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The importance of natural ecosystem processes is often overlooked in urban areas.
Green Infrastructure (GI) features have been constructed in urban areas as elements
to capture and treat excess urban runoff while providing a range of ancillary benefits,
e.g., ecosystem processes mediated by microorganisms that improve air and water
quality, in addition to the associations with plant and tree rhizospheres. The objective
of this study was to characterize the bacterial community and diversity in engineered
soils (Technosols) of five types of GI in New York City; vegetated swales, right of way
bioswales (ROWB; including street-side infiltration systems and enhanced tree pits), and
an urban forest. The design of ROWB GI features directly connects with the road to
manage street runoff, which can increase the Technosol saturation and exposure to
urban contaminants washed from the street and carried into the GI feature. This GI
design specifically accommodates dramatic pulses of water that influence the bacterial
community composition and diversity through the selective pressure of contaminants or
by disturbance. The ROWB had the highest biodiversity, but no significant correlation
with levels of soil organic matter and microbially-mediated biogeochemical functions.
Another important biogeochemical parameter for soil bacterial communities is pH, which
influenced the bacterial community composition, consistent with studies in non-urban
soils. Bacterial community composition in GI features showed signs of anthropogenic
disturbance, including exposure to animal feces and chemical contaminants, such as
petroleum products. Results suggest the overall design and management of GI features
with a channeled connection with street runoff, such as ROWB, have a comprehensive
effect on soil parameters (particularly organic matter) and the bacterial community.
One key consideration for future assessments of GI microbial community would be
to determine the source of organic matter and elucidate the relationship between
vegetation, Technosol, and bacteria in the designed GI features.
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INTRODUCTION

Urban centers are rapidly growing at the sacrifice of natural or
green spaces. Approximately 82% of the population in North
America resides in an urban area with 400–1000 people per
square kilometer (McGranahan et al., 2005). This increase in
population density contributes to greater generation of pollutants
and waste, which amplifies the potential for elevated exposure to
pollutants for residents. Globally, population estimates project
that approximately 68% of the world’s population will reside
in urban areas by 2050 (UNDESA, 2017, 2018). This growing
threat to environmental resources and public health is a
driving force for communities to adopt sustainable practices that
improve and maintain urban environmental health. A solution
has been to redesign the urban landscape with the objective
of multifaceted benefits for the urban center, such as green
infrastructure (GI). A strong motivation specific for green
infrastructure is to mitigate disruptions in the local watershed
hydrology caused by impervious surfaces and reduced natural
vegetation (Shuster et al., 2005; Nowak and Greenfield, 2012;
Capps et al., 2016). GI features are designed using a combination
of natural and constructed materials to capture urban runoff
and facilitate other functions provided by natural systems
(Tzoulas et al., 2007; Morel et al., 2014). Cities around the
world have begun to improve existing infrastructure using
GI to manage storm water runoff, enhance air quality, and
provide additional social and economic benefits (Benedict and
McMahon, 2006; Flynn and Traver, 2013; Rakhshandehroo
et al., 2015; Kumar and Hundal, 2016; Connop et al., 2016;
Gill et al., 2017). In New York City (NYC, United States),
a detailed GI plan includes a range of designs (Table 1) to
achieve ambitious goals for urban runoff and storm water capture
while providing benefits related to pollutant removal, aesthetic
enhancement, climate modification and other ecosystem services
(Pires, 2004; NYC Environmental Protection, 2012).

A range of ecosystem services are provided by GI features,
though optimizing these services relies on the selection of locally-
appropriate and resilient plant cover as well as the use of
engineered soil (Technosols; Deeb et al., 2016) to balance water
infiltration and nutrient cycling processes for specific urban
landscapes (Lehman, 2006; Macías and Camps Arbestain, 2010;
NYC Environmental Protection, 2012; Gkorezis et al., 2016;
Takaijudin et al., 2016; Li et al., 2016). Environmental and
structural characteristics of GI features, particularly soil texture,
greatly influence local microclimatic conditions by regulating the
availability of surface water films for soil microbes and water
retention for plants and meso – macrofauna (Huang et al.,
2002; Cosandey et al., 2003; Jia and Conrad, 2009; Ball, 2013).
Additionally, variations in organic matter, pH, and salts, can
influence soil microbial community composition, and function
(Cosandey et al., 2003; Ng et al., 2016; Wang et al., 2018).
Soil microbial communities maintain essential roles that are
responsible for nutrient cycling processes which support plant
growth and other ecosystem services of GI features (Wall, 2004;
Young and Crawford, 2004; Hostetler et al., 2011). Furthermore,
biodiversity, particularly within the soil microbiome, has been
found to be important for maintaining overall ecosystem

function and resilience (Allison and Martiny, 2008; Reese et al.,
2015; Gkorezis et al., 2016; Neilson et al., 2017). With a
vast majority of Earth’s biological diversity contained within
belowground soil ecosystems, it is important to understand the
anthropogenic impacts on soil through land use development
(Roesch et al., 2007; Delmont et al., 2011; Wang et al., 2018).

