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Numerous mountain glaciers located on the Tibetan Plateau are inhabited by abundant 
microorganisms. The microorganisms on the glacier surface are exposed to the cold, 
barren, and high-ultraviolet radiation environments. Although the microbial community 
composition on glaciers has been revealed by high-throughput sequencing, little is known 
about the microevolution and adaptive strategy of certain bacterial populations. In this 
study, we  used a polyphasic approach to determine the taxonomic status of 11 
psychrophilic Flavobacterium strains isolated from glaciers on the Tibetan Plateau and 
performed a comparative genomic analysis. The phylogenetic tree based on the 
concatenated single-copy gene sequences showed the 11 strains clustered together, 
forming a distinct and novel clade in the genus Flavobacterium. The average nucleotide 
identity (ANI) values among these strains were higher than 96%. However, the values 
much lower than 90% between them and related species indicated that they represent 
a novel species and the name Flavobacterium bomense sp. nov. is proposed. The core 
and accessory genomes of strains in this new Flavobacterium species showed diverse 
distinct patterns of gene content and metabolism pathway. In order to infer the driving 
evolutionary forces of the core genomes, homologous recombination was found to 
contribute twice as much to nucleotide substitutions as mutations. A series of genes 
encoding proteins with known or predicted roles in cold adaptation were found in their 
genomes, for example, cold-shock protein, proteorhodopsin, osmoprotection, and 
membrane-related proteins. A comparative analysis of the group with optimal growth 
temperature (OGT) ≤ 20°C and the group with OGT > 20°C of the 32 Flavobacterium 
type strains and 11 new strains revealed multiple amino acid substitutions, including the 
decrease of the proline and glutamine content and the increase of the methionine and 
isoleucine content in the group with OGT ≤ 20°C, which may contribute to increased 
protein flexibility at low temperatures. Thus, this study discovered a novel Flavobacterium 
species in glaciers, which has high intraspecific diversity and multiple adaptation 
mechanisms that enable them to cope and thrive in extreme habitats.
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INTRODUCTION

Glaciers harbor large number of microorganisms, including 
viruses, bacteria, archaea, and microeukaryotes, which have the 
ability to survive at low temperatures (Boetius et  al., 2015). 
Low temperature is an important evolutionary force in the 
diversification of microorganisms. The collection of these cold-
adapted microbes and analysis of their genetic characteristics 
is very important for us to understand how they can live in 
such cold environment and how the high species diversity is 
maintained. In recent years, numerous studies have been conducted 
to determine the microbial community structure on glaciers 
(Liu et  al., 2009, 2015a,b, 2017; Franzetti et  al., 2013). These 
studies revealed the most abundant bacterial genera on  
glaciers, including Flavobacterium, Arthrobacter, Hymenobacter, 
Deinococcus, Cryobacterium, Polaromonas, and Sphingomonas.

The genus Flavobacterium was proposed by Bergey et  al. 
(1923) with Flavobacterium aquatile as the type species. It 
belongs to the phylum Bacteroidetes (formerly the Cytophaga-
Flavobacterium-Bacteroides group), and its description was 
emended by Bernardet et  al. (1996). Currently, it contains 150 
species and is the largest genus within the family Flavobacteriaceae. 
Members of Flavobacterium produce carotenoids and flexirubin-
type pigments, which make them yellowish or orange 
(Reichenbach et  al., 1980; Bernardet and Bowman, 2015). 
Flavobacterium strains live in a variety of environments throughout 
temperate and polar regions, including terrenes, lakes, oceans, 
glaciers, plants, animals, and so on (Bernardet and Bowman, 
2015). Some strains isolated from animals are pathogenic. 
Flavobacterium was found to be  one of the most abundant 
genera in the Arctic and Antarctic sea ice (Boetius et al., 2015). 
In a survey of bacterial diversity on the surfaces of mountain 
glaciers in China, Flavobacterium was one of the three most 
abundant genera with more than 5% of average abundance 
(Liu et  al., 2015b). Up to now, a total of seven psychrophilic/
psychrotolerant Flavobacterium species with validly published 
names have been collected from glaciers, including F. collinsense 
(Zhang et  al., 2016), F. glaciei (Zhang et  al., 2006), 
F. noncentrifugens (Zhu et al., 2013), F. xinjiangense (Zhu et al., 
2003), F. omnivorum (Zhu et  al., 2003), F. sinopsychrotolerans 
(Xu et al., 2011), F. tiangeerense (Xin et al., 2009), F. xueshanense 
(Dong et  al., 2012), and F. urumqiense (Dong et  al., 2012).

With the development of modern “omics” technologies, some 
cold-adaptation strategies of microorganisms have been revealed. 
These specific physiological mechanisms are associated with cellular 
membrane fluidity (Casanueva et  al., 2010), compatible solutes 
(Welsh, 2000), antifreeze protein (Chattopadhyay, 2006), ice-binding 
proteins (Raymond et  al., 2007, 2008), anti-nucleating proteins 
(Kawahara, 2002), cold-shock proteins (Phadtare, 2004), cold 
acclimation protein (Phadtare, 2004), DEAD-box RNA helicase 
(Kuhn, 2012), cold-active enzymes (Feller and Gerday, 2003; 
Damico et  al., 2006; Feller, 2010; Kasana and Gulati, 2011), 
energy generation and conservation (Amato and Christner, 2009), 
and genome plasticity (Casanueva et  al., 2010).

