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Gut mucosal damage, associated with Human Immunodeficiency Virus-1 (HIV) infection,
is characterized by depletion in CD4+ T cells and persistent immune activation as
a result of early epithelial barrier disruption and systemic translocation of microbial
products. Unique approaches in studying both HIV infection in human patients and
Simian Immunodeficiency Virus (SIV) infection in rhesus macaques have provided
critical evidence for the pathogenesis and treatment of HIV/AIDS. While there is vast
resemblance between SIV and HIV infection, the development of gut dysbiosis attributed
to HIV infection in chronically infected patients has not been consistently reported
in SIV infection in the non-human primate model of AIDS, raising concerns for the
translatability of gut microbiome studies in rhesus macaques. This review outlines
our current understanding of gut microbial signatures across various stages of HIV
versus SIV infection, with an emphasis on the impact of microbiome-based therapies
in restoring gut mucosal immunity as well as their translational potential to supplement
current HIV cure efforts.

Keywords: human immunodeficiency virus, simian immunodeficiency virus, gut microbiome, mucosal immunity,
antiretroviral (ARV) therapy

INTRODUCTION

The human gastrointestinal (GI) tract plays a unique role in structural and immunological
protection against exposure to the outside environment. The mucosal surface of the GI tract comes
in contact not only with food and environmental antigens, but also with microorganisms such as
bacteria, fungi, and viruses. For this reason, the GI tract is an important immunological site for
maintaining the delicate balance between tolerance and reactivity (MacDonald and Monteleone,
2005; Lathrop et al., 2011). The coordination of innate and adaptive immune responses in
gut-associated lymphoid tissues (GALT) is critical for rapid and long-term protection against
pathogens (MacDonald and Monteleone, 2005). Evidence shows that both HIV-1 (HIV) and its
non-human primate counterpart SIV target GALT as major sites of viral transmission, replication
and seeding, and CD4+ T cell depletion, as depicted in Figure 1 (Heise et al., 1993, 1994; Lim et al.,
1993; Veazey et al., 1998). In fact, the depletion of CD4+ T cells is more rapid in the gut during
HIV and SIV infection in comparison to depletion in the peripheral blood (Veazey et al., 1998;
Mehandru et al., 2007). Various host (IL-1β-induced pyroptosis, Fas-ligand, and TNF-α) and viral
factors (HIV-1 Tat, Nef) have been proposed to contribute to massive CD4+ T cell loss in both HIV
and SIV infection (Li et al., 2008; Doitsh et al., 2014). The loss of CD4+ T cells persists through the
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chronic stage of infection, in which most of the cell death
seems to be driven by bystander killing of CD4+ T cells that
were not actively infected (Finkel et al., 1995). Altered T cell
homeostasis in the gut, particularly of CD4+ Th17 cells, coincides
with disruption of intestinal barrier function, in which the tightly
opposed enterocytes become “leaky” and lose their adherence
to adjacent cells (Dandekar et al., 2010). Reports of increased
and dysregulated IL-10 production in SIV and HIV infection
have also been linked to intestinal permeability and inflammatory
signatures (Pan et al., 2014; de Medeiros et al., 2016). Intestinal
barrier disruption leads to translocation of microbial products
from the lumen to systemic circulation, traveling to far-reaching
organs such as the liver and brain and inducing persistent
immune activation (Brenchley et al., 2006; Estes et al., 2010).

Like many diseases associated with GI inflammation, HIV
alters the composition of gut microbes shortly after infection,
which contributes to both intestinal barrier damage and altered
mucosal immune responses (Gori et al., 2008; Ellis et al., 2011).
Significant shifts in gut microflora, or dysbiosis, as a result of HIV
infection, remain unresolved despite initiation of anti-retroviral
therapy (ART). ART effectively suppresses HIV replication,
but it cannot eradicate HIV reservoirs, or completely restore
CD4+ T cells both in the gut and periphery in HIV positive
individuals. Further, restoration of CD4+ T cells in the gut is
delayed compared that in the peripheral blood (Stein et al.,
1997; Guadalupe et al., 2006). Notably, initiation of ART fails
to reduce chronic immune activation and markers of microbial
translocation such as LPS and sCD14 (Marchetti et al., 2008;
Wallet et al., 2010). Understanding the host-microbe interaction
at the gut mucosal interface is critical in mitigating microbial
translocation and immune activation in HIV-infected individuals
under suppressive ART. As such, much effort has been made
in recent years to investigate the significance of an altered
gut microbiome during SIV or HIV infection. Clear changes
in gut microbiota composition have been reported between
HIV-infected and uninfected individuals, but evidence of gut
dysbiosis has not been consistent in SIV-infected macaques
(Supplementary Table 1). This review will discuss HIV and
SIV-induced microbiome alterations in a comparative approach
and highlight the implications of gut mucosal immune recovery
in the efforts for an HIV cure.