Analysis of the microbial communities in GI features
is fundamental to understanding the role of the microbial
community and as a guide for future GI designs. The microbial
community of Technosols can be an indicator of the nature
and extent of anthropogenic impact on GI features, including
pollutants in urban runoff. Studies across a range of locations
and soil types show that the Phyla Acidobacteria, Actinobacteria,
and Proteobacteria regularly dominating the soil microbiome,
including in urban soils (Fierer and Jackson, 2006; McGuire
et al., 2013; Huot et al., 2017). These Phyla provide a baseline
for evaluating the composition of bacterial communities in
Technosols. In GI features, anthropogenic impacts such as
exposure to petroleum products, heavy metals, salt, animal
feces, pesticides, fertilizers, and garbage in urban runoff can
shift abundances of bacteria within the Technosol microbiome
(Sauvé et al., 1997; Marcin et al., 2013; Delgado-Balbuena et al.,
2016; Adeniji et al., 2017). These changes can be attributed to
introductions of atypical soil microbiota as well as enrichment
of specific, indigenous bacteria. For example, gram-negative
bacteria typically increase in soils contaminated with petroleum
(MacNaughton et al., 1999); specifically, the genus Pseudomonas
contributes to this increase because species within this genus
are able to metabolize petroleum products (Barathi and
Vasudevan, 2001; Rahman et al., 2002; Nikhil et al., 2013).
Some gram-positive bacteria, i.e., Micrococcus, have also been
observed to increase in the presence of petroleum contamination
(Nikhil et al., 2013). Biological contamination through animal
feces can introduce Clostridium and Ruminococccus species

TABLE 1 | Summary of GI designs present in the 22 sites sampled in New York
City, NY.

GI design Definition (Green infrastructure annual report 2012)

ROWB Right of Way Bioswale: ROWB are constructed within sidewalks
and are adjacent to the road– they are designed to catch street
and sidewalk runoff by being positioned upstream of existing
sewer catch basins; runoff is then directed to the vegetation in
the system (NYC Environmental Protection, 2012)

• ETP Enhanced Tree Pit: Contains a top layer of Technosol along with
either glass, gravel as belowground storage for excess water
(NYC Environmental Protection, 2010)

• SSIS Street-side Infiltration Swale: Larger surface area than an ETP;
contains one layer of top Technosol, and lacks belowground
water storage. (NYC Environmental Protection, 2010)

VS Vegetated Swale: Areas of vegetation that are located in
expansive areas such as parking lots etc. that vary in size and
shape

UF Urban Forest: Dense collection of trees in an urban area.
∼ our site was at Alley Pond Park established in 1935 and is an
irregular shaped area of land with dense canopy

All GI were constructed with Technosol from the same source with a high sand
content (∼70–85%).
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and, more broadly, the Phyla Firmicutes, Bacteroidetes, and
Actinobacteria into the soil (Handl et al., 2011). Knowing
whether these, and other bacteria, are found in GI features is
important because it can help to guide urban planning for the
purposes of improving urban biodiversity or bioremediation,
such as influencing the location, design, construction of GI
features. Previous studies have characterized correlations
between anthropogenic impacts on soil microbial communities,
however, limited research has explored the dynamics
influencing the Technosol microbial communities in GI
features (Mukherjee et al., 2017).

The objective of this study was to describe the bacterial
community of Technosols in GI features, which differ in their
design for managing urban runoff infiltration and retention
in NYC. Focal bacterial groups were selected because of
their essential role in nutrient cycling and the degradation
of pollutants. Relationships between bacterial communities,
composition and diversity, with soil physical properties and
biogeochemical parameters were evaluated by comparing results
with data from a companion study conducted on the same
sites (Deeb et al., 2018).

MATERIALS AND METHODS

GI Site Description
Samples were collected from Technosols of GI features in two
New York City Boroughs within the Jamaica Bay, NY watershed.
Sites (N = 22) were selected to represent the variety of NYC GI
designs for right-of-way bioswales (ROWB); enhanced tree pits
(ETP; N = 5) and street-side infiltration swales (SSIS; N = 5), as
well as vegetated swales (VS; N = 11) and an urban forest (UF;
N = 1) (Figure 1 and Table 1). All GI features were constructed
with Technosol from the same source with a high sand content
(70–85%). Modifications to the road drainage system (i.e., curb
cuts, inlet modifications, and catch basin modifications) directly
channel runoff to ROWB (NYC Environmental Protection, 2010,
2012). Both ETP and SSIS are prototypes of bioswales and
were constructed within sidewalks adjacent to streets, directly
connected to street drainage. The ETP design is a smaller surface
area than the SSIS and has an integrated runoff detention
chamber. The VS are vegetated areas of variable size and shape,
constructed in open areas (e.g., parking lots, parks) to provide
surface, soil, and gravel storage for infiltration of urban runoff.
The area of ETP are typically 9.3 m2 (6.1 m by 1.5 m), with a
0.6 m engineered soil layer over 0.6 m of gravel, recycled glass, or
storage chambers. The surface area of SSIS are typically 18.6 m2

(12.2 m by 1.5 m) and do not contain a storage layer with gravel,
recycled glass, or storage chambers. One ETP site (GI.0.14, ETP1)
had a 0.3 m wide gravel strip along the curb instead of soil and a
larger surface area (∼19 m2). The VS sample sites had an average
surface area of 269.8 m2 and were most commonly located at
large street intersections and parking lots. One VS site served as
an urban reference site (GI.11.25). The UF site was sampled as a
reference of a non-Technosol urban soil and was an irregularly
shaped forest stand of native hardwood trees (oak and hickory)
established in 1935.

The area of impervious urban surface creating runoff water to
be managed by a GI feature differed across the GI sites in this
study. ETP sites had 156–411 m2 and SSIS sites had 207–1847 m2

of impervious area contributing potential urban runoff. Since VS
sites had unstructured design criteria including the size of the GI
feature, the area of impervious surfaces each VS site served varied
from 73 to 7606 m2.

The initial plant cover for all designs was a combination
of herbaceous perennials, grasses, and trees. The herbaceous
plant cover at all sites included American boneset (Eupatorium
perfoliatium), New England aster (Aster novae angiliae syn.
Symphyotrichum novae-angliae), and oxeye sunflower (Heliospsis
helianthoides). The grasses at all sites were switch grass
(Panicum virgatum) and Virginia wild rye (Elymus virginicus).
Trees planted varied by site and were selected from the
following resilient species – black gum (Nyssa sylvatica),
sweet gum (Liquidambar styraciflua), shadblow (Amelanchier
canadensis), and swamp white oak (Quercus bicolor). At the
time of sampling, vegetation cover was generally present and
ROWB sites were consistent with the planned selection of
species (Supplementary Figure 1).

