,
p = 0.002), Simpson (F = 20.162, p = 0.001), and Evenness
(F = 17.807, p = 0.001) indices (see Figure 3 and Supplementary
Tables S3, S4). Locality or the interaction term locality∗ecotype
had no effect on microbial alpha diversity. Significant differences
in beta-diversity were also found between ecotypes using
phylogenetic Unifrac weighted (R2 = 0.224 and p = 0.005)
and Bray–Curtis (R2 = 0.098 and p = 0.007) distances
(Supplementary Table S3 and Figure 4A). Similarly, sampling
localities also showed significant differences in beta-diversity for
the Bray–Curtis distance (R2 = 0.087, p = 0.018) (Supplementary
Table S3 and Figure 4A).

Analysis of mean taxa proportions showed significant
differences in the abundance of Vibrionaceae (F-statistics = 6.057,
p = 0.023) and Beijerinckiaceae (F-statistics = 19.34, p < 0.0001)
between ecotypes. Within these two families, the abundance
of Vibrio (Vibrionaceae, F-statistics = 5.443, p = 0.030)
and Methylobacterium (Beijerinckiaceae, F-statistics = 9.32,
p < 0.0001) varied also significantly between ecotypes
(Supplementary Table S1).

For the gut microbiome, locality, ecotype, and the interaction
between the two factors had no effect in any of the alpha
diversity indices (see Figure 3 and Supplementary Tables S3, S4).
However, the analysis of beta-diversity revealed significant
differences between ecotypes (R2 = 0.125, p = 0.038) and
ecotype∗locality for one of the three distances (phylogenetic
Unifrac weighted) tested (R2 = 0.116; p = 0.037) (Supplementary
Table S3, and Figure 4B). Analysis of mean taxa proportions
showed significant differences between ecotypes for Ureaplasma
(Mycoplasmataceae, Tenericutes) (F-statistics = 6.105; p = 0.022),
which was almost exclusive of the coral-dwelling ecotype
(Supplementary Table S1).

DISCUSSION

The present study describes the core bacterial communities of
the skin and gut of E. prochilos and the differences between
two alternative ecotypes (cleaners vs. non-cleaners) in Barbados.
Overall, the skin microbiome of coral-dweller obligate cleaners
showed consistently greater intra-sample diversity and harbored
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FIGURE 3 | Box-plots depicting mean values and standard deviations of alpha diversity indices for the skin and gut microbiome per locality and ecotype.

a significantly higher prevalence of potential fish pathogens
confirming our initial hypotheses.

Taxonomic Composition and Core
Bacterial Communities in E. prochilos
The skin core microbiome of E. prochilos was more diverse than
that of the gut, with the former comprised of Proteobacteria,
Bacteroidetes, and Firmicutes, whereas the latter only
encompassed Proteobacteria of mainly the Methylobacterium
genus (Beijerinckiaceae). The bacterial profiles reported here for
the skin and gut microbiomes of E. prochilos are similar to those
previously published for other teleosts (e.g., McDonald et al.,
2012; Larsen et al., 2014; Lokesh and Kiron, 2016; Carda-Diéguez
et al., 2017; Rosado et al., 2019), including other coral reef fish
(Chiarello et al., 2018).

Differences in Bacterial Diversity
Between E. prochilos Ecotypes
We found significant intraspecific differences in the bacterial
diversity of the skin between the two E. prochilos ecotypes. The
skin microbiome of coral-dwellers had higher alpha diversity
(intra-sample) when compared to sponge-dwellers, although
observed differences were not always statistically significant.
These differences most likely reflect ecotype-specific differences
in habitat use, but also behavior, since coral-dwellers depend