INTERNAL DEFENSES: GUT
MICROBIOTA IS ASSOCIATED WITH
HOST IMMUNE RESPONSES IN HIV AND
SIV INFECTION

Understanding the interplay between gut microbiota and viral
infection are paramount to support mucosal recovery for a
healthy gut during ART. Investigation into (1) how SIV/HIV
infection can shape gut microbiota and (2) the extent to
which gut microbiota can influence immune responses to
viral infection are both critical in the development of HIV
cure strategies (Dillon et al., 2016). Shifts in microbiome
composition in HIV have been attributed to several underlying

causes, including a loss of appropriate host innate and adaptive
immune responses that keep resident gut microbes at bay. HIV
induces massive depletion of Th17 cells, a subset of CD4+

T cells that control intestinal bacteria and limit microbial
translocation (Brenchley et al., 2008). Loss of Th17 cells coincides
with disruption of intestinal barrier function, in which the
tightly opposed enterocytes become “leaky” and lose their
adherence to adjacent cells (Dandekar et al., 2010). The loss
of tight junctions in intestinal barriers allows translocation of
microbial products from the lumen to systemic circulation,
inducing persistent immune activation in patients under ART
(Brenchley et al., 2006; Estes et al., 2010). In addition, the
imbalance in Th17 cells coincides with increases in Treg cells
during HIV infection, leading to inappropriate tolerance of
microbes and suppression of viral clearance (Li et al., 2011).
Microbial products that cross the intestinal barrier interfere
with pattern recognition receptor (PRR) expression in the gut
mucosa, inhibiting appropriate cellular responses to combat viral
infection and perpetuating gut inflammation (Elinav et al., 2011;
Glavan et al., 2016). Accordingly, studies have reported that
both TLR4-dependent LPS and TLR2-dependent peptidoglycan
recognition induce CD4+ T cell activation (Brenchley et al., 2006;
Marchetti et al., 2013; Neff et al., 2018). Host recognition of
microbial antigens via toll-like receptors (TLRs) can augment
viral infectivity, highlighting the importance of both bacterial
and viral control in the gut mucosa during HIV infection
(Kuss et al., 2011).

Human Immunodeficiency Virus or SIV infection-induced
gut microbiota changes are linked to the complex and dynamic
selection of potentially pathogenic bacteria, expansion of the
enteric virome, and disruption in gut mycobiota, all of which
can induce inflammation in the gut mucosa. First, fecal bacterial
communities isolated from HIV positive individuals have been
shown to increase pro-inflammatory production of TNF-α and
IL-6 in monocytes (Neff et al., 2018). Bacteria belonging to the
Proteobacteria phylum enhanced indoleamine 2,3-dioxygenase
(IDO) activity and increased metabolism of tryptophan into
kynurenine derivatives, corresponding with an imbalance of
Th17/Treg during chronic HIV infection and in HIV-infected
subjects under ART (Jenabian et al., 2013; Vujkovic-Cvijin et al.,
2013). Bacterial-induced IDO expression can pervade the gut-
brain axis, potentially contributing to depression, dementia,
and neurocognitive dysfunction in HIV infection (Sardar and
Reynolds, 1995; Ciesla and Roberts, 2001). Second, it is also
clear that both viral and bacterial contribute to HIV and
SIV-induced enteropathy in a very interconnected process.
An expansion in the gut virome, including adenoviruses,
picornaviruses, parvoviruses, and caliciviruses, occurs in SIV
infection and is associated with levels of serum LPS-binding
protein, suggesting that viral communities may be involved
in regulation of commensal gut microbes and host immunity
(Handley et al., 2012, 2016). Lastly, gut microbiota changes
are highly influenced by fungi that share similar niches
on the mucosal surface. Treatment of mice with antifungal
drugs exacerbates DSS-induced colitis and leads to intestinal
dysbiosis of bacterial populations, including decreased relative
abundances of Bacteroidetes, Clostridium, and Lactobacillus spp.
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FIGURE 1 | Pathologic manifestations of the small intestine in HIV or SIV infection in the gut. Depletion of CD4+ T cells occurs in early HIV infection (primary stage).
Production of inflammatory cytokines in the primary stage leads to intestinal barrier disruption and microbial translocation, exacerbating the inflammatory milieu and
increasing viral replication. Dysregulation in mucosal immunity and reduced anti-microbial peptide (AMP) production leads to bacterial overgrowth and altered pattern
recognition receptor (PRR) expression in chronic HIV infection. Persistent gut inflammation in response to the cascade of mucosal events leads to enhanced viral
replication and severe depletion of CD4+ T cells in the AIDS stage.