Sample Collection
GI sites were sampled over a period of 48 h in July, 2016. No
rain was recorded while sampling or for 48 h prior and the
July air ranged from 22 to 30◦C. Multiple surface samples were
collected at each GI site from random locations within the site
(distributed throughout the center, periphery, etc.) at a depth of
0–10 cm. All surface samples from a single GI site were pooled
into a larger collection barrel and mixed thoroughly as a collective
representation of that site. Final samples were then collected as
a subset of the larger composite collection barrel representing
each site and stored at 5◦C until DNA extraction (within 24 h
of collection). Bacterial DNA was extracted from soil (0.25 g)
using the MoBio PowerSoil DNA Isolation kit (Qiagen MoBio,
Carlsbad, CA, United States). The DNA was stored at -20◦C
until it was shipped overnight for sequencing. Isolated DNA
was amplified for the 16S rRNA gene, V1-V3 region (for details
see Supplementary Description) then sequenced using Illumina
MiSeq (Molecular Research Lab, Shallowater, TX, United States).

Biogeochemical Parameters
In a companion study (Deeb et al., 2018), GI site samples were
analyzed for a series of soil chemical variables; organic carbon
(C-org), total nitrogen (N-total), pH, salts, total petroleum
hydrocarbons (TPH), Pb, Zn as well as moisture content
(MC) and texture. A suite of additional measurements for
biogeochemical parameters (microbial biomass carbon and
nitrogen content, potential net nitrogen mineralization and
nitrification, microbial respiration, and denitrification potential)
were also completed (Supplementary Table 1).

Microbiome Sequence Analysis
Sequence data were received as paired forward and reverse reads
with adapters removed. Subsequent processing was accomplished
using the Quantitative Insights Into Microbial Ecology analysis
tool (QIIME v1.9.1; Caporaso et al., 2010). Sample specific
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FIGURE 1 | Map of the 22 sampled GI sites through Brooklyn and Queens boroughs of New York City, NY. The map was created using ArcGIS R© software by Esri
with the light gray canvas basemap.

barcodes and poor quality sections of sequences were trimmed
away and remaining sequences were filtered to remove overall
poor-quality reads: minimum length of 200 basepairs, average
quality score of >25, no more than 6 homopolymers or
ambiguous bases. The resulting sequences were then clustered,
using the Usearch algorithm (Edgar, 2010), into operational
taxonomic units (OTUs, minimum cluster size of 4 for filtering)
and were aligned with FastTree then assigned a taxonomic
identification at 97% threshold for PyNAST alignment using the
Greengenes v13.8 database. Non-bacterial (e.g., mitochondria,
chloroplasts, and Archaea) sequences are common in 16S
amplicon libraries; therefore, they were identified and filtered
from the GI sample sequences. Throughout processing the
sequence data, the sequence average for each sample remained
about 50,000 sequences (Supplementary Table 2). Final bacterial
communities were normalized by rarefying to the lowest
number of the sample sequence counts, 44,702 sequences
(rarefaction curves, Supplementary Figure 2) Sequence counts
of replicates were averaged to better represent the bacterial
community of each GI design (R Core Team analysis package
Phyloseq; McMurdie and Holmes, 2012).

Several biodiversity metrics were calculated using the
normalized sequence data. The top 20 Orders were calculated
and represented along with the combined local contribution
to beta diversity (LCBD, using default Hellinger dissimilarity
distance) using the MicrobiomeSeq R package (Legendre and
De Cáceres, 2013; Ssekagiri et al., 2018). The LCBD was

qualitatively used to describe the bacteria community profiles,
with scale of LCBD indicating a sample’s similarity (small) to
other samples or difference (larger). Alpha diversity represents
bacterial diversity within each sample and GI design; richness
of unique organisms is presented as the observed OTUs and
estimated richness of OTUs (Chao1), while the Shannon diversity
index accounts for unique OTU richness and abundance.
Beta diversity represents the bacterial diversity between GI
samples, calculated with a Bray-Curtis and Unifrac (weighted
and unweighted) distance matrix of the bacterial community
similarities represented by a principal coordinate analysis,
PCoA (Phyloseq). A PERMANOVA was completed to test the
significance of cluster of samples, specifically by GI design.

The biogeochemical parameters measured (Deeb et al., 2018)
were compared to the bacterial community to investigate
relationships between community composition and function
(Ssekagiri et al., 2018). Predominant bacterial Orders related
to biogeochemical parameters were determined with linear
correlations; significance determined with p-values of less than
0.05 adjusted for multiple comparisons by false discovery rate
(fdr; Williams et al., 2014). Additionally, the most abundant
bacteria at the Order level (Orders with greater than a total of 50
sequences for all samples) were evaluated for associations with
biogeochemical factors common to pollutants using ANOVAs
followed by Tukey HSD tests.

Results from this study were compared with a previous
sampling of natural (not-engineered) urban surface soils from
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non-GI features in NYC (Huot et al., 2017). The sequence
data from these urban surface soil samples also targeted the
bacterial community using the V1–V3 16SrRNA region and
were sequenced using Illumnia MiSeq by the same laboratory
(Molecular Research Lab, Shallowater, TX, United States). The
primary GI sequence data (22 sequenced samples averaged by
location, N = 17) and the urban surface soil sequence data (28
sequenced soils averaged by location, N = 9) were re-analyzed as
a single batch. The analysis methods were the same as described
above except that new OTU clusters were identified using
the Uclust algorithm to reduce computational demand (Edgar,
2010). Sequences for all samples were normalized to control for
sequencing variation between samples as well as machine runs
for the different data sets. Differential abundances for bacterial
Orders were evaluated by averaging the number of sequences for
the Orders at each site then comparing the proportion of the
urban surface soil bacterial community to the proportion within
the Technosol bacterial community. Significant differences were
determined by completing a Welch’s t-test for unbalanced
samples on the average sequence abundance of each site for each
Order between urban surface soil and Technosols.