Although the development of high-throughput sequencing 
techniques enables us to analyze bacterial diversity and community 
composition in cold environments, questions remain about the 
microevolution of certain psychrophilic/psychrotolerant groups. 
For instance, to survive for a long time at low temperature, 
which kinds of adaptations to low temperature have evolved 
in these lineages? How do these bacteria endure the harsh 
conditions and dwell in cold environments? During a survey 
of bacterial diversity on the surface of four glaciers located in 
Bome County, Tibetan Autonomous Region, P.R. China, 
we  collected 11 psychrophilic Flavobacterium strains. Using a 
polyphasic approach, we  determined the taxonomic status of 
these strains and identified a novel species, which we  proposed 
to be  named Flavobacterium bomense sp. nov. Furthermore, the 
intraspecies diversity, driving forces of microevolution, and cold-
adaptation strategies of these glacier-inhabiting Flavobacterium 
strains were analyzed by comparative genomics.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
A total of 11 strains were isolated from melt water and ice 
samples from the surface of the Laigu, Zepu, Renlongba, and 
Gawalong glaciers in Bome County, Tibetan Autonomous Region, 
P.R. China (Table 1). All isolates were picked up as yellow, 
round colonies from PYG (peptone, yeast extract, and glucose) 
medium (Liu et  al., 2015a) and 1/4 R2A (BD Difco, Becton, 
Dickinson and Company, Franklin Lakes, NJ, USA) agar plate. 
Six type strains of closely related species, namely F. urumqiense 

TABLE 1 | Information of the Flavobacterium strains analyzed in this study and GenBank accession nos. of the 16S rRNA gene.

Strain CGMCC no.
Isolation 
source

Isolation 
medium

Glacier Location Altitude (m)
GenBank 

accession no.

LB2P53 1.11357 Ice PYG Laigu 29.3087826 N, 96.8186951 E 3931.6 MK346152
LS1R10 1.11580 Melt water 1/4 R2A Laigu 29.3087826 N, 96.8186951 E 3931.6 MK346153
LS1P28 1.11664 Melt water PYG Laigu 29.3087826 N, 96.8186951 E 3931.6 MK346154
RB1N8T 1.23902 Ice PYG Renlongba 29.2615929 N, 96.9359436 E 4651.7 MK346155
ZB4P23 1.24058 Ice PYG Zepu 30.276556 N, 95.2508392 E 3454.6 MK346156
RSP15 1.24446 Melt water PYG Renlongba 29.2615929 N, 96.9359436 E 4651.7 MK346157
RSP46 1.24469 Melt water PYG Renlongba 29.2615929 N, 96.9359436 E 4651.7 MK346158
RSP49 1.24471 Melt water PYG Renlongba 29.2615929 N, 96.9359436 E 4651.7 MK346159
GSP6 1.24637 Melt water PYG Gawalong 29.7659264 N, 95.71035 E 3842.3 MK346160
GSP27 1.24647 Melt water PYG Gawalong 29.7659264 N, 95.71035 E 3842.3 MK346161
GSN2 1.24670 Melt water PYG Gawalong 29.7659264 N, 95.71035 E 3842.3 MK346162
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CGMCC 1.9230T, F. sinopsychrotolerans CGMCC 1.8704T, 
F. tiangeerense CGMCC 1.6847T, F. xueshanense CGMCC 1.9227T, 
F. omnivorum CGMCC 1.2747T, and F. frigidarium CGMCC 
1.9172T, were used as reference strains for comparative analysis. 
All strains were routinely incubated in PYG medium at 15°C.

DNA Extraction, Amplification, and 
Sequencing
Genomic DNA was extracted using the Genomic DNA Rapid 
Isolation Kit for Bacterial Cell (BioDev-Tech, Co., Beijing, 
China) following the manufacturer’s instructions. The 16S rRNA 
gene was amplified and sequenced using the universal primers 
27F and 1492R (Lane, 1991). Sequencing was performed using 
a PRISM 3730XL DNA analyzer (Applied Biosystems, Foster 
City, CA, USA) at SinoGenoMax Co. (Beijing, China). Whole 
genome sequencing of the 11 strains was performed using the 
Illumina HiSeq 4,000 platform (Illumina, San Diego, CA, USA) 
according to the manufacturer’s protocols. The assemblies of 
short reads were performed using the SPAdes 3.11 program 
with default parameters (Bankevich et  al., 2012). The quality 
of the genomes was assessed by CheckM (Parks et  al., 2015) 
and QUAST v5 (Mikheenko et  al., 2018).

Phylogenetic Analysis Based on  
16S rRNA Genes
For identification of the new strains, the 16S rRNA gene sequences 
were submitted to the EzBioCloud server (Yoon et  al., 2017) 
to search for their closely phylogenetic neighbors. After multiple 
sequence alignment of the 16S rRNA gene sequences by ClustalW 
(Thompson et al., 1994), the neighbor-joining (NJ) and maximum-
likelihood (ML) trees were built with 1,000 bootstrap replicates 
using the MEGA V. 5.2 software (Tamura et  al., 2011). Kimura’s 
two-parameter model (K2P) was used to calculate the genetic 
distances (Kimura, 1980). The GTR  +  G  +  I  was selected as 
the best nucleotide substitution model for ML tree construction.