(Wheeler et al., 2016). Altogether, these findings imply that more
knowledge is needed about the causes and consequences of gut
dysbiosis in conjunction with viruses and fungi during HIV
infection to improve therapies for immune recovery in the gut.

A COMPARISON OF GUT MICROBIOTA
SIGNATURES IN HIV VERSUS SIV
INFECTION

Early HIV or SIV Infection
Investigation in the early stages of HIV and SIV infection revealed
that gut inflammation and loss of CD4+ T cells occur rapidly
after viral exposure (Veazey et al., 1998; Guadalupe et al., 2003).

While challenging studies of early HIV infection, due to
detection and recruitment of recently exposed individuals, a
study of 57 early stage HIV-infected, ART-naïve patients reported
that 50% of individuals had increased gut inflammation and
a breakdown of the intestinal barrier as indicated by fecal
calprotectin (Gori et al., 2008). Plasma levels of Intestinal-
fatty acid binding protein (I-FABP) and soluble suppression
of tumorigenicity 2 (sST-2) were elevated in a cohort of
48 early stage HIV-infected patients, confirming the early
onset of enterocyte damage and gut inflammation in HIV
infection (Jenabian et al., 2015). In HIV-infected patients,
inflammatory markers were concurrent with an altered fecal
microbiome composition featuring increased abundances of
Pseudomonas aeruginosa and Candida albicans and decreased
abundances of Lactobacilli and Bifidobacteria (Gori et al.,
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2008). A reduction in Lactobacillales in early HIV infection
was associated with increased microbial translocation, higher
viral loads, and lower CD4+ T cell percentages (Perez-Santiago
et al., 2013). Nevertheless, many early infection studies have
been aimed largely at the SIV model in part because the
early signs of gut inflammation are analogous to that in
HIV infection. At 2.5 days post SIV-infection, Hirao et al.
(2014) reported heightened IL-1β signaling and disruption of
intestinal barriers prior to CD4+ T cell loss. Furthermore,
induction of interferon (IFN)-α, IFN-γ, TNF-α, IL-8, IL-12,
IL-17, IL-22, and IL-23 were elevated in the jejunal compartments
of early SIV-infected rhesus macaques (Glavan et al., 2016). The
alterations in gut microbiome composition have been relatively
consistent between early HIV and SIV infection. In a study of
14 acutely SIV-infected rhesus macaques, fecal microbial analysis
revealed a significant decrease in alpha (number of species and
species evenness) and beta diversity (differences in taxonomic
abundance profiles) with depletion of multiple Lactobacillus and
Streptococcus spp (Vujkovic-Cvijin et al., 2015). Furthermore,
jejunal microbiota analysis from 4 acutely SIV-infected macaques
revealed an increase in Pasteurellaceae and trend of decrease
in Streptococcus (Glavan et al., 2016). However, one study
comparing stool samples from 9 acutely SIV-infected macaques
with eight healthy controls revealed no strong clustering
of bacterial communities by SIV status (McKenna et al.,
2008). Bacterial clustering was observed when grouped by
presence of colitis, highlighting the connection between gut
inflammation and microbiome composition. Collectively, these
findings support that the presence of gut inflammation in
both early SIV and HIV infection can result in an altered
microbiome composition.