RESULTS

Biogeochemical Parameters
Microbial biomass C and N and metabolic functioning (potential
net N mineralization and nitrification, microbial respiration,
denitrification potential) were all positively correlated with
C-org, N-total, pH, MC, TPH, and watershed contributing
area (Deeb et al., 2018) (Table 2). Denitrification potential
and microbial biomass C and N were higher in ETP followed
by SSIS then VS (Table 3). The pH was markedly lower
in the UF (4.1) than in the VS, ETP and SSIS (6.7, 6.4,
6.39, respectively). All Technosols had similar soil texture with
more than 70% sand (Table 2). Levels of heavy metals (Pb,
Zn, Ni) and TPH at GI sites did not exceed regulatory or
published levels for polluted soils (Deeb et al., 2018). However,
ETP had significantly (ANOVA, p < 0.05) greater levels of
TPH, Pb, and Zn than SSIS and VS, which did not differ
significantly. ETP sites had higher levels of organic carbon that
likely drove higher levels of microbial biomass and activity
in these sites compared to the SSIS and VS sites. For most
biogeochemical parameters evaluated, SSIS had higher levels of
activity than VS sites, but these differences were not always
statistically significant.

Microbiome Profile
Technosol bacterial communities varied with GI design, most
notably with communities in VS sites distinct from those in
the ETP and SSIS. Specific community composition of bacterial
Orders was only significantly unique for the UF site as well as for
the VS urban reference site, GI.11.25 (Figure 2); the UF site was
more similar to the VS than to other GI designs.

The GI bacterial communities all had levels of diversity in
a range that is similar to the diversity associated with non-
urban soils (Fierer and Jackson, 2006; McGuire et al., 2013; TA
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FIGURE 2 | Bacterial communities were normalized to the lowest sequence count of the samples (44,702). The taxa sequence abundances are grouped by the
different GI designs: Enhanced Tree Pit (ETP), Modified Enhanced Tree Pit (GI.0.14; ETP1), Street-Side Infiltration System (SSIS), Vegetated Street (VS), and Urban
Forest (GI.0.27; UF). Taxa of the bacteria communities are represented by the top 20 Orders with the remaining Orders clustered into the Other category. Local
contribution to beta diversity (LCBD) indicates the uniqueness of a community with the black circles along the x-axis, size corresponds to the scaled difference.

TABLE 3 | Green infrastructure microbial function characteristics.

Type Microbial Microbial Respiration∗ Mineralization∗∗∗ Nitrification∗∗∗ DEA∗∗∗

biomass C∗∗∗ biomass N∗∗∗ (µg C g−1
dry soil (µg N g−1

dry soil (µg Ng
−1

dry soil (µg Ng
−1

dry soil

(µg C g−1
dry soil) (µg N g−1

dry soil) day−1) day−1) day−1) day−1)

ETP 923.82 ± 141.89a 77.79 ± 6.25a 25.92 ± 5.18a 1.28 ± 0.50a 0.68 ± 0.21a 2.97 ± 0.66a

SSIS 633.70 ± 128.96b 53.13 ± 6.34b 30.96 ± 8.79a 0.67 ± 0.22ab 0.76 ± 0.20a 3.01 ± 0.72a

UF 521.93 ± 00.01c 101.22 ± 3.87a 30.50 ± 0.01a 0.58 ± 0.01b 0.56 ± 0.05b 0.93 ± 0.05b

VS 375.13 ± 65.30c 35.17 ± 6.12c 13.82 ± 2.41b 0.15 ± 0.03c 0.22 ± 0.04c 0.56 ± 0.10c

Values are mean ± SE (n = 15 except for VS n = 33 and UF n = 3). Significant code: ∗∗∗P < 0.0001; ∗∗P < 0.001; ∗P < 0.05; ns non-significant. Significant differences
(P < 0.05) are indicated by different letters (Deeb et al., 2018).

Ramirez et al., 2014; Delgado-Baquerizo et al., 2018), and
phylogenetically similar organisms were present in all the
GI sites. Once normalized for sequencing depth (44,702
sequences for each sample), and removing outliers (ETP1, UF,
and Urban Reference-GI.11.25), VS had significantly greater
observed and estimated (Chao1) richness than SSIS (Table 4,
Tukey HSD, p = 0.009). The SSIS had an average of 8722
OTUs and a Shannon diversity index of 7.6792 H′, the ETP
had an average of 9143 OTUs and 7.8133 H′, and VS had
an average of 9688 OTUs and 7.9383 H′. The UF had 7528
OTUs and 7.5868 H′ (Table 4 and Supplementary Figure 3).
The bacterial Orders observed in all Technosol samples,

from greatest to least, were RB41 and iii1-15 (both Phylum
Acidobacteria), Saprospirales, Rhizobiales, Cytophagales,
Pirellulales, Pedosphaerales, Opitutales, Xanthomonadales,
and Actinomycetales (Figure 2). On average there were fewer
Pedosphaerales (ANOVA, p = 0.015) and more Actinomycetales
(ANOVA, p = 0.007) in VS than in the other designs. No other
abundant nor prevalent bacterial Order significantly varied
in abundance between GI designs. GI designs had unique
bacterial community beta diversity when considering both
the phylogenetic relatedness of bacteria present as well as the
abundance of each taxon. The variation across the samples is best
explained by the Weighted Unifrac but the clustering observed
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TABLE 4 | Alpha biodiversity calculated for samples normalized to the lowest sequenced sample data (44,702 sequences) and for then averaged for GI Design with 95%
confidence intervals.

