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Biogeochemical cycles in the ocean are strongly affected by the elemental stoichiometry
(C:N:P) of phytoplankton, which largely reflects their macromolecular content. A greater
understanding of how this macromolecular content varies among phytoplankton taxa
and with resource limitation may strengthen physiological and biogeochemical modeling
efforts. We determined the macromolecular basis (protein, carbohydrate, lipid, nucleic
acids, pigments) of C:N:P in diatoms and prasinophytes, two globally important
phytoplankton taxa, in response to N starvation. Despite their differing cell sizes and
evolutionary histories, the relative decline in protein during N starvation was similar in all
four species studied and largely determined variations in N content. The accumulation of
carbohydrate and lipid dominated the increase in C content and C:N in all species during
N starvation, but these processes differed greatly between diatoms and prasinophytes.
Diatoms displayed far greater accumulation of carbohydrate with N starvation, possibly
due to their greater cell size and storage capacity, resulting in larger increases in C
content and C:N. In contrast, the prasinophytes had smaller increases in C and C:N that
were largely driven by lipid accumulation. Variation in C:P and N:P was species-specific
and mainly determined by residual P pools, which likely represent intracellular storage
of inorganic P and accounted for the majority of cellular P in all species throughout
N starvation. Our findings indicate that carbohydrate and lipid accumulation may play
a key role in determining the environmental and taxonomic variability in phytoplankton
C:N. This quantitative assessment of macromolecular and elemental content spanning
several marine phytoplankton species can be used to develop physiological models for
ecological and biogeochemical applications.
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INTRODUCTION

The elemental stoichiometry (C:N:P) of phytoplankton and particulate organic matter (POM) in
the surface ocean is often assumed to conform to the Redfield ratio of 106:16:1 (Redfield, 1958).
However, the C:N:P of phytoplankton and of surface POM, largely derived from phytoplankton
and their detritus, can greatly deviate from Redfield proportions (Quigg et al., 2003; Martiny
et al., 2013a,b; Garcia et al., 2018). This variability in phytoplankton C:N:P may influence key
biogeochemical cycles (Finkel et al., 2010) by affecting how efficiently phytoplankton biomass
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is remineralized by bacteria (Del Giorgio and Cole, 1998),
exported to the deep ocean (Weber and Deutsch, 2010),
or utilized by consumers (Sterner and Elser, 2002; Hessen
et al., 2004). The C:N:P of phytoplankton reflects their
macromolecular content (e.g., protein, carbohydrate, lipid, and
nucleic acids; summarized in Figure 1; Elser et al., 2000; Geider
and LaRoche, 2002; Finkel et al., 2016), which varies among
major phytoplankton groups (Finkel et al., 2016) and within a
species in response to environmental conditions (Geider and
LaRoche, 2002). This phylogenetic and physiological variability
in phytoplankton macromolecules may provide a mechanistic
basis for modeling phytoplankton and ocean particulate C:N:P
(Geider and LaRoche, 2002; Follows and Dutkiewicz, 2011).

Fixed nitrogen is the limiting factor for phytoplankton growth
over much of the global ocean (Moore et al., 2013) and its
availability affects the C:N:P of phytoplankton cells (Geider
and LaRoche, 2002; Hillebrand et al., 2013). When N limits
phytoplankton growth, C:N tends to increase and N:P tends to
decline (Rhee, 1978; Goldman et al., 1979; Elrifi and Turpin,
1985; Leonardos and Geider, 2004; Garcia et al., 2016). The
macromolecular basis of this response is a decline in cell protein
content and a reallocation of remaining protein content from
photosynthetic and biosynthetic (e.g., ribosomes) components
to N metabolism and acquisition (Young and Beardall, 2003;
Hockin et al., 2012; Simionato et al., 2013). Nitrogen stress
also tends to result in the accumulation of C and energy
as carbohydrate or lipid (Piorreck et al., 1984; Breuer et al.,
2012; Zhu et al., 2014). Many culture studies of phytoplankton
C:N:P have examined responses to balanced, steady-state N
limitation, but nutrient stress also occurs as unbalanced nutrient
starvation and arrested growth due to rapid nutrient fluctuations
in dynamic ocean environments (Goldman, 1988; Legendre and
Rassoulzadegan, 1995). Unbalanced N starvation may also have
a distinct effect on phytoplankton C:N:P as it has been shown
to cause larger accumulations of C-rich lipid (Richardson et al.,
1969; Lacour et al., 2012b) and larger decreases in N-rich
proteins (Geider et al., 1993; Berges et al., 1996; Geider et al.,
1998) compared to steady-state N limitation (Cullen et al., 1992;
Halsey et al., 2013).

Storage macromolecules may play a particularly large role in
the variability of phytoplankton C:N:P as they can represent large
fractions of these elements and their utilization differs among
phytoplankton taxa (Allen, 1984; Geider and LaRoche, 2002;
Gillooly et al., 2005). The accumulation of C-rich carbohydrate
and lipid storage during N stress varies among phytoplankton
taxa, both in extent and in the relative distribution between these
two pools (Piorreck et al., 1984; Gatenby et al., 2003; Breuer et al.,
2012). A preference for carbohydrate or lipid storage may affect
a species’ growth strategy as these storage products differ in their
energetic efficiency (Sorguven and Ozilgen, 2013), utilization of
intracellular space (Subramanian et al., 2013), and effect on cell
buoyancy (Raven, 1984; Richardson and Cullen, 1995). Addition-
ally, the few comprehensive studies of phytoplankton P allocation
show the majority of total P is not accounted for by P-rich
functional macromolecules (RNA, DNA, and phospholipids),
particularly under N-limited conditions (Rhee, 1978; Leonardos
and Geider, 2004; Mouginot et al., 2015; Garcia et al., 2016).

The large amount of residual P not detected in these functional
macromolecules is typically assumed to be in storage pools like
polyphosphate bodies and orthophosphate in vacuoles that are
difficult to quantify (Miyata et al., 1986; Diaz and Ingall, 2010;
Martin et al., 2014; Dyhrman, 2016). The effect of C and P
storage on phytoplankton C:N:P may vary with cell size as storage
capacity may be greater in larger cells (Grover, 1991; Tozzi et al.,
2004; Gillooly et al., 2005) and a greater benefit to larger cells in
dynamic light and nutrient environments (Talmy et al., 2014).