Comparative Genomic Analysis
The draft genomes determined in this study were submitted for 
annotation using RASTkt (Brettin et al., 2015). To further confirm 
the taxonomic status of the new strains, a total of 32 whole 
genome sequences of related type strains were obtained from 
the NCBI genome database (Supplementary Table S1). For 
construction of species trees, single-copy orthologues were selected 
from genomic sequences using GET_HOMOLOGUES (Contreras-
Moreira and Vinuesa, 2013) and GET_PHYLOMARKERS 
programs (Vinuesa et  al., 2018). The alignments were generated 
by Clustal Omega software (Sievers and Higgins, 2014) 
implemented in GET_PHYLOMARKERS. Phylogenetic trees were 
generated by ML algorithms with a GTR  +  F  +  R5 model in 
the IQ-TREE software (Nguyen et  al., 2015) based on the 
concatenated gene sequences with 1,000 bootstrap replicates. The 
average nucleotide identity (ANI) values were calculated by the 
GET_HOMOLOGUES program. The pan-genome analysis was 
performed using the BPGA tool with default parameters to 
determine the core and accessory genes (Chaudhari et al., 2016). 
Recombination analysis was performed with ClonalFrameML 

(Didelot and Wilson, 2015). Gene gain and loss rates were 
determined by the Count program using a birth-and-death model 
(Csuros, 2010) with the homologous table, which was inferred 
by using OMCL and bidirectional best hit (BDBH) methods 
implemented in GET_HOMOLOGUES package with the following 
parameters: 60% identity and 75% coverage.

Phenotypic Characterization of  
Novel Species
A polyphasic taxonomic analysis of the 11 strains was performed 
in this study. The morphology of the colonies was determined 
after culturing the 11 strains on PYG agar for 7  days. The 
cellular morphology of strain RB1N8T was examined by 
transmission electron microscopy using a JEM-1400 transmission 
electron microscope (JEOL Ltd., Tokyo, Japan). The growth at 
different temperatures (4, 15, 20, 22, 25, and 28°C), the tolerance 
to NaCl (0–4.0% (w/v) at 0.5% intervals), and pH values (ranging 
from pH  5.0 to 10.0 with 1 pH unit intervals) were tested in 
PYG broth. Hydrolyses of casein, starch, and Tween 80 were 
performed according to Smibert and Krieg (1994). The presence 
of flexirubin-type pigment was examined using 20% KOH (w/v). 
The utilization of sole carbon source, enzyme activities, and 
other phenotypic characteristics were tested using the API 20E, 
20NE, ID 32 GN, and ZYM strips (bioMérieux, Marcy-l’Étoile, 
France) according to the manufacturer’s instructions.

For analysis of cellular fatty acid composition, the cells of 
the tested strains were harvested from colonies on the same 
sectors of the PYG plates after incubation at 15°C. The extraction 
of saponified and methylated fatty acids was performed according 
to the protocol of MIDI 6.0 system (Sasser, 1990). The samples 
were separated and identified on an Agilent 6,890  N gas 
chromatography system (Agilent Technologies, Santa Clara, CA, 
USA) using the TSBA6 database. Respiratory quinones and polar 
lipids were determined in cells of strain RB1N8T, which were 
harvested from PYG broth after incubation at 15°C for 5  days. 
The extracts of respiratory quinones and polar lipids were 
analyzed according to reported methods (Tindall et  al., 2007).

Nucleotide Sequence Accession Numbers
The GenBank accession numbers for the 16S rRNA gene 
sequences of the 11 Flavobacterium strains are MK346152–
MK346162 (Table 1). The Whole Genome Shotgun projects 
have been deposited at DDBJ/ENA/GenBank under the accession 
numbers: RYDG00000000, RYDH00000000, RYDI00000000, 
RYDJ00000000, YDK00000000, RYDL00000000, RYDM00000000, 
RYDN00000000, RYDO00000000, RYDP00000000, and RYDF 
00000000, respectively (Supplementary Table S2).

RESULTS AND DISCUSSION

Phylogenetic Analysis Based on 16S rRNA 
Gene Sequences
The average evolutionary divergence (K2P) over all the 11 16S 
rRNA gene sequence pairs was 0.001%. Accordingly, the sequence 
of strain RB1N8T was selected as a representative to compare 
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with the EzBioCloud database. The highest 16S rRNA gene sequence 
similarities were found between strain RB1N8T and F. xueshanense 
Sr22T (97.77%), F. psychrolimnae LMG 22018T (97.49%), F. 
fryxellicola DSM 16209T (97.49%), and F. tiangeerense 0563T 
(97.40%), is lower than the 98.65% threshold value for species 
delineation (Kim et  al., 2014), supporting the notion that the 
new group represents a novel species of the genus Flavobacterium. 
Phylogenetic analysis revealed that the 11 strains formed an 
independent lineage with strong bootstrap support of 100% 
(Supplementary Figure S1). Although some strains shared 100% 
sequence identities, strain diversity was noticeable in this new 
clade. The tree topologies constructed with ML algorithms were 
similar to that of the NJ trees (Supplementary Figure S2).