GI site GI design

Sample Observed
OTUs

Predicted
OTUs (Chao1)

Shannon
Index

Type Observed
OTUs

Predicted
OTUs (Chao1)

Shannon
Index (H′)

GI.0.27 7528 9736 7.5868 UF – – –

GI.3.2 8801 12762 7.6468 ETP 9143 ± 754.4 12852 ± 1084.58 7.8133 ± 0.2185

GI.3.6 9697 13615 7.9664

GI.7.9 8699 11978 7.7683

GI.0.8 9374 13051 7.8715

GI.0.14 8800 11473 7.9340 ETP1 – – –

GI.3.1 7828 19289 7.3368 SSIS 8722 ± 643.7 13776 ± 3877.13 7.6792 ± 0.2530

GI.4.5 8802 11727 7.7623

GI.5.2 8934 13123 7.6685

GI.10.4 8873 12255 7.8661

GI.0.3 9171 12484 7.7623

GI.8.18 10111 14512 8.0070 VS (excluding GI.11.25) 9688 ± 322.6 13412 ± 628.16 7.9383 ± 0.1162

GI.8.19 9434 13838 7.6567

GI.8.20 10260 14411 8.0256

GI.11.25 5102 9127 5.1780

GI.12.26A 10089 14040 8.1209

GI.12.26B 9563 13095 7.9644

GI.12.26C 9042 12825 7.7023

GI.0.11 9550 12120 7.9287

GI.0.21 8967 12017 7.8150

GI.0.24N 9880 13628 8.0736

GI.0.24S 9988 13633 8.0890

is not significant (PERMANOVA, p = 0.105), while the Unifrac
and Bray Curtis distance matrices had significant clustering by
GI design (PERMANOVA, p = 0.001 and p = 0.007, respectively,
Figure 3). While GI designs had similar communities, within the
VS GI design, the urban reference site bacterial community was
unlike the other VS sites in the PCoA analysis. One key difference
was the high relative abundance of Synechoccales, which was
rare in the other VS sites.

There were significant trends between specific biogeochemical
parameters and the top 10 Orders of bacteria in the GI sites
(Supplementary Figure 4), however, none of the biogeochemical
parameters were consistently correlated across bacterial Orders
or GI design. Chromatales and A21b were among the 10
abundant Orders across all GI designs. Chromatales had
significant positive correlation (p < 0.05) with the MC of ETP
and SSIS but not VS, while A21b also significantly correlated
(p < 0.05) positively with MC, but only for VS. OM content
was high across all GI sites, but only significant (p < 0.05)
twice – positively with Anaerolineales in VS and negatively with
Neisseriales in ETP.

The biogeochemical parameters did not significantly influence
diversity patterns in the communities, only the GI design had
a significant influence on community diversity (ANOVA for GI
design interaction with biogeochemical parameter, p < 0.05 for

GI design alone). As OM increased there was slight trend for
microbial diversity to increase in VS and decrease in both SSIS
and ETP (Figure 4). Similar to the trend with general OM,
with greater levels of microbial biomass C and N, VS sites had
greater diversity in contrast to the decrease in diversity for ETP
and SSIS (Figure 4). As the pH shifted toward neutral or basic,
SSIS increased in diversity and VS decreased (Supplementary
Figure 5). The salt concentration within the Technosols had
a wide range and higher concentrations correlated with a
decrease in abundance and an overall decrease in diversity
for VS and SSIS designs, while ETP design increased in
diversity (Supplementary Figure 5).

When Technosols were compared with natural urban surface
soils, some differences in community composition were apparent
after normalizing for sequence variation (3,567 sequences for
each sample). Of the 163 bacterial Orders present in both groups
of samples (Figure 5); 56 Orders had a greater abundance in
Technosols than in the urban surface soils. Most notable in
both sets of samples was the Class Chloracidobacteria, Order
RB41 (Welch’s t-test, p = 0.1415). The Order Acidobacteriales
had a slightly greater abundance in the urban surface soils
than in the Technosols (Welch’s t-test, p = 0.0548). Technosols
and urban surface soils had differences in the most abundant
(top 10%) Orders in the bacterial community. The two groups
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FIGURE 3 | The beta diversity comparison of bacterial communities. PCoA analysis plots for Weighted Unifrac (left, incorporates phylogenetic relatedness and
abundance within communities), Unweighted Unifrac (center; incorporates phylogenetic relatedness within communities), and Bray-Curtis (right) distance matrices.

of samples only shared 6 of 25 Orders while few abundant
Orders were significantly different (Table 5). Actinomycetales
was in the top 10% of both Technosols and urban surface
soils and were, similarly, abundant (Welch’s t-test, p = 0.1693).
Rhizobiales were equally represented and just under 10%
of the average bacterial community for both urban surface
soils and Technosols. Bacillales were included in the top
10% of Technosols and not in the urban surface soils, but
the difference was not statistically significant. For Technosols,
Pirellulales, and Synechococcales were in the top 10% and
in significantly greater abundance than in the urban surface
soils. (Welch’s t-test = 0.0278 and 0.0255, respectively). While
the less described bacteria DA052_Ellin6513 and ABS-6_NA
were significantly more abundant in urban surface soils
than Technosols.