Using macromolecular variation as a mechanistic basis
to explain ocean C:N:P variability requires a comprehensive
understanding of how elemental allocation to macromolecules
differs among phytoplankton taxa and ocean conditions. Here we
examine the effect of N starvation on phytoplankton elemental
and macromolecular content accounting for all major C- and
N-containing pools (protein, carbohydrate, lipid, pigments).
We measured the major functional P-containing pools (RNA,
DNA, phospholipids) and total P and describe the P not
attributed to measured functional pools as residual P, which
may be intracellular storage. Cell size and evolutionary history
likely affect macromolecular storage capacity and adaptation
to different nutrient regimes may affect the overall plasticity
of macromolecular content across species. Hence we examined
two phytoplankton classes, diatoms and prasinophytes, which
represent distinct size classes and adaptation to different
environmental niches. Diatoms are typically opportunists that
exploit dynamic nutrient conditions (Sarthou et al., 2005) while
the smaller prasinophytes appear to be adapted to more stable
nutrient conditions (Cardol et al., 2008; Six et al., 2009).
Additionally, C:N appears to be lower in prasinophytes than
diatoms during nutrient replete conditions (Quigg et al., 2003;
Garcia et al., 2018), possibly due to a relatively higher protein
content in prasinophytes (Finkel et al., 2016). Portions of the
macromolecular response to steady-state N limitation in diatoms
and prasinophytes have been well characterized (Leonardos and
Geider, 2004; Halsey et al., 2014; Halsey and Jones, 2015), yet
it is unclear how the macromolecular response of these groups
to non-steady state N starvation may differ. We anticipated that
diatoms would display greater C:N:P variability as their larger
cell size may allow more storage accumulation of carbohydrates
and lipids and their adaptation to dynamic nutrient regimes may
allow more variation in their N-rich functional macromolecules
(protein, RNA, and pigments). We also hypothesized that
protein, the largest fraction of phytoplankton N, would be the
most variable macromolecular pool during N starvation and
dominate variation in C:N and N:P. We find dramatic differences
between diatoms and prasinophytes with regard to the impact of
N starvation on C:N:P ratios, largely due to varying utilization of
C-rich storage macromolecules and species-specific differences in
P pools likely associated with storage.

MATERIALS AND METHODS

Study Species and Growth Conditions
The diatoms Thalassiosira pseudonana (strain CCMP 1335)
and Thalassiosira weissflogii (strain CCMP 1010) as well as

Frontiers in Microbiology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 763

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00763 April 17, 2019 Time: 11:34 # 3

Liefer et al. Macromolecular Basis of Phytoplankton C:N:P

FIGURE 1 | A schematic of the estimated macromolecular content of a microalgal cell and the allocation of carbon, nitrogen, and phosphorus to each
macromolecular pool based on Geider and LaRoche (2002) and Dyhrman (2016). The size of the pie charts indicate the estimated contribution of each
macromolecular pool to total cell mass while the portions of the pie charts indicate the relative content of carbon, nitrogen, and phosphorus in each type
of macromolecule.

the Arctic prasinophyte Micromonas sp. (strain CCMP 2099)
were obtained from the National Center for Marine Algae
and Microbiota (NCMA). The prasinophyte Ostreococcus tauri
(strain OTH95, RCC745) was obtained from the Roscoff Culture
Collection (RCC). The strains of O. tauri (mean cell volume
of 1.8 ± 0.3 µm3) and T. pseudonana (mean cell volume of
158 ± 23 µm3) used are both coastal isolates while the strains
of Micromonas sp. (mean cell volume of 1.8 ± 0.3 µm3) and
T. weissflogii (mean cell volume of 1630 ± 215 µm3) were isolated
from shelf waters of the Arctic Ocean and the Gulf Stream of
the North Atlantic, respectively. Cell volumes for each strain
were based on measurements of a minimum of 50 live, unstained
nutrient-replete cells observed by light microscopy and assuming
a cylindrical form for diatoms and a spherical form for both
prasinophytes (Hillebrand et al., 1999).

All cultures were grown under a irradiance of 85 µmol
photons m−2 s−1 provided by cool white fluorescent bulbs on
a 12:12 light:dark cycle and a temperature of 18◦C with the
exception of Micromonas sp., which was grown at 6◦C. These
conditions have been shown to be at subsaturating growth
irradiance and near optimum growth temperatures for each study
species (Thompson, 1999; Strzepek and Price, 2000; Lovejoy
et al., 2007; Six et al., 2008). Growth media was prepared from
natural seawater (Cape Tormentine, Canada) with a salinity of
∼32 ppt and amended with half the f/2 concentrations (Guillard
and Ryther, 1962; Guillard, 1975) of sodium phosphate, sodium
silicate (not used for prasinophytes), trace metals, and vitamins.
Media was further amended with 2 mM sodium bicarbonate
and 60 or 120 µM sodium nitrate, respectively, for diatoms
and prasinophytes. The lower nitrogen (N) concentration was
necessary for diatom cultures to ensure carbon-replete conditions
and a maximum pH of less than 9 at all growth phases. Media
was adjusted to a pH of 7.95–8.00 with HCl and filter sterilized
(Pall Acropak 0.8/0.2 µm capsule filter) before use. Cultures were

maintained in 5 L glass bottles (Pyrex) and mixed by stirring
with PTFE stir bars at ∼60 RPM and continuous bubbling with
filter-sterilized (VWR, 0.2 µm PES syringe filter) air. To assess
cell composition during nutrient-replete balanced exponential
growth, all cultures were maintained as optically thin, semi-
continuous batch cultures and were considered to be fully
acclimated to these conditions after a minimum of 10 generations
with less than 15% variation in growth rate. During this
acclimation period cultures were maintained within ∼15–120%
of the cell density at the time of sampling for cell composition
to ensure similar optical conditions and growth rates throughout
this period. After each culture was sampled at fully acclimated,
nutrient-replete exponential growth, N starvation was imposed
by diluting these cultures once with N-free media (the same
media as described above without sodium nitrate added). This
single dilution with N-free media was such that cultures reached
a similar optical density and pH in stationary phase as observed
during the nutrient-replete exponential phase.

Sampling
Triplicate cultures were sampled daily for cell density by
collecting and preserving a 1–3 ml aliquot of each culture
replicate. T. pseudonana and Micromonas sp. were preserved
in 0.5% glutaraldehyde and T. weissflogii and O. tauri were
preserved in 2% Lugol’s solution. The preservation technique
used for each study species was based on preliminary tests of
various concentrations of Lugol’s solution and glutaraldehyde
(0.5, 1, and 2%) to select the method that resulted in no significant
change compared to the initial cell density of unpreserved
cultures. Cell density in all samples was determined within 2 h of
collection by light microscopy using a hemocytometer except for
samples of T. weissflogii, which were counted using a Sedgwick-
Rafter chamber. Cell density was used to track the growth rate
of each culture with the onset of N starvation to determine
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FIGURE 2 | Growth rate (µ, d−1) from N-replete balanced growth to N
starvation in (A) T. pseudonana, (B) T. weissflogii, (C) O. tauri, and
(D) Micromonas sp. The larger symbols also shown in the legend indicate
sampling points for macromolecular composition at mid-exponential (ME),
late-exponential (LE), early-stationary (ES), mid-stationary (MS), and
late-stationary (LS) growth phases. Criteria for defining these sampling points
are provided in the text. The dashed line indicates the µmax for a species
determined over a minimum of 10 generations during N-replete, balanced
growth. The dotted line indicates a growth rate of 0. Error bars indicate one
standard deviation among triplicate cultures.

sampling points for cell composition (Figure 2). Growth rate
(µ) was calculated as the daily exponential rate of change in cell
density: µ (d−1) = ln(Nf /Ni )/dt, where Nf is the cell density at a
given sampling point, Ni is the cell density from the previous day
measured at the same time of day and dt is the time interval in
days between these two sampling points.