Chronic HIV or SIV Infection
Chronic HIV and SIV infection are both characterized by severe
CD4+ T cell depletion, high levels of microbial translocation,
and persistent immune activation. In a study of 20 chronic,
ART-naïve HIV-positive men, fecal microbiota analysis revealed
lower alpha diversity, lower abundances of Firmicutes, and
increased abundances of Fusobacteria when compared to 20
uninfected controls (McHardy et al., 2013). Similarly, another
study of 11 individuals in the chronic stage of HIV infection
also reported significant differences in fecal microbiota when
compared to healthy controls, highlighting an increase in
alpha diversity and relative abundances of Prevotellaceae,
Erysipelotrichaceae, and Veillonellaceae (Lozupone et al.,
2013). In a span of 3 years, an upsurge of interest in studying
the fecal microbiome in ART-naïve HIV-infected individuals
revealed increased abundances of Proteobacteria (Vujkovic-
Cvijin et al., 2013; Dillon et al., 2014; Ling et al., 2016) and
Prevotella (Lozupone et al., 2013; Dillon et al., 2014; Ling
et al., 2016) with decreased abundances of Bacteroidetes
(Lozupone et al., 2013; Vujkovic-Cvijin et al., 2013; Dillon
et al., 2014; Ling et al., 2016), Firmicutes (McHardy et al.,
2013; Dillon et al., 2014), and Erysipelotrichaceae (Lozupone
et al., 2013; Vujkovic-Cvijin et al., 2013) were associated with
chronic HIV infection. Later studies comparing the impact
of sexual preference on gut microbiota composition revealed

that the increased abundance of Prevotella found in HIV
infection was attributed to men who have sex with men (MSM)
independent of HIV status (Noguera-Julian et al., 2016).
Subtle changes in the fecal microbiome composition vary
at higher taxonomic classifications. Studies report depletion
in Lachnospira, Coprococcus, Roseburia and Alistipes and
enrichment in Peptostreptococcus, Anarococcus, Porphyromonas,
Fusobacterium, Veillonellaceae, Ruminococcaceae, and
Desulfovibrionaceae associated with HIV infection (Lozupone
et al., 2013; McHardy et al., 2013).

The magnitude of changes in gut microbiota composition
during the chronic stage of SIV infection in non-human primates,
however, have not corresponded well with that of chronic
HIV infection in patients. Many similarities were found in the
fecal microbiota of healthy humans and macaques, but unlike
findings in HIV infection, there was no strong clustering of
bacterial communities associated with SIV infection (McKenna
et al., 2008; Klatt et al., 2013). Fecal microbial analysis from
8 ART-naïve, chronic SIV-infected rhesus macaques noted a
gradual decrease in Lactobacillus over time, but no other
significant changes in microbiome composition compared to
that from 3 uninfected controls (Klase et al., 2015). Similarly,
a study involving 22 SIV-infected rhesus macaques reported no
SIV-associated differences in bacterial richness, evenness, nor
diversity when compared to 22 uninfected controls (Handley
et al., 2012). Microbial analysis from colon biopsies of 4 chronic
SIV-infected macaques revealed subtle decreases in abundance
of Firmicutes and increases in Mycooplasmataceae, suggesting
the possibility of minor distinctions in mucosal-adherent
bacterial populations (Glavan et al., 2016). Investigation into
the fecal microbiome chimpanzees naturally infected with
SIVcpz, the ancestral strain that transmitted to humans as
HIV-1, proved to be distinct from findings in the rhesus
macaque. An increase in relative abundances of Sarcina,
Staphylococcus, Selenococcus, and Tetragenococcus were observed
in fecal samples from 6 chronic SIV-infected chimpanzees
(Moeller et al., 2013). Collectively, these findings show that
the gut microbiome alterations due to chronic SIV infection
in non-human primates are variable and display quite different
profiles than that in chronic HIV-infected individuals. The
exception remains in the SIVcpz model, and the reason for
this discrepancy is unclear. Speculations about environmental
influences, including primate housing conditions, diet, and
length of infection on gut microbial compositions may limit
comparisons across studies. The variability of environmental
conditions is not controlled in human studies and natural
non-human primate infections compared with the widely used
experimental AIDS model of rhesus macaques, which highly
influence outcomes of analysis in gut microbial communities
(Conlon and Bird, 2014; Coad et al., 2017). Furthermore,
the rate of disease progression for chronic pathogenic SIV
infection is defined within several months in comparison to
several years in HIV infection which may lead to inherent
differences in gut microbial composition. While differences in
gut microbiota signatures are seen in chronic infection, the
pathologic manifestations of HIV and SIV infection in the gut
retain many similarities, laying the groundwork for seminal
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research in early establishment and latency of viral reservoirs,
microbial translocation, and immune activation (Chahroudi and
Silvestri, 2016; Garcia-Tellez et al., 2016; Kumar et al., 2016;
Huot et al., 2018).