Soil bacteria are known to contribute to bioremediation
of environmental pollutants, therefore identifying bacteria in
GI can help to evaluate the bioremediation potential of GI
designs (Gadd, 2007; Glick, 2010; Ojuederie and Babalola,
2017; Santos Dos and Maranho, 2018). Bioremediation of TPH
has been associated with a few key Orders: Pseudomonadales,
Actinomycetales, Flavobacteriales, Bacillales, and Clostridiales
(Paul et al., 2005; Jiao et al., 2016). Of these Orders, only
Actinomycetales varied with GI design; there was significantly
lower abundance in SSIS than in VS (Tukey’s HSD, p = 0.007)
and no difference with ETP sites. These patterns are consistent
with levels of TPH, which were significantly higher in ETP sites
than in SSIS and VS sites. The levels of TPH were low enough
to not present a human health risk; furthermore, at this low
level there was limited influence on the bacterial community with
only Actinomycetales correlated with TPH levels. Additionally,
GI features have evidence of enteric bacteria contamination,
which is likely from the introduction of animal feces. The Orders
Bacillales and Clostridiales are often considered enteric bacteria
and were common in GI sites. Other enteric bacteria are within
the Phyla Firmicutes, Bacteroides, and Actinobacteria. These

Phyla, including the identified lower taxa, were present in GI
sites with only minor shifts in abundance across GI designs.
Actinomycetales (within the Phylum of Actinobacteria) were less
abundant in SSIS and VS (significant only for VS, Tukey’s HSD,
p = 0.02). Results for animal introduction of bacteria are also
consistent with lower levels of microbial biomass in SSIS and VS
than in ETP features.

DISCUSSION

Design of the GI features influenced the bacterial community
composition within the soil, with the VS having distinct bacterial
communities compared to the ETP and SSIS features. The
ETP and SSIS are more excessively engineered features, with
direct connections to urban runoff from streets. While VS are
constructed with variable size, shape, and integration with urban
runoff management. Bacterial communities are also known to
differ with varied pH (Fierer, 2017; Gill et al., 2017), however,
in this study pH did not vary enough between the GI designs to
identify a significant effect on bacterial diversity nor composition.
Core similarities between the bacterial communities of ETP and
SSIS were likely influenced by the consistent texture (high sand
content) of the Technosols, area, and increased connectivity.

The differences in bacterial community composition, with
the VS features having the most distinct communities, raise
questions about relationships between microbial community
structure and function. ETP sites had higher levels of organic
carbon that drove higher levels of microbial biomass and
metabolic functioning in these sites compared to the SSIS and
VS sites. For most biogeochemical variables, SSIS had higher
levels than VS sites, but these differences were not always
statistically significant. Interestingly, organic matter, microbial
biomass, and soil moisture, which should be strong drivers
of community composition, do not solely explain differences
between the ETP, SSIS, and VS features. There is great uncertainty
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FIGURE 4 | Alpha diversity metrics of the rarefied sample dataset with key biogeochemical parameters. ETP1 and UF are not replicated so there is no regression
model but they are included for comparison. Observed is the number of unique OTUs within samples, Chao is the estimated richness of OTUs in a sample, Shannon
are diversity indices that balance the richness (Observed unique OTUs) with the abundance of each OTU. Within the GI sites, OM is the organic matter measured
and Microbial Biomass C and N are the C and N within the living portion of the soil sampled.

about urban ecosystem functioning due to multiple unknowns
(i.e., local urban development, vehicle or pedestrian traffic,
or vegetation survival, etc.) associated with construction and
design of GIs (Kaye et al., 2006). Still, these and other GI
features have been shown to support high levels of nitrogen
cycling activities important to water quality (denitrification)
and plant production (nitrogen fixation) (Pickett et al., 2008;
Pataki et al., 2011; Morse et al., 2017).

Technosols had relatively high levels of OM compared
to non-urban soils (Vasenev and Kuzyakov, 2018); thus, in
this study, microbes were not likely competing for carbon
resources. Consequently, higher OM did not lead to higher
diversity in the ETP, although it did lead to higher microbial
biomass (Deeb et al., 2018). This suggests that influences on
bacterial diversity may differ from the influence on overall
microbial biomass. For VS, there was a positive relationship
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FIGURE 5 | A summary of how the bacterial community differs in urban soils. Natural (N = 9) urban surface soil still has anthropogenic influence, but is not
purposefully manufactured like Technosols in GI (N = 17). Equal proportion or representation in the soils is represented by the x = y line, values represented above
this line indicate the Order was more prevalent in Technosols and values below the line represent Orders more prevalent in urban natural soils.

between microbial biomass C and N content and diversity;
yet, there was a negative relationship for ETP and no
relationship for SSIS. These results suggest a key difference
between VS and ROWB is in the designed connectivity to
urban runoff. This connectivity combined with size of the
GI design, may be strong influences on microbial community
structure and function.

The relationships between OM, bacterial community
composition and biogeochemical function are particularly
interesting for bioremediation potential of GI features.
GI sites with relatively high OM also had higher TPH
concentrations: TPH was the highest at ETP followed by
SSIS and VS, likely associated with the sorption of TPH on
OM (Deeb et al., 2018). ETP had the greatest variation and
amount of TPH, with the trend of sites with higher levels
of TPH had a decline in bacterial richness. Increases in the
Phyla Xanthamonadales, Rhizobiales, and Rhodobacterials
are associated with the degradation of TPH contaminants
such as polycyclic aromatic hydrocarbons (PAH) (Delgado-
Balbuena et al., 2016). In our study, Xanthamonadales
and Rhizobiales were in the top 10% of both Technosol
and natural urban surface soils, however, there was no
significant difference in abundance between GI designs.
The consistent prevalence of both Xanthamonadales and
Rhizobiales may be due to their strong association with

surface vegetation, which can also correlate with OM.
At all GI sites there was surface vegetation. However,
inconsistent survival of tree species and herbaceous plants
make further research necessary draw to conclusions about
the relationship between vegetation type and amount, OM
levels, microbial community and the dynamics of organic
contaminants such as TPH.

