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In recent decades, increasing evidence has strongly suggested that gut microbiota play
an important role in many intestinal diseases including inflammatory bowel disease (IBD)
and colorectal cancer (CRC). The composition of gut microbiota is thought to be largely
shaped by interspecies competition for available resources and also by cooperative
interactions. However, to what extent the changes could be attributed to external
factors such as diet of choice and internal factors including mutual relationships among
gut microbiota, respectively, are yet to be elucidated. Due to the advances of high-
throughput sequencing technologies, flood of (meta)-genome sequence information and
high-throughput biological data are available for gut microbiota and their association
with intestinal diseases, making it easier to gain understanding of microbial physiology
at the systems level. In addition, the newly developed genome-scale metabolic models
that cover significant proportion of known gut microbes enable researchers to analyze
and simulate the system-level metabolic response in response to different stimuli
in the gut, providing deeper biological insights. Using metabolic interaction network
based on pair-wise metabolic dependencies, we found the same interaction pattern
in two IBD datasets and one CRC datasets. We report here for the first time that
the growth of significantly enriched bacteria in IBD and CRC patients could be
boosted by other bacteria including other significantly increased ones. Conversely, the
growth of probiotics could be strongly inhibited from other species, including other
probiotics. Therefore, it is very important to take the mutual interaction of probiotics
into consideration when developing probiotics or “microbial based therapies.” Together,
our metabolic interaction network analysis can predict majority of the changes in
terms of the changed directions in the gut microbiota during enteropathogenesis. Our
results thus revealed unappreciated interaction patterns between species could underlie
alterations in gut microbiota during enteropathogenesis, and between probiotics and
other microbes. Our methods provided a new framework for studying interactions in gut
microbiome and their roles in health and disease.

Keywords: bacterial interaction patterns, metabolic interaction network, gut microbiota community, intestinal
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INTRODUCTION

In recent decades, increasing evidence has strongly suggested that
gut bacteria play an important role in human health and disease
(Selber-Hnatiw et al., 2017; Jackson et al., 2018). Gut bacteria
has been considered as a real tissue with its specific functions
such as modulating the metabolic phenotype, influencing innate
immunity, protecting against pathogens, and so on (Eckburg
et al., 2005; Tomasello et al., 2017). Changes in the composition
of the gut microbiota have been proven to be associated with
many diseases (Jackson et al., 2018) including inflammatory
bowel disease (IBD; Joossens et al., 2011; Matsuoka and Kanai,
2015; Chu et al., 2016; Sartor and Wu, 2017; Zuo and Ng, 2018),
type 2 diabetes (Delzenne et al., 2015), obesity (Moreno-Indias
et al., 2014; Tai et al., 2015), atherosclerosis (Drosos et al., 2015;
Yamashita et al., 2015) and colorectal cancer (CRC; Aarnoutse
et al., 2017; Liang et al., 2017; Russo et al., 2018). Among which,
IBD (Miyoshi and Chang, 2017; Sartor and Wu, 2017), including
both Crohn’s Disease (CD) and ulcerative colitis (UC), is one of
the most-studied imbalances between intestinal microflora and
the immune system. Over the past 50 years, there was a dramatic
increase in IBD (Sartor and Wu, 2017). In addition, patients with
IBD are at increased risk of CRC, accounting for less than 2%
of colon cancer cases yearly (Tilg et al., 2018). CRC, one of the
most common cancers with the highest mortality worldwide, has
also been reported to be associated with intestinal microflora
(Zeller et al., 2014).

Gut microbes live as a community, sharing the common
intestinal environment (Shetty et al., 2017). They interact with
each other, maintaining the intestinal microbial flora in a state
of equilibrium (Sommer et al., 2017). The composition of gut
microbiota is thought to be largely shaped by interspecies
competition for available resources along with cooperative
interactions (Zelezniak et al., 2015). Diet is considered as
one of the main drivers (De Filippo et al., 2010), with
certain contributions from intrinsic metabolic dependencies.
However, to what extent the changes could be attributed to
external factors like diet of choice and internal factors such
as mutual relationships among gut microbiota, respectively, are
yet to be elucidated. Furthermore, it is still unclear how such
intrinsic dependencies could contribute to the parthenogenesis
of intestinal diseases such as IBD and CRC.