Samples for elemental and macromolecular composition,
dissolved nutrient concentrations, and bacterial contamination
were collected during nutrient-replete, balanced exponential
growth and at four additional points spanning late-exponential
and stationary phase (Figure 1). Late-exponential sampling
points characterized cell composition during the onset of N
starvation 1–5 days after dilution to N-free media in each
experiment. Stationary phase sampling was performed at early-
stationary phase near N-starved cessation of growth (6–7 days
after dilution to N-free media), at mid-stationary phase 6 days
after the cessation of growth (10–12 days after dilution to N-free

media) and at late-stationary phase either 10 days after cessation
of growth (T. weissflogii and Micromonas sp.) or when cell
densities consistently declined for 3 days after the mid-stationary
phase (T. pseudonana and O. tauri) depending on whichever
event occurred first. Element and macromolecular data from the
late-stationary sampling of T. pseudonana and O. tauri are not
presented or included in our data analyses as bacterial biomass
was estimated to be greater than 10% of phytoplankton biomass
at these sampling points (see Bacterial Enumeration section for
details). Two additional samples were also collected for elemental
composition only in late-exponential phase and stationary phase.

Samples for cell composition were collected by filtration under
gentle vacuum pressure (<18 kPa or 5 in Hg) and low light.
Samples for particulate carbon (C), nitrogen (N), phosphorus
(P), carbohydrate, lipid, and pigments were collected on pre-
combusted (4 h at 450◦C) Whatman GF/F filters (effective pore
size, 0.7 µm). Samples for protein, RNA, and DNA were collected
on Whatman Nucleopore 25 mm polycarbonate membrane
filters. Different filter types were used across these samples due
to the varying compatibility of filter materials with a particular
macromolecular assay. Polycarbonate filters with a pore size of
0.8 µm were used for both diatom species, while filters with
a pore size of 0.4 and 0.6 µm were used for O. tauri and
Micromonas sp., respectively, as these pore sizes were shown to
be required to fully retain these smaller species. Filtrate from
samples collected on pre-combusted GF/F filters was collected
for dissolved nutrient analyses. All macromolecule samples
were frozen immediately after collection in liquid nitrogen
and stored at −80◦C. Samples for particulate C, N, P and
dissolved nutrient analyses were immediately placed in a −20◦C
freezer after collection. Carbohydrate, lipid, and pigment samples
were freeze-dried prior to analyses to prevent dilution of the
extracting solutions used in each analysis by variable amounts
of seawater (∼100–200 µl) retained on GF/F filters. Abundance
of contaminating bacteria was sampled by preserving 1 ml
aliquots of each culture replicate in 0.1% glutaraldehyde (electron
microscopy-rade, Sigma #G5882). Bacterial samples were allowed
to fix at room temperature for 15 min, then frozen in liquid
nitrogen and stored at −80◦C.

Elemental and Nutrient Analyses
Filters collected for particulate C and N were dried at 60◦C
for 2 days, pelleted in pressed tin capsules and analyzed with a
Costech CHN analyzer using acetanilide as a standard.

Samples for total particulate phosphorus were dried and
extracted by hydrolysis with 0.1M HCl at 90◦C (Solorzano and
Sharp, 1980). Phosphorus was quantified by the ammonium
molybdate method (Chen et al., 1956), modified for a microplate
format, using a SpectraMax M3 microplate reader (Molecular
Devices). Collected filtrate was thawed immediately before
analyses and dissolved inorganic nitrogen (nitrate, nitrite,
and ammonium), phosphate, and silicate were quantified by
colorimetry using an autoanalyzer.

Macromolecular Analyses
Carbohydrate was analyzed colorimetrically using the TPTZ
(2,4,6-Tris(2-pyridyl) –s triazine) method originally developed
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for dissolved carbohydrates (Myklestad et al., 1997), following
a two-stage acid hydrolysis (Pakulski and Benner, 1992) and
neutralization with sodium hydroxide.

Lipids were extracted and purified using modifications of
the methods of Folch et al. (1957) to ensure full extraction (see
Supplementary Text for detail) using only pre-combusted glass
materials and HPLC-grade solvents. Dried lipid extracts
containing 20–140 µg of total lipid were quantified by
acid-dichromate colorimetry (Pande et al., 1963) using
a spectrophotometer (Shimadzu UV-1800) with glyceryl
tripalmitate (Sigma-Aldrich, Cat. #T5888) used as a reference
standard. For analysis of the phosphorus contained in lipids,
a portion of each total lipid extract described above was air-dried
at room temperature to remove all chloroform and then extracted
and analyzed as with total P samples.

Pigments were quantified by high performance liquid
chromatography (HPLC) (Van Heukelem et al., 1994; Van
Heukelem and Thomas, 2001) on an Agilent 1100 HPLC
(Agilent Technologies, Santa Clara, CA, United States) using
authenticated standards (DHI Lab, Horshølm, Denmark).

Protein was extracted from samples on polycarbonate filters
by bead milling (Lysing Matrix D, MP Biomedicals) in 2% SDS
(sodium dodecyl sulfate) buffer. Bead milling was performed four
times for 1 min at 6.5 m s−1, with samples placed on ice for 2 min
between each round of bead milling to prevent degradation by
heating. Extracted protein was then quantified with the BioRad
DC Assay, which is based on the Lowry method (Lowry et al.,
1951), using a microplate reader (SpectraMax M3, Molecular
Devices) and bovine gamma globulin (BioRad) as a standard.
Protein quantification by these methods showed less than 5%
variation compared to quantification after extraction with a
more comprehensive protein solubilization buffer containing
protease inhibitors (Brown et al., 2008) in preliminary tests with
T. pseudonana and Micromonas sp., indicating that the simple
SDS buffer used provides full protein extraction.

Nucleic acids were measured according to Berdalet et al.
(2005) with modification of the sample extraction and scaled
to a microplate format (see Supplementary Text for detail).
RNA was quantified against an E. coli ribosomal RNA standard
(Ambion #7940) and DNA was quantified against a type
IX calf thymus DNA standard (Sigma # D4522). RNA was
also quantified in samples from mid-exponential and mid-
stationary growth phases after extraction with Trizol (Thermo
Fisher Scientific), which is based on the phenol-chloroform
extraction procedure (Chomczynski and Sacchi, 1987), to provide
an additional verification of cellular RNA content. The
extraction protocol provided by the Trizol manufacturers was
used with modifications added to reduce the loss of RNA
during various isolation and cleaning steps and account for
consistent losses of RNA during solvent partitioning using
a parallel RNA standard (Ambion #4940) spike-recovery test
with each extraction (see Supplementary Information). Both
RNA quantification methods provided similar results for all
species at both growth conditions with the exception of N
replete O. tauri and Micromonas sp., for which the Berdalet
et al. (2005) method provided significantly higher (Student’s
T-test, p < 0.01) RNA values (Supplementary Figure 1).

Only results produced with the Berdalet et al. (2005) method are
shown due to its greater consistency, simultaneous quantification
of DNA, and greater apparent extraction efficiency (see
Supplementary Information).