Similar to previous descriptions of the urban soil microbiome,
Acidobacteria, Actinobacteria, and Proteobacteria are among the
most abundant bacterial Phyla of Technosols (Yan et al., 2016;
Supplementary Figure 6). The bacterial communities of
Technosols revealed similar diversity to previously studied
natural soils. This is likely to be important for their ability
to sustain ecosystem functions and is encouraging given that
Technosols are not entirely naturally derived. The Orders
Bacillales and Clostridiales are often considered enteric bacteria
and were common in GI sites. This biological contamination
is likely related to animal excretion in GI. Of the taxa
associated with common urban pollutants, Actinomycetales
and Bacillales were notable members of both Technosols and
natural urban surface soils. The Order Actinomycetes had
the greatest presence in ETP and is associated with common
urban pollutants, a GI design greater connectivity to urban
runoff with smaller area to manage and retain the runoff
(Rahman et al., 2002; Yu et al., 2018).
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TABLE 5 | A compiled list of bacterial Orders comprising the top 10% average abundance within Technosols (†, N = 17, with sub-samples of sites averaged) and natural
urban soils (§, N = 9 with surface horizons averaged by site).

Taxonomy: Class__Order Technosol Natural p-value

(Ave sequences) (Ave sequences)

[Chloracidobacteria]__RB41 531.12† 124.03§ 0.1415

Acidobacteria-6__iii1-15 205.45† 44.55 0.7304

Alphaproteobacteria__Rhizobiales 170.04† 202.79§ 0.3819

[Saprospirae]__[Saprospirales] 167.24† 44.84 0.0510

Cytophagia__Cytophagales 141.64† 18.72 0.1425

Nitrospira__Nitrospirales 81.84† 45.85§ 0.6822

Planctomycetia__Pirellulales 69.78† 15.33 0.0278∗

Opitutae__Opitutales 60.30† 20.60 0.1671

Synechococcophycideae__Synechococcales 59.40† 0.00 0.0255∗

Gammaproteobacteria__Xanthomonadales 59.08† 124.89§ 0.3085

[Pedosphaerae]__[Pedosphaerales] 47.04† 48.51§ 0.1423

Betaproteobacteria__Burkholderiales 45.28† 38.71 0.2018

Anaerolineae__envOPS12 44.80† 0.17 0.1782

Bacilli__Bacillales 42.25† 10.67 0.4173

Bacteroidia__Bacteroidales 33.80† 1.00 0.2886

Actinobacteria__Actinomycetales 32.67† 137.80§ 0.1693

Deltaproteobacteria__Myxococcales 25.69 45.71§ 0.0061∗

[Spartobacteria]__[Chthoniobacterales] 24.09 57.90§ 0.8958

Alphaproteobacteria__Rhodospirillales 18.65 66.19§ 0.1832

Thermoleophilia__Solirubrobacterales 13.59 47.24§ 0.2772

Acidobacteriia__Acidobacteriales 13.01 280.49§ 0.1739

Acidimicrobiia__Acidimicrobiales 9.26 68.04§ 0.0547

Solibacteres__Solibacterales 0.46 76.32§ 0.1483

DA052__Ellin6513 0.41 198.46§ 0.0201∗

ABS-6__NA 0.00 78.70§ 0.0087∗

Significant difference determined by a Welch t-test with p < 0.05 (∗).

Among the ecosystem services provided by GI features, these
data suggest that Technosol associated bacteria have the potential
to utilize or break down urban contaminants in addition to TPH.
This ecosystem service is valuable for management strategies
of urban ecosystems to remediate chemical and oil spills as
well as heavy metals, especially for long-term contaminated
sites (Wilson et al., 1999; Ellis et al., 2000; Mishra et al., 2001;
Delgado-Balbuena et al., 2016). Bacterial Orders in the top
10% of Technosol community that were enriched compared
to urban surface soils, were RB41, iii1-15, Saprospirales,
Cytophagales, Pirellulales, Opitutales, Anaerolineae__envOPS12.
These bacteria are likely the initial description of a potential
consortium that characterize the GI Technosol community
through contributing to bioremediation or are indicating
of contamination. The top two groups are RB41 (Class
Chloroacidobacteria, Order Acidobacteria) and iii1-15 (Class
Acidobacteria-6, Order Acidobacteria) and they are common in
urban soils and are prominent in soils globally; though their
enrichment and role in the context of bioremediation in GI
Technosols is unclear (Fierer, 2017; Huot et al., 2017). Natural
urban surface soils had a greater abundance in Myxococcales,
which contribute to removal of trace organic contaminants,
specifically uranium, and may additionally suppress unwanted
organisms (Cardenas et al., 2010; Phan et al., 2016; Robinson

et al., 2016). The increase in abundance of Cytophagales
in GI Technosols may indicate some functional redundancy
within the diverse bacterial community. Cytophagales have
previously been documented as enriched in urban soils
contaminated with crude oil and can metabolize heavy
metal (e.g., Selenium) (de Souza et al., 2001), which also
reinforces their potential functional role as a bioremediator
within GI features (Mukherjee et al., 2017). Rhodospirillales
had decreased abundance in the Technosols, however, their
presence may still contribute to pollutant degradation, since
soils with phenanthrene,n-octadecane and PAH pollution
had thriving populations of Rhodospirillales (Ji et al., 2013;
Jiao et al., 2016). In the GI Technosols studied here, the
contaminant concentrations were most likely too low to drive a
response. Additional indicators of bacterial community response
to TPH contaminants may also be detected through the
increased abundance of bacteria typically used to facilitate
bioremediation; such as, Corynebacterium, Flavobacterium, and
Bacillus species, as well as Pseudomonas and Micrococcus species
because of their notable biodegradation of crude oil (Mishra
et al., 2001; Rahman et al., 2002; Paul et al., 2005). Since
overall TPH levels were low GI sites were not considered
polluted. The consequence of the low levels of contaminants
detected in the GI sites is likely why respective taxa for
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bioremediation were not abundant. The bacterial communities
of Technosols at GI sites have limited evidence of known urban
contaminants. Further understanding of the role of GI features
for bioremediation in urban areas requires future studies focused
on the enrichments of specific bacterial taxa and contaminants.
The bacterial community of different GI designs are influenced
by a combination of biogeochemical parameters and GI features.
Future studies using shotgun metagenome sequencing would
corroborate functional capabilities (e.g., nutrient cycling and
bioremediation of contaminants) from these unique GI sites
and facilitate comparing observations regarding the urban soil
microbiomes across analysis platforms.