Limitations to Current Gut Microbiome
Studies in HIV or SIV Infection
Microbiome-related changes in the context of HIV, SIV, and
other chronic inflammatory diseases have been a constant
challenge to fully elucidate due to a variety of confounding
factors. First, there lacks a consistent method for fecal sample
collection. Samples obtained from stool, colon contents, and
colon biopsies reveal different microbial compositions that
may influence detection of bacterial species across studies
(McKenna et al., 2008). Secondly, the methods to preserve
collected samples are not clearly described in these studies and
may strongly influence the analysis of bacterial communities
(Horng et al., 2018). Host factors beyond HIV and SIV
status can impact the gut microbiome and create disparity
among studies in different populations, including exposure
to subclinical viruses and environmental conditions (Santos
Rocha et al., 2018). Unlike non-human primates whose daily
housing condition and diets are similar, the diet habits of
HIV-infected individuals vary among persons, genders, areas,
and seasons, which may account for differences in microbiota.
One such example is the enrichment of environmentally derived
bacterial genera in the gorilla gut microbiota due to their
specialized leaf-based diet and capacity to digest complex plant
polysaccharides (Moeller et al., 2015). Our findings highlight a
need to consider host, environmental, and viral factors in gut
microbiome analyses between SIV and HIV infection. While
current studies have established correlations between changes in
gut microbiota and HIV disease progression, the challenge now
lies in moving beyond correlation analyses to begin addressing
causation. More resources are needed to encourage mechanistic
studies and enable identification of causal microbes in HIV
disease pathogenesis.

IMPACTS OF ART TREATMENT ON GUT
MICROBIOTA COMPOSITION

Administration of ART can increase CD4+ T cell counts and
reduce viral loads in plasma, but it fails to eradicate HIV
reservoirs, normalize the composition of the gut microbiome,
and resolve gut inflammation (Dinh et al., 2015; Nowak et al.,
2015). One study involving 6 chronic HIV individuals on a
short course of ART revealed that short-term administration of
ART does not restore fecal microbiota composition to that of
healthy controls (Lozupone et al., 2013). In contrast, long-term
use of ART during chronic HIV infection may partially restore
gut microbiota, but it does not completely normalize the
microbial composition to that of healthy individuals (Lozupone
et al., 2013; McHardy et al., 2013; Ling et al., 2016). Similar
findings in SIV infection revealed that treatment using ART
resulted in an initial decrease in abundance of Bacteroidetes and
Firmicutes and increase in Proteobacteria, which normalized

to levels in untreated SIV-infected controls after 2 weeks
(Klase et al., 2015). In comparison to HIV-negative individuals,
chronic ART-treated HIV individuals still exhibited reduced
alpha diversity (Mutlu et al., 2014; Nowak et al., 2015),
increased abundances of Succinivibrio (Vázquez-Castellanos
et al., 2014) and Enterobacteriaceae (Mutlu et al., 2014; Dinh
et al., 2015), and decreased abundances of Bacteroidetes
(Vázquez-Castellanos et al., 2014; Nowak et al., 2017), Alistipes
(Dinh et al., 2015), Erysipelotrichaceae (Dinh et al., 2015),
similar to that of chronic, ART-naïve HIV individuals. Two
recent studies have examined the effects of different ART
combinations on the gut microbiome. Pinto-Cardoso et al.
(2017) showed that long-term use of ART reduced relative
abundances of F. prausnitzii and Roseburia, potential butyrate
producers that help maintain healthy gut homeostasis. In
particular, a protease inhibitor (PI)-based ART regimen
increased endothelial damage and exhibited higher levels of
sCD14 in plasma when compared to both the non-nucleoside
reverse transcriptase inhibitor (NNRTI)-based ART and
HIV-uninfected controls. The detrimental effects of PIs were
consistent with findings from Villanueva-Millan et al. (2017)
highlighting the reduction of beneficial butyrate-producing
bacteria in HIV infection. A comparison of PI, NNRTI,
and integrase-strand transfer inhibitor (INSTI)-based ART
regiments revealed that INSTI use was associated with the
lowest levels of systemic inflammation and minor changes
in fecal microbial composition compared to healthy controls
(Villanueva-Millan et al., 2017). The significance of the gut
microbiome has been increasingly recognized in development
of ART for HIV infection, but much is still unknown about
differential effects of drugs on commensal microbes critical
for gut health. These findings highlight the need to better
understand the pharmacokinetics of oral ART drugs and their
interactions with gut microbial communities to achieve complete
mucosal recovery.