DNA quantification met or exceeded the expected genomic
DNA content estimated from the known genome sizes of
T. pseudonana (Armbrust et al., 2004), O. tauri (Derelle et al.,
2002), and Micromonas pusilla (Worden et al., 2009), a species
closely related to Micromonas sp., and assuming a mass of
10−3 pg for each mega-base pair of DNA (Doležel et al., 2003).
A full genome sequence for T. weissflogii CCMP 1010 has not
been published. T. pseudonana was assumed to be diplontic
(Chepurnov et al., 2004) while O. tauri and Micromonas sp. were
assumed to be haplontic (Graham et al., 2008). Measured DNA
contents in N replete O. tauri and Micromonas sp. were 48.0
and 15.6% higher than genomic DNA estimates. Measured DNA
content in T. pseudonana was 110% higher than its estimated
genomic DNA content assuming diploidy. This higher DNA
content in T. pseudonana may be the result of polyploidy,
which has been observed in diatoms, particularly of the genus
Thalassiosira (Von Dassow et al., 2008; Koester et al., 2010). The
presence of multinucleate cells, which have been shown to occur
in diatoms under nutrient or toxicity stress (Badour, 1968; Oey
and Schnepf, 1970) or spontaneously (Von Dassow et al., 2006,
2008) may also explain T. pseudonana DNA content exceeding
estimates of genomic DNA content.

The elemental content of macromolecular pools was
calculated using a mean elemental stoichiometry for protein,
carbohydrates, lipids, and nucleic acids (Geider and LaRoche,
2002) and the known elemental stoichiometry of phytoplankton
pigments (Wright et al., 2005) as approximated in Figure 1.
The cellular P not accounted for in RNA, DNA, and lipid P
measurements was assumed to be residual P. This residual P likely
represents intracellular storage of P as orthophosphate (PO4)
or polyphosphate ([PO4]2[PO3]n) or the surface adsorption
of orthophosphate (Sañudo-Wilhelmy et al., 2004; Dyhrman,
2016). As such, residual P was assumed to have the molecular
formula of orthophosphate (PO4) in order to calculate its mass
for comparison to the mass of other macromolecules.

Bacterial Enumeration
The abundance of contaminating bacteria at all sampling
points was measured with a flow cytometer (BD Accuri C6)
according to Marie et al. (2005) using DNA fluorescence
(produced after staining with SYBR Green I dye) and a lack of
chlorophyll fluorescence to discriminate heterotrophic bacteria
from microalgal cells. Assuming contaminating bacteria are
coccoid with a relatively large mean cell diameter for marine
bacteria (0.7 µm), these bacteria would have a C content of 65 fg
C cell−1 (Romanova and Sazhin, 2010). Using this estimate of
C content, bacterial biomass was estimated to be 0.89–6.74% of
particulate biomass (retained on a GF/F filter) in all samples.
Additionally, the pore sizes of the filters (∼0.7 µm for glass fiber
and 0.8 µm for polycarbonate filters) used to sample diatom
cultures, which contained the highest bacterial abundances, are
similar to or greater than the relatively large assumed bacterial
cell size and thus unlikely to efficiently retain these bacteria.
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Given these measurements and assumptions, bacterial biomass
was considered to be relatively low with no significant effect
on the reported elemental or macromolecular measurements
at each of these sampling points. Late-stationary sampling
points for T. pseudonana and O. tauri were excluded from this
study since bacterial biomass was deemed too high (10–13% of
sampled biomass) to assume negligible effect on measurements
of microalgal cell composition at these points.

Data Analysis
Linear regressions as well as analysis of variance (ANOVA)
and pairwise post hoc tests comparing proportional changes in
elemental and macromolecular content among species were all
performed using R statistical software (R Studio version 1.0.143).
The error reported for all values indicates one standard deviation.

RESULTS

Elemental Content and Stoichiometry
The elemental and macromolecular content of the species in
this study were observed from N-replete steady-state growth
to non-steady state N starvation. All species showed a decline
in N quota (QN) to a consistent minimum (Figure 3B) as
dissolved inorganic N fell below detection limits (Figure 3D) and
replete levels of dissolved inorganic P (12.6 ± 4 µM) and silica
(10.8 ± 2 µM) were maintained.

All species showed an increase in cellular C quota (QC) with
N starvation, but the extent of this increase varied considerably
(Figure 3A and Table 1). Carbon accumulation with N starvation
was greater in diatoms, particularly in the larger diatom species
T. weissflogii (Table 2). The prasinophytes displayed far less
change in QC than diatoms, particularly Micromonas sp., which
had an increase in QC of only 8.95 ± 0.7% (Table 2). The
decline in QN from N-replete growth to N starvation (Figure 3B
and Table 1) was similar among T. pseudonana and both
prasinophytes (−52.1 to −42.3%, Table 2), but significantly
greater (p < 0.01) in T. weissflogii (−68.8 ± 5%). Though steady-
state N-replete C:N was comparable across all species (6.32 ± 0.3,
Figure 4A), under N starvation the greater C accumulation in
diatoms resulted in a far greater increase in C:N compared to
prasinophytes (Table 2 and Figure 4A).

Changes in cellular P quota (QP) and P stoichiometry in
response to N starvation were complex and species specific
(Figure 2C and Table 1). In N-replete steady-state growth,
prasinophytes were enriched in phosphorus resulting in a lower
C:P and N:P compared to diatoms (Figure 4 and Table 1).
With the onset of N starvation, Micromonas sp. showed the
largest reduction in QP while the larger diatom T. weissflogii
and the smaller prasinophyte O. tauri displayed smaller declines.
In contrast, QP increased slightly (7.6 ± 1%) in T. pseudonana
with N starvation (Table 2). The smaller changes in diatom QP
resulted in a larger decline in N:P in diatoms as compared to
O. tauri, while N:P increased slightly in Micromonas sp. as its
QN and QP both declined greatly with N starvation (Figure 3
and Figure 4C). Despite these differing responses in QP, C:P
increased in all species with N starvation, although C:P declined

FIGURE 3 | The ratio (mol:mol) of cellular (A) carbon, (B) nitrogen, and (C)
phosphorus quota to N-replete quotas as well as (D) the available dissolved
inorganic nitrogen from N-replete growth to N starvation. The decline in N
quota to consistent minima in each species (B) and the removal of available
DIN (D) indicate N starvation in all cultures. Error bars indicate one standard
deviation among triplicate cultures.

at mid-stationary phase in T. pseudonana due to a large increase
in QP at that sampling point (Figure 4B). As with C:N, C
accumulation dominated the increase in C:P in all species except
Micromonas sp., in which the increase in C:P was driven more by
its relatively large decline in QP and little change in QC (Figure 4B
and Figures 3A,C).