CONCLUSION

Our description of the microbiome of urban GI features
has improved our understanding of the factors influencing
bacterial community composition and the role of GI features
in an urban ecosystem. GI design that integrates connectivity
to urban street runoff can be a key constraint on the
bacteria present in Technosol communities; in contrast, they
may not have overwhelming effects on microbial-mediated
ecosystem processes. Biogeochemical parameters were not
reduced in highly connected, highly engineered GI features.
Therefore, design and management of GI features that support
high levels of soil organic matter will be important for
sustaining the functions of GI features in highly stressed urban
environments. One important consideration is the maintenance
of healthy plant communities as part of the management and
sustainability of GI features and functions. Storm events and
resulting urban runoff will have strong impacts to GI sites
and bacterial community, particularly in ROWB, and further
investigation can address specific differences between SSIS
and ETP designs.

Future analysis of the microbial communities of GI features
should include high resolution studies of storm events that
generate urban runoff as well as investigate the impact of different
vegetation cover. To continue illuminating the microbial
“black box” of urban ecosystem processes, metagenomic
sequencing coupled with stable isotope analysis can identify
key genes specific to biogeochemistry as well as composition
of GI microbial communities. Additional analyses will be

essential for characterizing the specific ecosystem services of
GI features such as the containment or bioremediation of
urban contaminants.

AUTHOR CONTRIBUTIONS

TM, PG, ZC, and GL contributed to the conception and design
of the study. JJ, JK, MD, AP, GL, and JM contributed to data
collection. JJ and MD performed the analyses. JJ interpreted
the analyses and wrote the first draft of the manuscript.
JK and MD wrote sections of the manuscript. TM and PG
contributed substantially to the revision of the manuscript.
All authors reviewed the final manuscript and approved the
submitted version.

FUNDING

This work was completed in collaboration with and funding
from the Department of Environmental Protection, which
provided direction and access to sampling sites (Project No.
58519-0001). This research was partially supported by a Grant
#1444755 from the U.S. National Science Foundation. Lisa
Martel, Denise Schmidt, and Tatiana Morin for helped with field
and biogeochemical laboratory and data analyses.

ACKNOWLEDGMENTS

Lisa Martel, Denise Schmidt, and Tatiana Morin helped with
field and biogeochemical laboratory and data analyses. The
map was created using ArcGIS R© software by Esri. ArcGIS R© and
ArcMapTM are the intellectual property of Esri and are used
herein under license. Copyright © Esri. All rights reserved. For
more information about Esri R© software, please visit www.esri.
com.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2019.00982/full#supplementary-material

REFERENCES
Adeniji, A. O., Okoh, O. O., and Okoh, A. I. (2017). Petroleum Hydrocarbon

Fingerprints of Water and Sediment Samples of Buffalo River Estuary in the
Eastern Cape Province, South Africa. J Anal Methods Chem 2017, 2629365–
2629313. doi: 10.1155/2017/2629365

Allison, S. D., and Martiny, J. (2008). Resistance, resilience, and redundancy in
microbial communities. Proceedings of the National Academy of Sciences 105,
11512–11519. doi: 10.1073/pnas.0801925105

Ball, B. C. (2013). Soil structure and greenhouse gas emissions: a synthesis of
20 years of experimentation. European Journal of Soil Science 64, 357–373.
doi: 10.1111/ejss.12013

Barathi, S., and Vasudevan, N. (2001). Utilization of petroleum hydrocarbons
by Pseudomonas fluorescens isolated from a petroleum-contaminated

soil. Environment International 26, 413–416. doi: 10.1016/S0160-4120(01)
00021-6

Benedict, M. A., and McMahon, E. T. (2006). Green infrastructure: linking
landscapes and communities. Washington, DC: Island press.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput
community sequencing data. Nat Meth 7, 335–336. doi: 10.1038/nmeth.
f.303

Capps, K. A., Bentsen, C. N., and Ramírez, A. (2016). Poverty, urbanization, and
environmental degradation: urban streams in the developing world. Freshwater
Science 35, 429–435. doi: 10.1086/684945

Cardenas, E., Wu, W.-M., Leigh, M. B., Carley, J., Carroll, S., Gentry, T.,
et al. (2010). Significant association between sulfate-reducing bacteria and
uranium-reducing microbial communities as revealed by a combined massively

Frontiers in Microbiology | www.frontiersin.org 12 May 2019 | Volume 10 | Article 982

www.esri.com
www.esri.com
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00982/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00982/full#supplementary-material
https://doi.org/10.1155/2017/2629365
https://doi.org/10.1073/pnas.0801925105
https://doi.org/10.1111/ejss.12013
https://doi.org/10.1016/S0160-4120(01)00021-6
https://doi.org/10.1016/S0160-4120(01)00021-6
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1086/684945
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00982 May 15, 2019 Time: 16:34 # 13

Joyner et al. Soil Bacteria of Green Infrastructure

parallel sequencing-indicator species approach. Applied and Environmental
Microbiology 76, 6778–6786. doi: 10.1128/AEM.01097-10

Connop, S., Vandergert, P., Eisenberg, B., Collier, M. J., Nash, C., Clough, J.,
et al. (2016). Renaturing cities using a regionally-focused biodiversity-led
multifunctional benefits approach to urban green infrastructure. Environmental
Science and Policy 62, 99–111. doi: 10.1016/j.envsci.2016.01.013

Cosandey, A. C., Maître, V., and Guenat, C. (2003). Temporal denitrification
patterns in different horizons of two riparian soils. Eur. J. Soil Sci. 54, 25Ű38.
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