ESTABLISHING A STRONGHOLD:
RESTORING GUT MICROBIOTA
COMPOSITION IN HIV/SIV INFECTION

Restoring the gut microbiome in HIV infection using probiotics
and prebiotics have a multitude of implications on intestinal
barrier functions, resistance to pathogenic colonization, and
restoration of the Th17/Treg ratio for mucosal immune function
(D’Angelo et al., 2017), as depicted in Figure 2. Probiotic
supplementation in HIV infection has been shown to moderately
improve CD4+ T cell counts and alleviate GI symptoms such
as diarrhea and nausea (Cunningham-Rundles et al., 2011;
Yang et al., 2014; Miller et al., 2016). In a randomized,
double-blinded study of 32 HIV patients receiving ART with
15 receiving probiotics, 9 receiving placebo, and 8 controls,
probiotic intervention reduced systemic inflammatory C-reactive
protein levels and CD4+ T cell activation. However, these
anti-inflammatory effects occurred independent of changes in
microbial translocation (Stiksrud et al., 2015). Other studies
have found that use of prebiotics or probiotics can reduce
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FIGURE 2 | Current therapeutic modalities to repair mucosal damage during HIV and SIV infection. Strategies include (1) recovery of gut microbial communities, (2)
prebiotic stimulation using butyrate, (3) addition of bacterial metabolites such as indoles, (4) enhancing host immune cell function through innate lymphoid cells (ILC),
(5) combating cellular metabolism through mitochondrial targets such as ROS, and (6) anti-retroviral therapy (ART). Efforts made in regard to each strategy (Heise
et al., 1993, 1994; Lim et al., 1993; Veazey et al., 1998; MacDonald and Monteleone, 2005; Lathrop et al., 2011) have led to modest increases in CD4+ T cell
numbers, reduced inflammation, increased NK cell activity, enhanced IL-17/IL-22 production, and gut epithelial barrier repair.

activation of circulating CD4+ T cells, decrease production
of inflammatory TGF-β, IL10, IL-12, and IL-1β, and improve
NK cell activity, highlighting the clinical potential to support
immune reconstitution and facilitate provirus clearance (Gori
et al., 2011; d’Ettorre et al., 2015; Falasca et al., 2015).
Interestingly, outcomes of probiotic/prebiotic supplementation
in the SIV infection support findings in HIV infection despite
distinctions in SIV and HIV-induced changes in the gut
microbiome. Supplementation of probiotics/prebiotics during
ART resulted in increased GI tract function, better reconstitution
and functionality of intestinal CD4+ T cells, and reduced fibrosis
in colonic lymphoid follicles in SIV infected pigtail macaque
model of AIDS (Klatt et al., 2013). Probiotics (VSL#3) given with
IL-21 and ART increases Lactobacillus and Bifidobacteria spp,
increase polyfunctional IL-17 expansion, and reduce microbial
translocation and IDO expression in the gut (Ortiz et al.,
2016). Probiotic administration for 1 month reversed the
depletion of Lactobacillus and increased circulating kynurenine
levels in chronic SIV infection (Klase et al., 2015; Vujkovic-
Cvijin et al., 2015). Inoculation of commensal Lactobacillus
plantarum in the intestinal loops led to a rapid anti-inflammatory

response and epithelial tight junction repair by dampening
SIV-infection-induced NF-κB/IL-1β signaling in gut of early
SIV-infected macaques (Hirao et al., 2014). In addition, fecal
microbiota transplantation in SIV-infected rhesus macaques
enhanced frequencies of circulating Th17 and Th22 cells
responsible for maintaining epithelial homeostasis (Hensley-
McBain et al., 2016). These studies suggest that microbial-
based therapies strongly support mucosal health and should be
considered in conjunction with ART. Furthermore, restoring
gut heath in combination with anti-latency strategies may have
implications for current HIV cure efforts to fully eradicate or
prevent viral infection. Care should be taken in consideration
for selection of specific probiotic strains, as evidence suggests
that probiotics are not all equally effective (Nazir et al., 2018).
More research is warranted to elucidate the mechanism of
how microbes interact with the gut in inflammatory conditions,
evaluate the safety of probiotic use, and understand their
potential in maintaining long-term health benefits. While
observational microbiome studies provide useful information,
the key to understanding their therapeutic potential lies in
interventional studies at the species level.
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ALTERNATIVE STRATEGIES TO RESCUE
GUT MUCOSAL IMMUNITY