Macromolecular Content
The sum of the calculated C and N content of macromolecules
closely matched direct measurements of QC and QN
(Supplementary Figure 2) such that macromolecular
measurements accounted for 98.3 ± 8% of measured cellular
C (Supplementary Table 1). Measurements of protein, RNA,
DNA, and pigments accounted for 94.4 ± 8% of N in all samples
except at N-replete mid-exponential phase for the diatoms
T. pseudonana (86.5 ± 3%) and T. weissflogii (70.3 ± 3%). The
unmeasured residual N in N-replete diatoms is likely inorganic
N stored in central vacuoles (Miyata et al., 1986; Grover, 1991),
free amino acids, or other N-containing small metabolites that
can represent a substantial pool of intracellular N (Dortch et al.,
1984; Granum et al., 2002; Lourenço et al., 2004). Measurements
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TABLE 1 | The cellular elemental content (in pg cell−1) and molar elemental ratios of each species during N-replete, steady-state growth and during N-starved stationary
phase (mid-stationary sampling point, 6 days after cessation of growth).

O. tauri Micromonas sp. T. pseudonana T. weissflogii

N Replete N Starved N Replete N Starved N Replete N Starved N Replete N Starved

Carbon 0.277 0.362 0.582 0.634 15.1 26.7 139 368

(0.01) (0.02) (0.03) (0.03) (1) (1) (2) (26)

Nitrogen 0.0536 0.0269 0.105 0.0604 2.70 1.29 26.6 8.30

(0.011) (0.002) (0.004) (0.003) (0.1) (0.2) (1) (0.5)

Phosphorus 0.0124 0.0094 0.0215 0.0099 0.418 0.450 4.89 3.98

(0.002) (0.001) (0.001) (0.0017) (0.01) (0.05) (0.07) (0.11)

C:N 6.17 15.7 6.49 12.2 6.51 24.3 6.10 51.6

(1.0) (0.46) (0.10) (0.013) (0.21) (2.2) (0.21) (0.93)

C:P 58.9 100 69.8 170 93.0 154 73.3 238

(12) (11) (4) (43) (6) (11) (2) (12)

N:P 9.71 6.39 10.8 13.9 14.3 6.4 12.0 4.61

(2.3) (0.8) (1) (4) (0.3) (0.3) (0.33) (0.14)

Values in parentheses indicate one standard deviation.

of RNA, DNA, and phospholipids accounted for only 29.2 ± 3%
of cellular P (Supplementary Table 1). We define the cellular P
that is not accounted for by these macromolecules as residual P.
Considering our additional verification of our RNA and DNA
measurements (see Supplementary Information for more
detail), the direct measurement of phosphorus in total lipid
extracts, and the expectation that the contribution of other
organic phosphorus pools (e.g., ATP, other free nucleotides) will
be small (Geider and LaRoche, 2002; Dyhrman, 2016) we assume
that the residual cellular P is in the form of either intracellular
storage (e.g., polyphosphate bodies, orthophosphate in vacuoles)
(Miyata et al., 1986; Dyhrman, 2016) or as surface-adsorbed
phosphate (Sañudo-Wilhelmy et al., 2004; Fu et al., 2005).

The major macromolecular pools of protein, carbohydrate,
and lipid represented 94.7 ± 9% of QC and their variation
matches the observed changes in QC and QN with N

TABLE 2 | Percent change in molar elemental content from N-replete
mid-exponential growth (point ME in Figure 2) to N starved mid-stationary phase
(point MS in Figure 2).

O. tauri Micromonas sp. T. pseudonana T. weissflogii

Carbon 30.7a 8.95b 77.5c 164d

(2) (0.7) (5) (11)

Nitrogen −49.9a
−42.3a

−52.1a
−68.8b

(10) (3) (6) (5)

Phosphorus −24.2a
−54.0b 7.6c

−18.7a

(5) (10) (1) (1)

C:N 155a 88.8b 273c 747d

(26) (1) (27) (29)

C:P 70.2a 144b 65.6a 225c

(16) (37) (6) (12)

N:P −34.2a 29.1a
−55.5b

−61.7b

(9) (7) (3) (3)

Values in parentheses indicate one standard deviation. Values with different
superscript letters are significantly different (p < 0.01).

starvation (Figure 5 and Supplementary Table 2). Diatoms
displayed far greater increases in carbohydrate quota (370–
829%) than prasinophytes (52.2–58.4%) during N starvation
(Figure 5 and Table 3). The relative changes in lipid quotas were
more similar across species (112–202%). The greater increase
of QC and C:N observed in diatoms during N starvation
(Figures 3A, 4A) was due primarily to the greater carbohydrate
accumulation in diatoms while lipid accumulation dominated

FIGURE 4 | The change in molar ratios of (A) cellular carbon:nitrogen,
(B) cellular carbon:phosphorus, (C) cellular nitrogen:phosphorus from
N-replete growth to N starvation. Error bars indicate one standard
deviation among triplicate cultures.

Frontiers in Microbiology | www.frontiersin.org 7 April 2019 | Volume 10 | Article 763

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00763 April 17, 2019 Time: 11:34 # 8

Liefer et al. Macromolecular Basis of Phytoplankton C:N:P

FIGURE 5 | Changes in cellular content (pg cell−1) of (A–D) the major
macromolecules protein (blue), carbohydrate (red), and lipid (yellow) as well as
(E–H) the minor macromolecules pigments (green), RNA (purple), DNA
(orange), phospholipid (cyan), and residual phosphorus (black) with N
starvation. The inset in (B) highlights the macromolecular content of
T. weissflogii at the beginning of the experiment as this is obscured by the
large range of macromolecular content in this species. Error bars indicate one
standard deviation among triplicate cultures. Mid-exponential and
mid-stationary values for all macromolecular pools are also shown in
Supplementary Table 2.

the more modest increases in QC and C:N in prasinophytes
(Figure 5 and Table 3). Protein accounted for 84.7 ± 8%
of QN and its similar relative decline in all species with N
starvation (Figures 5A–D and Table 3) mirrored the changes
in QN as both parameters were highly correlated in all species
(r = 0.90–0.98, p < 0.001).

Minor pools of macromolecules (with respect to cell mass)
made relatively small contributions to QC and QN, but dominated
species-specific dynamics in QP. The small portion of QN not
in proteins was mostly in nucleic acids and pigments. RNA was
the most dynamic macromolecular pool in this study, showing a
large and similar decline (−92.4 to −69.7%) in all species with
N starvation. Pigments, particularly chlorophylls, also showed a
large decline with N starvation (Figures 5E–H and Table 3) that
was distinctly greater in diatoms (−65.6 to −56.0%) compared
to prasinophytes (−32.9 to −25.7%). While these changes had
a small impact on QN, RNA and residual P content had a large
influence on cellular P stoichiometry. The greater decline in N:P
with N starvation in diatoms reflects their maintenance of larger
residual P pools relative to prasinophytes, but similar declines
in protein and N content across species. Declines in both RNA

TABLE 3 | Percent change in macromolecular content from N-replete
mid-exponential growth (point ME in Figure 2) to N starved mid-stationary phase
(point MS in Figure 2).