In this study, we performed systematic network analysis
based on pairwise interspecies metabolic dependencies among
gut microbes in IBD and CRC patients and compared that
of the healthy controls. Network analysis has proven to be a
valuable tool in exploring interactions between a set of items
(nodes, such as individuals in a school, species in a complex
food web, proteins in metabolic pathways) by biologists and
scientists in other fields (Kim and Hastak, 2018), and has recently
been applied to explore and identify microbial patterns that are
generally difficult to detect in complex systems (Chow et al., 2014;
Cardinale et al., 2015; Kong et al., 2018). Due to the advances
of high-throughput sequencing technologies, flood of (meta)-
genome sequence information and high-throughput biological
data are available for gut microbiota and their association with
intestinal diseases, making it easier to gain understanding of

microbial physiology at the systems level (Covert et al., 2004).
In addition, the newly developed genome-scale metabolic models
that cover significant proportion of known gut microbes enable
researchers to analyze and simulate the system-level metabolic
response in response to different stimuli in the gut, providing
deeper biological insights (Zhang and Hua, 2016; Magnusdottir
et al., 2017; van der Ark et al., 2017). Based on these data,
we revealed unappreciated patterns in gut microbes of IBD
and CRC patients and healthy controls, and were able to
accurately predict the majority of the changes (i.e., decreased
or increased) in the gut microbiota during enteropathogenesis.
As compared with co-occurrence network (Cardinale et al.,
2015), which has been widely applied in the identification
and characterization of interspecies interactions among gut
microbes, our metabolic dependency network is a directional
network and can provide more information with considering
the interaction between the bacteria. We thus concluded
that metabolic dependencies underlie interaction patterns of
gut microbiota community during enteropathogenesis, and
believed that our methods could provide a new framework
for studying interactions in gut microbiome and their roles in
health and disease.

MATERIALS AND METHODS

Data Collection
Pair-Wise Interactions (Metabolic Dependencies) of
Human Gut Microbes
Genome-wide metabolic models for 773 human gut microbes
were obtained from Stefanía et al. (Magnusdottir et al., 2017).
Pairwise interactions, i.e., changes in silico growth rates of two
co-culturing microbes as compared with that of cultured alone
were calculated using the methods described in the literature
(Magnusdottir et al., 2017).

Briefly, genome-scale metabolic models of 773 human
gut microbes described in literature (Magnusdottir
et al., 2017) were reconstructed based on comparative
genomics and enrichment literature-derived experimental
data. Through a combination of detailed biochemical
information from genome annotations and literature resources,
genome-scale metabolic models can be constructed. The
gene-protein-reaction (GPR) relationships are annotated
in the metabolic modes with mass- and energy-balanced
reactions. Furthermore, other omics data such as transcriptomic
and proteomic data could be integrated into the model,
making the model more informative. Additionally, pairwise
simulations were performed on every pair of 773 microbes
(298,378 pairs). Single and pairwise in silico growth
rates were calculated on two different diets (Western and
High fiber diet).

Based on these growth rates, we calculated the “weight” of
the interaction between bacteria using the following equation,
w = Log2

P
S , where P stands for growth rate of the species

of interest when co-cultivated with another bacterium (paired
growth rate) and S stands for growth rate when cultivated alone.
A “w” value of 0 indicates the growth rate of a bacterium is
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not changed by the other co-cultivated bacterium; a positive
(negative) value of “w” indicates the growth rate can be promoted
(inhibited) by the co-cultivated bacterium. The interactions
between two bacteria are thus bi-directional.

Gut Metagenomic Data of IBD and CRC Patients and
Healthy Controls
In total three metagenomic datasets, including two for IBD and
one for CRC, were obtained from the European Nucleotide
Archive (ENA; Leinonen et al., 2011)1 database.

The first IBD datasets (referred to as IBD1 in our
study) are available from ENA under the accession of
ERP005534. It contained ten IBD and ten healthy individuals
whose fecal microbiome compositions were determined using
Illumina HiSeq 2500.

The second IBD datasets [ENA accession ID: SRP002423;
referred to as IBD2 (NIH HMP Working Group et al., 2009;
Noecker et al., 2016) in our study] contained 14 healthy samples
and 20 disease samples; their fecal samples were sequenced using
a 454 GS FLX Titanium pyrosequencer. This study is a part of the
NIH Human Microbiome Project (HMP).