Taxonomic Features and Phylogenetic 
Analysis Based on Genomes
Except for the genome sequence of strain GSN2, in which 
reads contamination was detected, the genome sequence assemblies 
of the other 10 strains are high quality (Supplementary Table S2). 
Thus, the genome sequence of strain GSN2 was ignored in the 
subsequent analysis, except for the single-copy gene phylogenetic 
reconstruction. These genomes were similar in size, ranging 
from 3.20 to 3.82  Mb. The DNA GC content was calculated 
to be  from 34.91 to 35.04%, which is in agreement with the 
GC content of their closely related strains F. xueshanense Sr22T 
(34.1%), F. psychrolimnae LMG 22018T (34.2%), F. fryxellicola 
DSM 16209T (34.6%), and F. tiangeerense 0563T (33.6%). The 
ANI values among the 11 strains ranged from 96.89 to 99.17%, 
which are higher than the proposed cut-off value for species 
boundary (95–96%; Richter and Rosselló-Móra, 2009), indicating 
that they belong to one species. Furthermore, the ANI values 
between these strains and their closely related species with 
validly published names are much lower than 90% (Supplementary 
Table S1), revealing that this new Flavobacterium group represents 
a novel species.

A total of 230 single-copy core genes were extracted from 
the genome sequences of 32 Flavobacterium type strains and 11 
new strains. After sequence alignment, the concatenated single-
copy gene sequences were used to construct ML and NJ phylogenetic 
trees with 1,000 bootstrap replicates (Figure 1), and the trees 
reconstructed by different methods showed identical topologies. 
The species tree clearly showed that the 11 tested strains clustered 
together, forming an independent and novel clade in the genus 
Flavobacterium. This novel clade and 10 other type strains, almost 
all of which were isolated from glaciers or Antarctic lakes, formed 
a larger lineage, revealing the diversification of Flavobacterium 
inhabiting in cold environments.

Pan-Genome of the Novel Species
To gain a deeper understanding of the intraspecies genomic 
diversity of glacier-inhabiting Flavobacterium species, pan-genome 
analysis was performed. In this study, the pan-genome refers 
to the total number of orthologous gene families in the 10 
strains isolated here with uncontaminated genome assemblies. 
The core pan-plot showed that the size of the pan-genome 
increased unlimitedly with the addition of new genomes 
(Supplementary Figure S3). The more genomes added, the more 

orthologous clusters produced. Thus, the pan-genome of the 
novel species was open. The core genome decreased as the 
genomes were added one by one and ultimately became relatively 
constant. A total of 2,269 genes formed the core gene pool of 
the novel species. Additionally, the total number of accessory 
genes comprised more than half of the pan-genome. Every strain 
contained a certain number of strain-specific genes (unique), 
and the number varied considerably (61–403) depending on 
individual strains, indicating that the ongoing genetic flow led 
to the generation of strain specificity (Supplementary Table S3).

Both the core genes and accessory genes were involved in 
all the categories of COG functions (Figure 2). However, most 
of the core genes was classified into the basic functions, such 
as “amino acid transport and metabolism [E],” “translation, 
ribosomal structure, and biogenesis [J],” “energy production and 
conversion [C],” “coenzyme transport and metabolism [H],” 
“lipid transport and metabolism [I],” and “nucleotide transport 
and metabolism [F].” Most of the accessory genes was related 
to functions of “cell wall/membrane/envelope biogenesis [M],” 
“transcription [K],” “carbohydrate transport and metabolism [G],” 
“replication, recombination, and repair [L],” and “signal 
transduction mechanisms [T],” which may contribute to adaptation 
to changing environments. In addition, the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis (Supplementary 
Figure S4) revealed that the unique genes were mainly involved 
in carbohydrate, amino acid, lipid, energy metabolism pathways, 
and signal transduction, especially carbohydrate metabolism, 
which corresponded with the variable ability of carbon source 
utilization tested by API ID 32 GN (Supplementary Table S4). 
These genomic characteristics indicated the diversity of metabolic 
pathways in different Flavobacterium strains. Thus, the pan-genome 
analysis showed the distinct patterns of gene content and 
metabolism pathway within this new Flavobacterium species.

Microevolution of the Novel Species
In their evolutionary history, bacteria experience frequent 
gene gain and loss (Polz et  al., 2013; Vos et  al., 2015) or 
undergo homologous recombination and mutation within 
gene families (Didelot and Maiden, 2010), all of which may 
result in the variation of the pan-genome. These varied 
parts of the pan-genome are essential to the ability of the 
bacteria to survive in their individual habitat (McInerney 
et  al., 2017). In order to investigate the evolutionary history 
of Flavobacterium strains, gene gain and loss rates were 
estimated (Figure 3). The results showed that the rates of 
gene gain and loss were about the same in every strain, 
except for strain RB1N8T, which gained more genes than 
it lost. The gene gain and loss of these Flavobacterium strains 
may have resulted from horizontal gene transfer (HGT). 
Bacteria could benefit from HGT, which would introduce 
new functions to adapt to the changing environment 
(Zhaxybayeva and Doolittle, 2011).