O. tauri Micromonas sp. T. pseudonana T. weissflogii

Protein −49.8a
−41.1a

−47.7a
−55.6a

(5) (6) (6) (5)

Carbohydrate 58.4a 52.2a 370b 829c

(6) (5) (69) (55)

Lipids 188a 132b 202a 112b

(19) (19) (22) (8)

Pigments −25.7a
−32.9a

−56b
−65.6b

(4) (2) (15) (7)

RNA −92.4a
−70.3a

−69.7a
−84.6a

(20) (8) (11) (3)

DNA −41.2a
−4.76b 123c

−17.4d

(3) (0.2) (14) (1)

Phospholipid 2.24a
−46b 19c

−37.6b

(0.4) (4) (6) (8)

Residual P 9.66a
−58.9b 25.2c

−2.98d

(2.3) (14) (3) (0.1)

Values in parentheses indicate one standard deviation. Values with different
superscript letters are significantly different (p < 0.01). No percent change values
for protein or RNA content were significantly different across species

and residual P accounted for a large decline in QP and slight
increase in N:P in Micromonas sp., an elemental response that
differed from that of all other species. This decrease in both
RNA and residual P in Micromonas sp. also caused an increase
in C:P despite little C accumulation. The comparatively small
change in residual P in T. weissflogii and O. tauri correspond
to their small declines in QP. The dynamics of residual P also
dominated the response of QP in T. pseudonana, where a large
increase in residual P during mid-stationary phase appeared
to cause an increase in QP and a decline in C:P following its
initial increase. Phospholipids and DNA represented the smallest
portions of cellular P and were less variable than all other major
macromolecules in response to N starvation (Figures 5E–H and
Table 3) except in the case of T. pseudonana, in which the cellular
DNA quota increased with N starvation while other species
displayed only small declines.

Elemental Allocation to Macromolecules
All species in this study shared similar general patterns in C and
N reallocation in response to N starvation. Protein represented
the largest pool of cellular C and N in all species under N-replete
steady-state growth. With the onset of N starvation, C was
reallocated from protein to lipid and carbohydrate (Figure 6)
while a consistently high proportion of N was maintained in
protein and a smaller proportion on N was reallocated from
RNA to DNA (Figures 7A–D). Within these shared general
patterns, far more C was allocated to carbohydrate in T. weissflogii
(Figure 6D) while in the other species the proportion of
QC in both carbohydrate and lipid increased in a similar
fashion (Figures 6A–C). The hyper-accumulation and higher
C allocation of carbohydrate in T. weissflogii is also apparent
in its large increase in carbohydrate:lipid with N starvation

Frontiers in Microbiology | www.frontiersin.org 8 April 2019 | Volume 10 | Article 763

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00763 April 17, 2019 Time: 11:34 # 9

Liefer et al. Macromolecular Basis of Phytoplankton C:N:P

FIGURE 6 | Changes in the allocation (%) of total cellular carbon among
protein (blue), carbohydrates (red), and lipid (yellow) in (A) T. pseudonana, (B)
T. weissflogii, (C) O. tauri, and (D) Micromonas sp. The estimated C content
of the macromolecules shown accounted for 94.7 ± 9% of total cellular
carbon. Error bars indicate one standard deviation among triplicate cultures.

(Figure 8A). In contrast, there was only a slight increase in
carbohydrate:lipid in T. pseudonana and a slight decline in
carbohydrate:lipid for both prasinophytes (Figure 8A). The
similar general patterns in N allocation pattern are also reflected
in the protein:RNA ratio of each species, which was similar
among diatoms and Micromonas sp. (12.70 ± 0.8) and lower
in O. tauri (8.64 ± 1.7) during N-replete growth and increased
in all species with N starvation as RNA declined more rapidly
than protein (Figure 8B). The overall N allocation pattern is
also clear in the sharp decline of RNA:DNA in each species
from steady state N-replete values of 5.39 ± 2.0 in diatoms
and 1.82 ± 0.1 in prasinophytes to, similarly, low levels in
all species (0.60 ± 0.3) with N starvation (Figure 8C). One
notable difference in N allocation among species was the slight
increase in pigments as a proportion of QN in prasinophytes
due to their small change in pigment quotas with N starvation

(Figures 7A,B), whereas pigments decreased as a proportion of
QN in diatoms (Figures 7C,D).

The majority of QP, in all species and at all growth phases, was
allocated to residual P and this allocation was greater in diatoms
(81.1 ± 7%) than in prasinophytes (60.5 ± 8%). The general
pattern of changes in the allocation of QP during N starvation
was similar among both diatoms and O. tauri as all showed a
small increase in allocation to residual P, a declining allocation
to RNA, and little to no change in the proportion of QP in
DNA or phospholipids (Figures 7E–H). This general pattern was
also reflected in the sharp decline in RNA:DNA observed in all
species with N starvation (Figure 8C). Micromonas sp. showed
a distinct pattern in P allocation during N starvation, with little
change in allocation to RNA and residual P and an increase in the
allocation to DNA (Figure 7F). The large declines in both residual
P and RNA during N starvation in Micromonas sp. paralleled the
decline in QP, thus Residual P and RNA accounted for similar
allocations of declining QP throughout N starvation. Since DNA
quotas did not change in Micromonas sp., DNA made up an
increasing proportion of the declining QP with the onset of N
starvation (Figure 6F).

DISCUSSION

The diatoms and prasinophytes we examined represent
distinct phyla, cell sizes and environmental niches, yet share
some key similarities in the macromolecular responses to
N starvation that dominate their elemental stoichiometry.
The accumulation of C-rich carbohydrate and lipid with N
starvation had the greatest impact on elemental stoichiometry,
particularly C:N, in all species. However, diatoms displayed
far greater increases in C content due mainly to carbohydrate
accumulation while prasinophytes had more modest increases
in C that were dominated by lipid accumulation. Unlike the
distinct carbohydrate and lipid dynamics between diatoms and
prasinophytes, the decline in protein and N quota overall was
proportionally similar across species. There was also a similar
relative decline in RNA in all species with N starvation. Notably,
this similar relative decline in RNA exceeded the decline in
protein in all species despite protein representing the vast
majority of cellular N. The loss of RNA with N starvation did not
dominate P dynamics as the majority of cellular P in all species
was in residual pools, which are likely intracellular storage or
surface adsorbed phosphate (Sañudo-Wilhelmy et al., 2004;
Dyhrman, 2016). These residual P pools had strong, species-
specific effects on cellular C:P and N:P, though the accumulation
of C-rich macromolecules still dominated C:P, which increased
in all species. Despite the general similarity of these biochemical
responses across species, factors such as taxa and cell size
clearly modify the extent of macromolecular responses and their
influence on phytoplankton elemental stoichiometry.