Insights into the beneficial outcomes of probiotic use has
paved the way for development of more specific targets of gut
mucosal immunity. Administration of Sevelamer to neutralize
microbial LPS was utilized in SIV-infected macaque model, which
dramatically reduced immune activation and slightly reduced
viral replication (Kristoff et al., 2014). However, in ART-naïve
HIV infected patients Sevelamer failed to decrease microbial
translocation, inflammation or T-cell activation (Sandler et al.,
2014), suggesting that LPS may not be the sole driver of
disease progression in HIV-infected individuals and alternative
strategies are needed to target mucosal immune system. One
new potential avenue of research involves metabolites of bacterial
origin that can influence host cellular functions. Bacterial-
derived short chain fatty acids (SCFAs) such as butyrate and
acetate have been shown to support epithelial barriers, have
anti-inflammatory properties, and influence cellular metabolism
(Koh et al., 2016; Byndloss et al., 2017). Bacterial-derived
indole derivatives can activate aryl hydrocarbon receptors
(AhR) to induce IL-22 production, decrease inflammatory
cytokines, and prevent gut leakiness (Zelante et al., 2013;
Lamas et al., 2016; Choi et al., 2018). Research efforts to
improve gut mucosal immunity have also been focused on
fine-tuning host cellular signaling pathways that are altered
by HIV infection. Modification of innate lymphoid cell 3
populations can regulate commensal bacteria-specific CD4+

T cells (Hepworth et al., 2015). Permissiveness of T-cells to
HIV infection may be partially controlled by mTOR activity
(Planas et al., 2017). Progression of gut inflammation in HIV
infection may be corrected through inhibition of NF-κB in
the host (Hirao et al., 2014; Vlantis et al., 2016). Lastly,
targeting cellular mitochondrial metabolism and antioxidant
potential may be of importance to maintain epithelial barrier
integrity and homeostasis in the gut (Wang et al., 2014;
Han et al., 2017). Gut inflammation generates oxygen and
nitrogen radicals that may further contribute to dysbiosis
by allowing outgrowth of anaerobes (Winter et al., 2013).
Restriction of nitrogen availability to gut microbiota through
modulation of diet helped shaped microbial communities and
promote metabolic health in mice (Holmes et al., 2017). The
mechanisms of how metabolic function in the gut is altered
in HIV and SIV infection and how this can be targeted
therapeutically to promote both gut and brain health is under
active investigation.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The mechanisms of how the gut microbiota is involved in
the host inflammatory processes that influence HIV replication
and disease progression are just beginning to be elucidated.
Studies in the SIV model have been an invaluable tool to
study gut inflammation associated with HIV despite differences

observed in gut microbiota compositions. Studies in non-human
primates have contributed greatly to our working knowledge of
viral transmission, gut-associated inflammation, early immune
responses, and prevention and treatment strategies. While
development of novel technologies characterized key bacteria
that affect mucosal immunity, more research is needed to identify
the mechanisms influencing gut health and long-term impacts of
microbiome-based therapies. For example, production of SCFA
by gut microbiota were altered during HIV infection, which
may contribute to gut mucosal damage (Qing et al., 2018).
Interestingly, SCFA is essential for a newly discovered epigenetic
modification – histone crotonylation (Fellows et al., 2018). We
recently discovered that histone crotonylation involved in HIV
replication and decrotonylation of histone tails at HIV long
terminal repeats (LTR) may be linked to the establishment
of HIV latency (Jiang et al., 2018). These recent findings
indicate that we have yet to unravel signaling pathways critical
for HIV disease progression and gut mucosal damage, which
require the development of powerful computation tools, such as
bacterial transcriptome and epigenetic analyses in combination
with host genetic and metabolomics analyses. These cohesive
studies will help us develop novel strategies to restore gut
health and eliminate HIV reservoirs in patients. Harnessing
the SIV model to study host-microbial interactions at the
molecular level could provide great insight in restoring gut
mucosal immunity in HIV infection. Concurrent strategies
to restore mucosal damage, suppress viral replication, and
reduce reservoir size in patients are key to the success of
HIV cure efforts.
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