The contribution of homologous recombination and 
mutation to microevolution of the tested strains was further 
investigated by ClonalFrameML using a single-copy gene 
subset. The ratio of recombination to mutation rate (ρ/θ) 
and the ratio of nucleotide substitutions due to homologous 
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recombination or mutation (r/m) were calculated based on 
33 type strains and 10 new strains. Within species, ρ/θ and 
r/m values were 0.5064 and 2.1862, respectively. The values 
of ρ/θ and r/m between Flavobacterium species were 0.0052 
and 0.3358. Accordingly, the rate of intraspecies recombination 
was much higher than that of interspecies. Although the 
r/m value was much lower than the values within many 
bacterial species (Vos and Didelot, 2009), homologous 
recombination still introduced more than twice the number 
of substitutions than that of mutations within the glacier-
inhabiting Flavobacterium species.

Therefore, gain and loss of genetic material, recombination, 
and mutation all would result in the variations of the  
genomes. Such evolutionary events led to the formation of 
intraspecific diversity and phylogenetic cohesion of the novel 
Flavobacterium species.

Insights of the Genome Sequences Linked 
to the Strategy of Living in Cold Environment
A number of known genes related to cold adaptation were 
identified in the novel species and compared with the genomes 
of two phylogenetic-related mesophiles, namely F. granuli DSM 
19729T and F. crassostreae LPB0076T (Supplementary Table S5). 
The genes of proteorhodopsin, polysaccharide transporter, and 
ice-binding protein (IBPs) were absent in the two reference 
genomes, but the other adaptation-related genes were also found 
in the two mesophiles.

Proteorhodopsin (PR) is a light-dependent proton pump of 
bacteria, which can utilize solar irradiance to produce ATP 
(Béjà et  al., 2001) and consequently can enhance the growth 
rate of some bacteria, but not all of them (Giovannoni et  al., 
2005; Gómez-Consarnau et  al., 2007, 2016; Lami et  al., 2009). 
Fuhrman et  al. (2008) suggested that PR may contribute to the 

Flavabacterium bomensis RSP15
Flavabacterium bomensis RSP49
Flavabacterium bomensis LS1P28
Flavabacterium bomensis LB2P53
Flavabacterium bomensis LS1R10
Flavabacterium bomensis GSP27
Flavabacterium bomensis GSN2
Flavabacterium bomensis ZB4P23
Flavabacterium bomensis RB1N8T
Flavabacterium bomensis RSP46
Flavabacterium bomensis GSP6
Flavobacterium glaciei CGMCC 1.5380T

Flavobacterium limicola DSM 15094T

Flavobacterium sinopsychrotolerans CGMCC 1.8704T

Flavobacterium xueshanense CGMCC 1.9227T

Flavobacterium fryxellicola DSM 16209T

Flavobacterium omnivorum CGMCC 1.2747T

Flavobacterium micromati DSM 17659T

Flavobacterium tiangeerense CGMCC 1.6847T

Flavobacterium urumqiense CGMCC 1.9230T

Flavobacterium xinjiangense CGMCC 1.2749T

Flavobacterium granuli DSM 19729T

Flavobacterium frigoris DSM 15719T

Flavobacterium degerlachei DSM 15718T

Flavobacterium frigidarium DSM 17623T

Flavobacterium crassostreae LPB0076T

Flavobacterium fluvii DSM 19978T

Flavobacterium succinicans LMG 10402T

Flavobacterium hydatis ATCC 29551T

Flavobacterium chungangense LMG 26729T

Flavobacterium reichenbachii DSM 21791T

Flavobacterium plurextorum CCUG 60112T

Flavobacterium johnsoniae ATCC 17061T

Flavobacterium pectinovorum ATCC 19366T

Flavobacterium saccharophilum DSM 1811T

Flavobacterium frigidimaris DSM 15937T

Flavobacterium tructae CCUG 60100T

Flavobacterium spartansii ATCC BAA-2541T

Flavobacterium chilense LMG 26360T

Flavobacterium hibernum ATCC 51468T

Flavobacterium araucananum DSM 24704T

Flavobacterium piscis CCUG 60099T

Flavobacterium aquidurense DSM 18293T

FIGURE 1 | Phylogeny of the new strains and related species constructed from an ML analysis of the 230 concatenated single-copy gene sequences. Bootstrap 
values ≥70% based on 1,000 replicates are indicated at branch points. Bar = 0.05 nt substitutions per site. PR, proteorhodopsin; OGT, optimal growth temperature.
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physiological adaptation of bacteria to stressful conditions. 
Comparative genome analysis revealed the presence of a gene 
encoding PR in all the new strains as well as in 12 closely 
related type strains, which were isolated from glaciers or the 
Antarctic. However, the PR gene was absent in the genomes 
of the 20 type strains of Flavobacterium analyzed in this study, 
most of which was mesophilic (Figure 1). Accordingly, the 
spread of the PR gene in cold environments informed our 
understanding of its ecological function. We inferred that harboring 
PR genes might be  particularly advantageous to the survival of 
Flavobacterium bacteria in frigid and barren environments.

Extracellular polysaccharides (EPSs) serve as cryoprotectants 
in bacteria living in marine or other cold environments (Nichols 
et  al., 2005; Reid et  al., 2006). All the tested strains in this 
study contained one gene copy of lptA, lptB, lptC, lptF, and 
lptG, which are related to the transportation of polysaccharide 
out of the membrane, suggesting that these Flavobacterium 
strains could produce and export EPSs to protect the cells 
against the harm of low temperature.