Carbohydrate and Lipid Accumulation
Dominate Variability in C:N
The greater increase in C:N (273–747%) in diatoms were
driven by carbohydrate accumulation and the smaller increases
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FIGURE 7 | Changes in the allocation (%) of (A–D) total cellular nitrogen and (E–H) phosphorus among protein (blue), pigments (green), RNA (purple), DNA (orange),
phospholipid (cyan), and residual phosphorus (black) with N starvation. Note that in the N allocation plots (A–D), protein (blue) is plotted on a different scale on the
left axis while RNA (purple), DNA (orange), and pigments (green) are plotted on a smaller scale on the right axis. Note that in the P allocation plots (E–H) Residual
phosphorus (black) is on the left axis with a different scale than RNA (purple), DNA (orange), and phospholipids (cyan), which are plotted on a smaller scale on the
right axis. Error bars indicate one standard deviation among triplicate cultures.

in C:N (88.8–155%) in prasinophytes were driven by lipid
accumulation. Increases in carbohydrate content in both diatoms
and prasinophytes are generally attributed to the accumulation
of storage polymers (Myklestad, 1974; Ral et al., 2004).
The larger intracellular space of diatoms may allow more
carbohydrate storage accumulation (Sicko-Goad et al., 1984).
Such accumulation may be restricted in the comparatively small
prasinophytes (Raven, 1984; Ral et al., 2004), with O. tauri
being the smallest known free-living eukaryote (Chrétiennot-
Dinet et al., 1995). Carbohydrate storage in diatoms occurs in a
cytosolic vacuole that can greatly expand to fill intracellular space
(Chiovitti et al., 2004) while prasinophytes store carbohydrates
in a highly localized sheath around the pyrenoid of their single
chloroplast (Deschamps et al., 2008), a structural constraint
that may restrict their ability to accumulate carbohydrates.
Compared to carbohydrate stores, lipid bodies represent C
storage that is more densely packed (Subramanian et al., 2013)
as well as more C and energy-rich (Sorguven and Ozilgen,
2013). These properties make lipid bodies a more space-efficient

form of C storage (Subramanian et al., 2013), thus smaller
cell size and structural constraints may also explain the greater
increase in lipid content (132–188%, Figure 5 and Table 3)
than carbohydrate (52.2–58.4%, Figure 5 and Table 3) in the
N-starved prasinophytes. The greater carbohydrate accumulation
in diatoms during N starvation may also be due to their
high exudation of dissolved carbohydrates compared to other
phytoplankton taxa (Myklestad et al., 1989; Granum et al., 2002),
which is enhanced by nutrient starvation (Biddanda and Benner,
1997; Penna et al., 1999). These dissolved carbohydrates can form
extracellular polymeric substances (EPS) that can aggregate and
account for a large fraction of particulate C and carbohydrates in
diatom cultures and field populations (Passow, 2000: Engel, 2004;
Wetz and Wheeler, 2007; Taucher et al., 2015).

The differing accumulation of C-rich macromolecules by
diatoms and prasinophytes during N-starvation could also arise
from distinct growth and energy utilization strategies. Carbo-
hydrate storage may be preferred in the nutritionally dynamic
niches where diatoms typically thrive (Sarthou et al., 2005) since
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FIGURE 8 | The mass ratios of (A) carbohydrate:lipid, (B) protein:RNA, and
(C) RNA:DNA in each species with N starvation. Error bars indicate one
standard deviation among triplicate cultures.

carbohydrates are more rapidly accumulated and utilized than
lipid stores (Siaut et al., 2011; Lacour et al., 2012a). Nitrogen
starvation involves the down–regulation of photosynthetic
components (e.g., proteins, pigments) to decrease cellular N
demand and potentially limit harmful excess light absorption
(Cullen et al., 1992). This decline in the photosynthetic apparatus
during N starvation also involves the disassembly of lipids in
photosynthetic thylakoid membranes and their reallocation to
storage bodies prior to the de novo synthesis of storage lipids
(Juergens et al., 2015). Micromonas sp. and O. tauri display
far less decline in photosynthetic pigments and proteins (and
thus presumably less decline in thylakoid membrane lipids)
than diatoms during N starvation, instead relying on large
inductions of non-photochemical quenching to dissipate excess
light absorption (Liefer et al., 2018). The greater allocation of
C to lipids in prasinophytes may be due to this strategy of
maintaining photosynthetic components during N starvation.
A smaller decline in thylakoid lipids prior to de novo synthesis
of storage lipids may contribute to the greater allocation of C to
lipids in prasinophytes during N starvation.

Similar Relative Declines in Protein and
RNA Constrain Variability in Cellular N
The relative decline in cellular N (QN) and protein content
was similar among all species in this study and thus had little
effect on the differing responses in C:N between diatoms and

prasinophytes. The similar percent decline in protein content
across species (−41.1 to −55.6%) may indicate that the minimum
protein quota for cell viability as a proportion of optimal protein
quota is a shared physiological constraint on QN (Bonachela et al.,
2013). We hypothesized that the decline in protein would exceed
the decline in RNA during N starvation since protein represents
the largest portion of QN and thus a metabolic response of
minimizing QN seemed likely to disproportionately affect protein
content. Instead, the similar decline in RNA across species (−69.7
to −92.4%) exceeded the decline in protein, which may be due
to ribosome content (the largest cellular pool of RNA) being
more closely tied to growth than any particular external resource
(Elser et al., 2003).

The greater decline in RNA compared to protein observed
here may also reflect a general resource allocation strategy
in response to N stress. The redistribution and acquisition
of N (protein-intensive processes) may be favored over
maintaining biosynthesis and growth potential (ribosomes-
intensive processes), as suggested by transcriptomic and
proteomic studies of microalgae (Mock et al., 2008; Allen et al.,
2011; Hockin et al., 2012). Biosynthetic and growth potential
are directly related to ribosome/RNA content (Sterner and Elser,
2002), thus reducing RNA content during N starvation is an
opportunity cost that may limit rapid recovery and growth when
N is resupplied. This cost may be offset by N in RNA being
reallocated to N metabolism and uptake during N starvation
(Mock et al., 2008; Allen et al., 2011; Hockin et al., 2012), which
may allow resistance and survival during N stress. Although the
reduction in ribosome content was similar across species, the
potential shared opportunity costs of this decline may be less
severe for diatoms considering their adaptations for nutrient
uptake. The success of diatoms in variable nutrient conditions has
been attributed to their more rapid uptake (Lomas and Glibert,
2000) and greater storage capacity (Dortch et al., 1984; Lourenço
et al., 2004) for N. These traits may lessen the opportunity cost
of rebuilding N and P-rich ribosomes and explain the more
rapid recovery of diatoms from N starvation as compared to
prasinophytes (Liefer et al., 2018).

The small variation in N allocation across study species
may be due to the effects of cell size and storage structures
on intracellular N storage. During N-replete growth, N-rich
macromolecules (protein, nucleic acids, chlorophylls) accounted
for smaller proportions of QN in the diatoms T. pseudonana
(86.5 ± 3%) and T. weissflogii (70.3 ± 3%) than in the
prasinophytes (103 ± 11%) (Supplementary Table 1). We
assume this greater residual N in diatoms represents intracellular
storage of dissolved N, which appears to be greater in diatoms
compared to other taxa (Dortch et al., 1984; Lourenço et al.,
2004) due to their larger cell size (Grover, 1991; Tozzi et al.,
2004) and use of a central storage vacuole (Miyata et al., 1986;
Grover, 1991). The utilization of this greater intracellular N
storage pool during N starvation may explain the significantly
greater percent decline in QN in the larger diatom T. weissflogii
(−68.8 ± 5%) compared to the other study species (−42.3
to −52.1%) (Figure 3B and Table 2). The size-dependent
ability of diatoms to store dissolved N may allow greater
declines in QN with N starvation as these N storage pools
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may represent a larger proportion of their N-replete QN
(Supplementary Table 1).