The third CRC datasets [ENA accession ID: ERP005534;
referred to as CRC (Zeller et al., 2014) in our study] contained
fecal samples of 53 patients and 61 healthy controls. In this study,
metagenomic sequencing of fecal samples was used to identify
potential markers for distinguishing CRC patients from tumor-
free controls. The detailed description about the experiments
actually entailed can be found in the literature (Zeller et al.,
2014). In brief, fresh stool samples were collected and genomic
DNA was extracted using the GNOME DNA Isolation Kit
(MP Biomedicals). Then library preparation for metagenomic
sequencing was automated and adapted on a Biomek FXp Dual
Hybrid. And metagenomic sequencing was performed on the
Illumina HiSeq 2000/2500 platform.

Read Processing and Quality Control
Trimmomatic (Bolger et al., 2014) was used to remove adaptors
and low quality bases (trimming) from the Illumina paired-
end and single-end reads. For Roche/454 sequence data, QTrim
(Shrestha et al., 2014) was used for trimming. FastQC (Andrews,
2014)2 was then used for quality control prior to downstream
analysis; the generated HTML report files were manually
examined for possible problems in the raw and processed data.
The usable trimmed data were referred to as “Clean Data,” and
were used for downstream analysis.

Species Identification and Composition
Analysis of Metagenomic Data
MetaPhlAn2 (Metagenomic phylogenetic analysis version 2;
Truong et al., 2015) was used for the taxonomic composition
analysis on the Clean Data with default parameters. MetaPhlAn2
can efficiently profile the composition of microbial communities
with species level resolution.

1http://www.ebi.ac.uk/ena
2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Differential Abundance Analysis Between
Disease and Healthy Samples
Wilcoxon Rank Sum test was used to identify differentially
abundant species between patients and healthy controls. The
detailed results are available in Supplementary Table S1.
Supplementary Figure S1 shown in is the boxplot of the
relative abundances of identified species in IBD1 patients
(red) and healthy controls (blue); the red (blue) dots under
the box plots represent a significant decrease (increase) in
the abundance in disease group. The classification of the
bacteria (Commensal, Pathogen, and Probiotic) is provided by
the literature (Magnusdottir et al., 2017), which is shown in
Supplementary Table S2.

Construction and Characterization of
Metabolic Dependency Network for
Disease and Healthy Controls
The metabolic dependency networks were constructed using
pairwise interactions and consisted of nodes and edges. Networks
were constructed for each of the three datasets we collected, and
separately for patients and healthy controls. For each network,
the nodes were microbial species selected from the union of the
top 50 most abundance species in patients and the respective
healthy controls, whose combined account for more than 90%
of the total abundances of all species, while the edges were
pairwise interactions (“weights”) between two connected species.
To account for the impact of diets [Western and High fiber diet,
as described in the literature (Magnusdottir et al., 2017)], two
networks were constructed for each of the patient and control
groups. At the end, four networks were obtained for each dataset.
An open-source tool, Gephi (Bastian et al., 2009), was used for
network visualization and analysis.

Statistics
All statistical analysis and plots were performed in R version
3.4.33. Mann–Whitney and Chi square test were used to
analyze differences between groups. The p-value < 0.05 was
considered significant.

RESULTS

Construction of Metabolic Dependency
Network for Gut Microbiota During
Enteropathogenesis
The flow chart of the methods used is shown in Supplementary
Figure S2. We collected gut metagenomics data from in total
three published datasets, including two for IBD (NIH HMP
Working Group et al., 2009; Noecker et al., 2016) and one for
CRC (Zeller et al., 2014), each with different numbers of patients
and healthy controls (see section “Materials and Methods” for
details). We first constructed a metabolic dependency network
for each of the sample groups (i.e., patients and controls). Briefly,

3www.r-project.org
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MetaPhlAn2 was used for the taxonomic composition analysis on
the clean data with default parameters. The nodes in the network
are microbial species selected from the union of the top 50 most
abundance species that together account for more than 90% of
the total abundances of all species in healthy and disease groups,
while the edges represent pairwise interactions between two
connecting species. The weight of the edge is the absolute value
of the influence, which equals to log2-transformed growth rates
change between co-culturing and single-growth (i.e., the growth
rate when cultivated alone). The edges are thus directional;
depending on the thresholds of the weights of the edges, there
could be two edges connecting two neighboring nodes in the
network, with each representing the impact of co-culturing as
compared with the respective single-growth. Because the growth
rate under co-cultured conditions could be slower than that of the
single-culturing, we used red (green) to represent the increased
(decreased) growth rate under co-cultured conditions.