Ice-binding proteins (IBPs) inhibit the growth of ice crystals 
inside and outside the cells. The production of IBPs could 
make the bacteria counteract deleterious effects under subzero 
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FIGURE 3 | Hierarchical clustering of 10 strains based on the heatmap of the orthologous genes. The presence and absence of the orthologous genes for each 
strain are indicated in red and blue color, respectively.
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FIGURE 2 | COG distribution for the pan-genome of 10 glacier-inhabiting Flavobacterium strains determined using the BPGA tool with default parameters.  
The x axis represents the relative percentage of the number of genes in each functional category.
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conditions (Mangiagalli et  al., 2017). One gene copy of IBP 
was observed in the 10 Flavobacterium strains. IBP genes have 
also been identified in other psychrophilic bacteria, such as 
Antarctic Colwellia sp. SLW05 (Raymond et  al., 2007) and 
Psychroflexus torquis (Mangiagalli et  al., 2017).

Sigma factors perform all initiation of transcription in bacteria. 
Except for the single essential housekeeping σ that promotes 
the transcription of thousands of genes, many σs promote the 
transcription of specialized genes in response to a particular 
stress or stimulus (Feklistov et  al., 2014). The σ70 factors are 
commonly related to gene transcription, stress response, cell 
development, and auxiliary metabolism. Multiple copies of the 
σ70 gene (rpoD) have been found to increase resistance to cold 
stress in psychrophilic bacteria (Riley et  al., 2008; Mykytczuk 
et  al., 2013; Dsouza et  al., 2015). In this study, the gene rpoD 
was also found in the novel Flavobacterium strains. Additionally, 
in their genomes, there were 9–10 copies of the rpoE gene, 
whose product (σ24) was associated with regulating cellular 
responses to heat-shock and other stresses on cellular membrane 
and periplasmic proteins (Dsouza et  al., 2015).

In cold environments, the solubility of O2 increases at low 
temperatures and more reactive oxygen species (ROS) are 
formed (Chattopadhyay, 2002). Thus, for survival under oxidative 
stress conditions, psychrophilic bacteria could remove the ROS 
through proteins encoded by some functional genes, such as 
sodA (superoxide dismutase), katE and katG (catalase), 
peroxiredoxin bcp types (thiol peroxidases), osmC/ohr (organic 
hydroperoxide reductase), trxB (thioredoxin reductase), and 
trxA (thiol-disulfide isomerase and thioredoxins). Several copies 
of these genes were found in the genomes of the novel glacier-
inhabiting Flavobacterium strains, and the proteins encoded 
by these genes may contribute to their survival on surfaces 
of glaciers with low temperature and high UV radiation.

When bacteria are suddenly exposed to a cold environment, 
a number of physiological changes occur in the cells and a 
set of small molecule proteins is expressed. Genes encoding 
these cold-shock-inducible proteins, including cold-shock protein 
(cspA), ribosome-binding factor A (rbfA), translation initiation 
factors, IF-1 and IF-2 (infA, infB), polynucleotide phosphorylase 
(pnp), and transcription termination protein A (nusA), were 
identified in all 10 Flavobacterium strains. In these strains, 
just one gene copy of cold-shock protein (cspA) was identified. 
However, several copies were observed in Antarctic Arthrobacter 
(Dsouza et  al., 2015), Colwellia psychrerythraea (Methé et  al., 
2005), Psychrobacter arcticus (Ayaladelrío et  al., 2010), and 
Shewanella oneidensis (Gao et  al., 2006). Carotenoid could 
stabilize the cellular membrane at low temperature and therefore 
contribute to the adaptation of carotenoid-pigmented bacteria 
to a cold environment (Fong et  al., 2001; Dieser et  al., 2010). 
The intact pathway of carotenoid biosynthesis was found in 
the 10 genomes, including the genes idi (isopentenyl-diphosphate 
delta-isomerase), crtB (phytoene synthase), crtI (phytoene 
dehydrogenase), crtY (lycopene beta cyclase), and crtZ (beta-
carotene hydroxylase). The presence of these genes was consistent 
with the yellow color of the colonies of these strains.

Glycogen is thought to help bacteria resist to stressful condition 
of low temperature (Bresolin et al., 2006; Dalmasso et al., 2012). 

Three enzymes, glycogen synthase (glgA), glycogen branching 
enzyme (glgB), and glucose-1-phosphate adenylytransferase (glgC), 
participate in the biosynthesis of glycogen (Cifuente et al., 2016). 
In this study, one to two copies of these genes were found in 
the genomes of 10 tested strains, which would enable them 
to accumulate carbon and energy reserves to cope with the 
cold and barren environments.

Proline is an important organic metabolite and has been 
proposed to be  a protective osmolyte (Hoffmann and Bremer, 
2011). Genes involved in proline biosynthesis and Na+/proline 
symporter were found in the 10 tested genomes, but genes of 
other compatible solutes such as glycine betaine were absent.