almost exclusively on client-derived ectoparasites, mucus and
tissue for food, coming into frequent contact with other fish
species (e.g., Côté and Soares, 2011). Sponge-dwellers, however,
by preying on other items, limit their contact with heterospecifics
(Whiteman and Côté, 2002). We hence hypothesize that bacterial
diversity in the skin of E. prochilos can increase by horizontal
transfer of bacteria from frequent contact with fish clients.
Microbial exchanges via social contact have been reported in
several organisms such as chimpanzees (Moeller et al., 2016),
ants (Ivens et al., 2018), baboons (Tung et al., 2015), bumblebees
(Koch and Schmid-Hempel, 2011), and humans (Kort et al.,
2014). In fish, the impact of social transmission on microbiome
composition is still unclear, however, there is empirical evidence
suggesting that co-housing could have a diluting effect on
microbiome differences driven by host genotype (Burns et al.,
2016). Importantly, bacterial pathogens have been reported to be
transmitted to cleaning fish through contact with diseased clients
(Treasurer and Laidler, 1994).

Compared with sponge-dwellers, the skin microbiome
of coral-dweller cleaners was significantly enriched with
Vibrionaceae (more than 6-fold), a bacterial family known
to encompass several fish pathogens (see for example Austin,
2011 for a review). Within this family, ASVs from Vibrio
and Photobacterium, had higher prevalence in the cleaner
ecotype. These two genera are known to harbor numerous
pathogens able to infect fish worldwide, including tropical
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FIGURE 4 | (A) PCoA plots depicting weighted and unweighted Unifrac distances and Bray-Curtis distances for the skin microbiome; and (B) PCoA plots depicting
weighted and unweighted Unifrac distances and Bray-Curtis distances for the gut microbiome.

species (Landsberg, 1995; Panek, 2005; Gomez-Gil et al., 2007).
Indeed, the abundance of Vibrio was significantly higher in the
skin of coral-dwellers. This supports our initial hypothesis that
pathogen transmission may occur from diseased clients.

Taxon differences found in the gut were more subtle. Among
the most abundant taxa in the gut, only one ASV belonging to
Ureaplasma varied significantly between ecotypes. Nonetheless,
the interaction between sampling locality and ecotype had an
effect on beta-diversity (Weighted Unifrac). This is somewhat
surprising since several studies have shown that diet has a
significant effect on the gut microbiome composition of fish (see
the reviews by Tarnecki et al., 2017; Egerton et al., 2018).

Despite the important ecological role cleaner fish play in
marine ecosystems, results from previous studies have provided
strong evidence that adopting a non-cleaning lifestyle has
some evolutionary advantages, and that sponge-dwelling may
be a conservative strategy; for instance, adult E. prochilos in
Barbados, have been mostly found in sponges regardless of coral
habitat availability (Whiteman and Côté, 2004b). This suggests a
preference for this habitat or, at least, the existence of potential
constraints to adopt a cleaner lifestyle. Importantly, White et al.
(2007) found that, overall, immature sponge-dwelling E. evelynae
gobies grew faster than immature coral-dwellers, and the latter
seemed to disappear at higher rates than non-cleaning sponge

dwellers. The underlying causes for these disappearances were
then suggested to be a result of emigration or were related to
higher mortality rates due to predation by clients, which led to
the hypothesis that being a cleaner is a riskier and less reliable
mode of life, depending heavily on the quality and abundance
of clients and more vulnerable to predation (White et al., 2007).
Moreover, parasite transmission from diseased clients may also
cause this apparent higher mortality, thus representing another
negative consequence of adopting a cleaning behavior (Grutter,
2002; Jones et al., 2004). The results from the present study
suggest that a higher load of bacterial pathogens may be acquired
through cleaning engagement and may help explain the patterns
found by White et al. (2007), although more research and data are
needed to further confirm this hypothesis.

CONCLUSION

The results from this study showed that the bacterial
communities of the skin of the two alternative ecotypes
of E. prochilos can be distinguished using 16S rRNA gene
sequences, even amongst fish captured only 10 s of meters
apart. Furthermore, the skin microbiome of coral-dwelling
gobies (cleaners) harbors higher bacterial diversity, including a
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significantly higher proportion of potential fish pathogens (e.g.,
Vibrio and Photobacterium). We propose that habitat use, diet
and social engagement, due to frequent physical contact with
potential diseased clients, could lead to significant differences
in the diversity and abundance of pathogenic bacteria between
cleaner and non-cleaner ecotypes of E. prochilos.
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