For each of the three studies from where our data were
obtained, we constructed networks for the patients and the
respective healthy controls separately. To account for the impact
of diet [western diet and a high fiber diet, as described in
Magnusdottir et al. (2017)], we constructed two networks each
of the patient and control groups. At the end, we obtained four
networks for each dataset. In this study, we described the results
of IBD1 in western diet as an example, other datasets produced
approximately the same results which were not shown here.

Network Centrality Analysis Revealed
Probiotics Are Among the Top Important
Nodes
As shown in Figure 1, we included dependencies of weight
greater than four to build the network for healthy and
disease groups respectively. We used gray, green, red, and
pink to indicate nodes for commensal, probiotic, pathogenic,
and opportunistic pathogenic bacteria, respectively, using
classifications from a public dataset (Magnusdottir et al., 2017).
To identify subclusters in which nodes are more densely
connected than to the rest of the network, we used a modularity
algorithm (a “community” detection technique) implemented in
Gephi (Bastian et al., 2009) and identified two main subclusters
(Figure 1); among which, one was mainly composed of probiotics
bacteria, while the other was mostly composed of species of the
genus of bacteroides. Surprisingly, we found that some pathogen
bacteria, such as some strains of Escherichia coli, was also
included in the probiotics subcluster and had a notable inhibitory
effect on the probiotics included (Figure 1).

We then checked the top important nodes in the metabolic
dependency network. We used the Gephi’s PageRank algorithm
(Chen et al., 2007) to rank the nodes. In addition to network
centrality, PageRank also considers both the inbound and
outbound links, which is suitable for analyzing our metabolic
dependency network. Strikingly, we found that most of the top
20 bacteria were probiotics (10/11 in health and 11/11 in disease
states), as shown in Supplementary Tables S3, S4 and Figure 2.
These results thus indicate that probiotics may play important
roles in the metabolic dependency network.

Growth of Probiotics Was Strongly
Inhibited by Other Bacteria in Both
Patients and Healthy Controls
Strikingly, we found that the growth of probiotics topped the
centrality analysis was strongly inhibited by themselves and
others; we found similar results in patients and healthy controls.
As shown in Figure 3, we divided the interactions into four
groups. First, the background group includes interactions among
bacteria excluding the probiotics. Second, the within group
includes interactions among probiotics. Third, the affecting
group includes the impacts of probiotics to other bacteria.
Fourth, the affected group includes the impacts of other
bacteria on probiotics. We found that the weight scores were
significantly lower in the “within” and “affected” groups as
compared with the other two; we found similar trends in both
patients and the controls (Figures 3B,D, respectively; Wilcoxon
Rank Sum test). Similarly, we found that the proportion of
inhibitory effects in the “affected” were significantly higher
than other three groups (Figures 3A,C; Chi-square test).
The “with” group contained significantly higher proportion of
inhibitory effects than the “affecting” group; its proportion
was also higher than that of the background, although the
difference was not significant. These results indicate that
although probiotics are mostly beneficial to the host, they often
face competition from other probiotics and are clearly not
welcomed by other.

Disease-Enriched Bacteria Are Boosted
by Themselves as Well as Other Bacteria
We found that the growth of bacteria whose abundances were
significantly increased in patients (then were hence referred as
to “disease-enriched bacteria”) could be promoted by themselves
as well as by others. We divided pairwise interactions into
four groups. First, the background group contains interactions
excluding the disease-enriched bacteria and the probiotics.
Second, the within-group includes interactions among the
disease-enriched bacteria. Third, the affecting group includes
the impacts of disease-enriched bacterial on others. Fourth,
the affected group includes the impact of other bacteria on
the disease-enriched ones. As shown in Figure 4, there were
significantly more promoting affects in the second and third as
compared with other two groups (Figures 4B,C), indicating a
marked difference of the disease-enriched bacteria as a group as
compared to others.

TABLE 1 | The recognition accuracy for the three datasets (analyzed in different
diet).

Accuracy (%)

IBD10_mphlan_HF 53.10

IBD10_mphlan_W 65.60

twin_mphlan_HF 72.70

twin_mphlan_W 63.60

CRC_mphlan_HF 57.14

CRC_ mphlan_W 47.62
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FIGURE 1 | The bacteria interaction networks (weight > 4) obtained from healthy controls (A) and patients (B). ForceAtlas2 layout in Gephi (Bastian et al., 2009) was
used for this representation. Nodes filled with gray, green, red, and pink represent commensal, probiotic, pathogenic, and opportunistic pathogenic bacteria,
respectively. Two main subclusters were identified, one includes mostly probiotic bacteria (Probiotics Module), while the other consists mostly of species in the genus
bacteroides (Bacteroides Module).