Maintaining the permeability and fluidity of the cellular 
membrane is important for bacteria living in cold environments, 
and this could be  achieved through the synthesis of 
polyunsaturated fatty acids (Methé et  al., 2005). The genome 
analysis in this study revealed the presence of genes for fatty 
acid desaturases (des), which would introduce the unsaturated 
double bond into the saturated fatty acid. Concerning the 
cellular fatty acid compositions (%) of Flavobacterium strains, 
several polyunsaturated fatty acids, including iso-C15:1 G, C15:1 
ω6c, iso-C16:1 H, C17:1 ω6c, C18:1 ω5c, summed in Feature 3 
(C16:1 ω6c and/or C16:1 ω7c), summed in Feature 4 (iso-C17:1 I/ 
anteiso-C17:1 B), and summed in Feature 9 (iso-C17:1 ω9c/10-
methyl C16:0), were detected (Supplementary Table S6).

In order to increase the tRNA flexibility, psychrophilic bacteria 
can posttranscriptionally incorporate dihydrouridine in the tRNA 
(Dalluge et al., 1997). Similar to some other cold-adapted bacterial 
groups (Saunders et  al., 2003; Wang et  al., 2008; Qin et  al., 
2014), two copies of the gene encoding tRNA-dihydrouridine 
synthase (dusB) were found in the Flavobacterium strains, which 
could increase the conformational flexibility of their tRNAs to 
guarantee their survival in cold glaciers.

The system of Clustered Regularly Interspaced Short 
Palindromic Repeats (CRISPR) and its associated proteins (Cas) 
serve as an adaptive immune system for protecting prokaryotes 
against viral predators and foreign invaders (Hille and 
Charpentier, 2016). CRISPR-associated proteins Cas1 and Cas2, 
CRISPR-associated endonuclease Cas9, and CRISPR repeats 
(35–36  bp) were found present in the genomes of these 
Flavobacterium strains, indicating that the CRISPR-Cas system 
of Flavobacterium strains belonged to Type II system. There 
were 9–45 CRISPR repeats depending on the particular strain, 
showing a variety of CRISPR in the Flavobacterium strains. 
Some researchers have isolated bacteriophages from polar 
regions, deep sea, permafrost regions, high latitude lakes, and 
glaciers (Sawstrom et  al., 2007; Li et  al., 2016). Thus, the 
CRISPR-Cas systems found in these genomes indicate that 
viruses are also an important part of the glacier habitat.

At low temperatures, the most important property for proteins 
is the maintenance of sufficient flexibility, which can increase 
their interactions with substrates and reduce the required activation 
energy. The analysis of amino acid components revealed that 
the decrease in the number of proline residues (Fields, 2001), 
the introduction of methionine residues in the place of other 
buried hydrophobic residues (Marshall, 1997), and the decrease 
in the number of glutamine residues (Damico et  al., 2006) were 
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the strategies to increase the flexibility in cold-adapted proteins. 
In order to analyze the amino acid substitutions in proteins of 
strains with different optimal growth temperatures (OGT), the 
amino acid frequencies of the single-copy gene alignments of 
the 32 Flavobacterium type strains and 11 new strains were 
calculated. The OGT information of the type strains was acquired 
from the online catalogues of DSMZ1, JCM2, and CGMCC3. 
The strains with OGT  ≤  20°C contain more methionine, while 
the strains with OGT >20°C contain more proline and glutamine. 
Additionally, more isoleucine was found in the group with 
OGT  ≤  20°C. Our results suggested that the Flavobacterium 
strains may employed multiple amino acid substitutions to 
decrease protein stability and increase protein flexibility, which 
make the proteins more active at low temperatures (Figure 4).

Phenotypic and Chemotaxonomic 
Characteristics
The new species of Flavobacterium was analyzed using phenotypic 
and chemotaxonomic methods. These strains were found to 
be Gram-negative, catalase and oxidase-positive, non-motile rods 
with yellow, and round colonies. No spores or flagella were 
detected (Supplementary Figure S5). These strains could grow 
in a temperature range of 0–22°C, and the maximum growth 
temperature for most of them was below 20°C (Supplementary 
Table S7). They were therefore considered to be  a group of 

1 http://www.dsmz.de
2 http://jcm.brc.riken.jp/en/
3 http://www.cgmcc.net/

psychrophiles. They showed growth in a NaCl concentration 
range of 0–2.0/2.5 and a pH value range of 6.0/7.0–8.0/9.0, varying 
with different strains. Flexirubin-type pigment was absent. These 
strains could be  easily distinguished from the type strains of 
their closely related species by their physiological and biochemical 
characteristics (Supplementary Table S7).

The profiles of cellular fatty acids in novel strains and reference 
strains are shown in Supplementary Table S6. The cellular 
fatty acid composition of novel strains and related type strains 
were similar, although there were some minor differences in 
certain components. The main fatty acids of the novel strains 
were summed Feature 3 (C16:1 ω6c and/or C16:1 ω7c, 17.4–33.8%) 
and iso-C15:0 (13.9–17.4%). The major hydroxyl fatty acids were 
iso-C15:0 3-OH (5.9–8.3%), iso-C16:0 3-OH (3.7–6.2%), and iso-C17:0 
3-OH (4.4–7.6%). Menaquinone 6 (MK-6) was the only isoprenoid 
quinone detected in strain RB1N8T, which is consistent with 
the other members of the genus Flavobacterium (Bernardet 
and Bowman, 2015). Polar lipids of RB1N8T were 
phosphatidylethanolamine (PE), three unidentified polar lipids, 
and four unidentified aminolipids (Supplementary Figure S6), 
which is similar to the polar lipid profiles of other species of 
Flavobacterium (Bernardet and Bowman, 2015).