Residual P Dominates the Variability in
C:P and N:P During N Starvation
Nitrogen starvation caused responses in C:P and N:P that
were species-specific and controlled by uncharacterized
residual P pools. Here we show that this residual P can
account for the majority of phytoplankton QP (70.7 ± 13%),
rather than the macromolecular pools of RNA, DNA and
phospholipids (Figures 7E–H). We assume this residual P
represents the intracellular storage or surface adsorption of
inorganic phosphorus since these are the largest known pools of
cellular P other than nucleic acids and phospholipids (Sañudo-
Wilhelmy et al., 2004; Dyhrman, 2016). Luxury uptake and
storage of P by phytoplankton has long been recognized from
culture studies (Rhee, 1978; Goldman et al., 1979; Elrifi and
Turpin, 1985) and more recently supported by field studies
(Orchard et al., 2010; Martin et al., 2014; Diaz et al., 2016),
but methodological challenges have made quantification of
internal P stores like polyphosphates (polyP) elusive (Dyhrman,
2016). Cell surface-adsorbed inorganic P is another potential
source of residual P that has been shown to account for a
majority of QP in some cases (Sañudo-Wilhelmy et al., 2004;
Fu et al., 2005).

Residual P also had differing effects on elemental stoi-
chiometry among species with implications for the variability
in phytoplankton C:N:P observed across growth conditions,
taxa, and ocean biomes. The decline in residual P with N
starvation in Micromonas sp. caused a slight increase in N:P.
This response differed from the decline in N:P that was observed
in the other study species in which residual P was stable or
increased (Figures 4C, 5E–H). Changes in residual P with N
starvation also resulted in more species-specific variation in C:P
as compared to the responses of C:N (Figures 4A,B). Similarly,
large contributions from residual P pools such as intracellular
storage may contribute to the large variations in C:P and N:P
observed by others among phytoplankton species (Quigg et al.,
2003; Garcia et al., 2018), and even among strains of the same taxa
(Martiny et al., 2016). Studies of steady-state N and P limitation
have shown large and variable amounts of residual P (Rhee,
1978) or surplus P accumulation (Goldman et al., 1979; Elrifi
and Turpin, 1985) and linked these processes to large variations
in C:P and N:P within species. Assuming a large and variable
amount of phytoplankton P storage has also allowed recent
biogeochemical models to reproduce global C:N:P patterns as a
function of phytoplankton physiological responses (Daines et al.,
2014; Moreno et al., 2018). Our quantifications of functional
P pools and residual P can help constrain such models and
provide insights as to how P allocation may vary among key
phytoplankton taxa.

A greater role of residual P rather than RNA in determining
QP has important implications for relating phytoplankton
elemental content and growth dynamics. The Growth Rate
Hypothesis (GRH) (Sterner and Elser, 2002) anticipates a positive
relationship between QP and intrinsic growth rate since QP is

expected to mostly reflect the ribosomal RNA content needed
for cell biosynthesis. However, the luxury uptake and storage
of P during non P-limiting conditions can cause P content
to be decoupled from growth and RNA content (Elser et al.,
2000; Gillooly et al., 2005; Daines et al., 2014). This decoupling
has been observed in microalgae during N and light limitation
when residual P is maintained while growth and RNA content
decline (Rhee, 1978; Goldman et al., 1979; Mouginot et al., 2015).
Similarly, we find that QP is decoupled from growth during the
onset of N starvation as most of QP is allocated to residual P
pools with varying dynamics among species. Considering this,
the GRH prediction of a positive relationship between growth
and QP may not apply to marine phytoplankton or rather this
prediction is less applicable to N-limited communities than
P-limited conditions for which QP, RNA content, and growth
may be more tightly coupled. Better characterizations of P
accumulation and storage allocation are needed to understand
the true P growth requirements of phytoplankton (Gillooly et al.,
2005; Cherif et al., 2017).

The Large Potential Impacts of C
Accumulation and Residual P on
Ocean Biogeochemistry
The differing resource allocation strategies we observed among
diatoms and prasinophytes may greatly impact their respective
roles in export production and other ocean biogeochemical
processes. The greater carbohydrate accumulation in diatoms
during N starvation could cause their exported biomass to have
a higher C:N than that of prasinophytes. A higher C:N in
sinking diatom biomass would result in lower C use efficiency
for its consumers and a greater export of C to the deep
ocean (Hessen et al., 2004; Finkel et al., 2010). The greater
export production of diatoms compared to other phytoplankton
taxa (Michaels and Silver, 1988; Buesseler, 1998) is often
attributed to their larger mineralized cells and tendency to
form aggregates, which result in faster sinking rates (Thornton,
2002; Sarthou et al., 2005). Greater carbohydrate production
with N stress may be a physiological mechanism in diatoms
that contributes to this rapid sinking. Intracellular accumulation
of carbohydrates provides negative buoyancy (Raven, 1984;
Richardson and Cullen, 1995) and carbohydrate exudation
creates the EPS that allows fast-sinking aggregates to form
(Passow, 2000). Recent work indicates that smaller taxa like
prasinophytes make larger contributions to export production
than previously thought due to their inclusion in such aggregates
(Turner, 2015; Richardson, 2019). Unlike diatoms, the sinking
and export of prasinophytes seems less likely to be enhanced
by N stress given their preference for lipid rather carbohydrate
accumulation observed here.

Our findings provide taxonomic and physiological constraints
on phytoplankton C:N:P that can strengthen efforts to
mechanistically quantify and predict ocean biogeochemical
processes. The similar proportional decline in protein across
species in this study may represent a useful constraint for
predicting variable phytoplankton C:N and N:P in cellular
trait-based models. In contrast, the presence of large residual
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P pools with species-specific variation presents a significant
challenge for integrating phytoplankton biochemical traits into
predictive models (Follows and Dutkiewicz, 2011). Global
patterns in particulate C:P have been linked to increasing
phytoplankton P requirements for biosynthesis (i.e., ribosomes)
at low temperature (Toseland et al., 2013) and regional
variation in P availability for phytoplankton growth (Galbraith
and Martiny, 2015). Accounting for both the biochemical
effects of temperature adaptation and variation in P storage
with P availability has allowed recent modeling efforts to
capture the full variability and much of the global patterns
in phytoplankton and particulate C:P (Moreno et al., 2018).
Our findings show that taxonomic variation in C accumulation
and residual P pools like P storage can also greatly affect
phytoplankton C:P and thus C export efficiency even in the
absence of these proposed mechanisms. This highlights the
impact that taxonomic variation in biochemical traits and the
biogeography of phytoplankton communities may have on ocean
C:N:P patterns (Weber and Deutsch, 2010; Martiny et al.,
2013a). The presence of large, variable C and P storage pools
provide additional mechanisms that may cause the observed
flexibility in ocean particulate C:P (Galbraith and Martiny,
2015). Our work shows that these mechanisms may be affected
by phytoplankton community structure and N availability in
unexpected ways.
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