CONCLUSION

In this study, 11 bacterial strains isolated from glaciers in China 
were classified as a novel Flavobacterium species using a polyphasic 
taxonomy method, for which the name Flavobacterium bomensis 
sp. nov. is proposed. A comparative genomic analysis of these 

FIGURE 4 | Difference of amino acid residue frequencies between the two groups of strains with OGT ≤ 20°C and OGT > 20°C in the genus Flavobacterium.  
The boxplot was produced in “ggplot2” package implemented in R. The significant differences were identified using Student’s t test.
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strains was performed. Their pan-genome was open, and every 
genome contained some unique genes, which showed the diversity 
of gene content and metabolic pathways in this species. The 
driving forces of microevolution were also investigated. The results 
revealed that the accessory genomes of the new species gained 
and lost genes at certain rates, while homologous recombination 
showed a twofold higher contribution to nucleotide substitutions 
than mutation in their core genomes. In addition, all genomes 
harbored numerous genes related to adaptation to cold and harsh 
environments. These genes were involved in various adaptive 
aspects, such as carotenoid biosynthesis, carbon and energy 
reserves, the fluidity of cellular membrane, osmotic and oxidative 
stress, proteorhodopsin, cold-shock protein, and ice-binding protein. 
Additionally, in the Flavobacterium group with OGT  ≤  20°C, 
multiple amino acid residue substitutions were found, which were 
involved in decreasing protein stability and increasing protein 
flexibility. In brief, the comparison and analysis help us gain a 
better understanding of the microevolution and the adaptive 
strategies of the dominant group Flavobacterium in the cryosphere.

Description of Flavobacterium bomensis 
sp. nov.
Flavobacterium bomensis (bo.men.′sis N.L. adj. Bomensis referring 
to Bome County, Tibetan Autonomous Region, P.R. China, 
from which the strains were isolated).

Cells are aerobic, Gram-negative, non-spore-forming, non-motile 
and non-gliding, chemoorganotrophic rods, 0.32–0.38 mm wide, 
and 1.04–2.08 mm long. Colonies grown on PYG agar for 9 days 
are circular, yellow, convex with entire margins, and about 1.5 mm 
in diameter. Growth occurs at 0–22°C (optimum, 10–15°C). The 
pH value range for growth is from 6.0 to 9.0 (optimum, pH 7.0). 
The salinity range for growth is from 0 to 2.5% NaCl. Catalase 
and oxidase are positive. No flexirubin-type pigments produced 
on PYG agar. Do not reduce nitrates to nitrites. The hydrolysis 
of gelatin and casein is variable.

No acid is produced from d-glucose, d-mannitol, inositol, 
l-rhamnose, d-sucrose, d-melibiose, and l-arabinose; acid 
production from d-sorbitol and amygdalin is variable. All strains 
can utilize d-glucose, d-sucrose, d-maltose, glycogen, and 
l-proline as sole carbon source and cannot utilize the following 
carbohydrate as sole carbon source: d-mannitol, l-fucose, 
d-sorbitol, caprate, valerate, citrate, l-histidine, 2-ketogluconate, 
3-hydroxy-butyrate, 4-hydroxy-benzoate, l-rhamnose, d-ribose, 
inositol, itaconate, suberate, malonate, acetate, lactate, l-alanine, 
5-ketogluconate, 3-hydroxy-benzoate, and l-serine. The utilization 
of salicin, d-melibiose, l-arabinose, N-acetyl-d-glucosamine, 
and propionate is variable.

Positive for starch hydrolysis, alkaline phosphatase, leucine 
arylamidase, valine arylamidase, and naphthol-AS-BI-
phosphohydrolase. Enzyme activities of acid phosphatase 

and  N-acetyl-β-glucosaminidase are variable. Negative 
for Voges-Proskauer test, indole and H2S production, esculin 
hydrolysis, citrate utilization, glucose fermentation, arginine 
dihydrolase, lysine decarboxylase, ornithine decarboxylase, 
urease, tryptophan deaminase, esterase (C4), esterase lipase 
(C8), lipase (C14), cystine arylamidase trypsin, α-chymotrypsin, 
α-galactosidase, β-galactosidase, β-glucuronidase, 
α-glucosidase, β-glucosidase, α-mannosidase, and α-fucosidase.

The most predominant cellular fatty acids are iso-C15:0, 
iso-C15:0 3OH, anteiso-C15:0, and summed in Feature 3 
(comprising C16:1 ω7c and/or C16:1 ω6c). The major polar 
lipid is phosphatidylethanolamine. The DNA GC content is 
34.9–35.1  mol%.

Strains were isolated from melt water and ice samples  
on the surface of Laigu, Zepu, Renlongba, and Gawalong 
glaciers in Bome County, Tibetan Autonomous Region, P.R. 
China, in 2016. The type strain is RB1N8T (= CGMCC 
1.23902  =  NBRC 113662).
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