Frontiers in Microbiology | www.frontiersin.org 5 June 2019 | Volume 10 | Article 1205

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01205 June 2, 2019 Time: 12:14 # 6

Dai et al. Interaction Patterns of Gut Microbiota

FIGURE 2 | Most of the top 20 bacteria based on PageRanks are probiotics in health (A) and disease (B) states.

FIGURE 3 | The growth of probiotics was strongly inhibited by other bacteria in both patients and healthy controls. (A,C) Proportions of inhibitory interactions in the
four groups, calculated separately for patients (A) and healthy controls (C); Chi-square test was used to test pairwise differences between two groups. (B,D)
Distribution of weight values in the four groups, calculated separately for patients (B) and healthy controls (D); Wilcoxon Rank Sum test was used for pairwise
comparisons between two groups. Interaction data of the four groups are: background – interactions among bacteria excluding probiotics; within – interactions
among probiotics; affecting – impacts of probiotics on others; affected – impacts of others on probiotics. Level of significance: NS – not significant; ∗∗∗p < 0.01.
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FIGURE 4 | The growth of disease-enriched bacteria could be promoted by themselves and others. (A) An exemplary network of disease-enriched bacteria.
(B) Proportion of promoting interactions in each group; chi-square test was used to perform pairwise (two-groups at a time) comparisons. (C) Distribution of weight
values in the four groups; Wilcoxon Rank Sum test was used for pairwise comparisons. Interaction data of the four groups are: background – interactions among
bacteria excluding probiotics and disease-enriched ones; within – interactions among disease-enriched bacteria; affecting – impacts of disease-enriched bacteria on
others; affected – impacts of others on disease-enriched bacteria. Level of significance: NS – not significant; ∗p < 0.05; ∗∗0.01 < p < 0.05; ∗∗∗p < 0.01.

Alterations of the Gut Microbiota During
Enteropathogenesis Can Be Explained
by Their Immediate Neighbors in the
Metabolic Dependency Network
We next checked if alterations of the gut bacteria could
be explained by their immediate neighbors in the network.
For a given node (species) in the network, we considered
two parameters in this calculation, namely the weight of
the interactions (w) and the relative abundances (a) of its
connecting nodes, and calculated an Inbound Influence Index
using following equation:

∑
(w̄× a). As shown in Table 1 and

Supplementary Table S5, we were able to predict up to 75% of the
directions (i.e., increase or decrease) of the nodes in the metabolic
dependency network.

DISCUSSION

In this study, we constructed metabolic dependency networks
using gut microbiota datasets of common entero-diseases
including IBD and CRC, and revealed unappreciated interaction
patterns of disease-enriched bacteria and probiotics. In addition,
we showed that the alterations of the gut microbiota during
enteropathogenesis can be explained by their immediate
neighbors in the metabolic dependency network with
reasonable accuracy.

We used Wilcoxon Rank Sum test to identify differentially
abundant species between patients and healthy controls.
Although the identified significantly changed bacteria are quite

different in the two IBD datasets (both contained patients and
healthy controls, see Supplementary Table S1), we found similar
interaction patterns (“mutual inhibition” between probiotics
and “mutual promotion” between those significantly enriched
bacteria) in the two IBD datasets and the CRC dataset.

Here, the classification of the bacteria (Commensal, Pathogen,
and Probiotic) is provided by the literature (Magnusdottir et al.,
2017), which is shown in Supplementary Table S2. Some strains
in Bifidobacterium bifidum, which belong to the probiotics, were
identified as the most variable strains between the healthy and
disease. It is generally known that probiotics can improve human
health. A precise definition of probiotics has been proposed by
Laurent Verschuere (Verschuere et al., 2000). It was defined as a
live microbial adjunct which has a beneficial effect on the host by
modifying the host-associated or ambient microbial community,
by enhancing the host response toward disease, by improving
the quality of its ambient environment, or by ensuring improved
use of the feed or enhancing its nutritional value. Above all,
the most commonly purported benefits of the consumption of
probiotics is modulation of host immunity (Corthésy et al.,
2007). Because of these merits, the market for probiotics and
probiotic-containing commercial products is constantly growing
(Marco et al., 2006; Varankovich et al., 2015). However, a stable
microbial community cannot be achieved by a sudden increase in
nutrients due to exogenous feeding with probiotics (Verschuere
et al., 2000). And we report here for the first time that there
is a tendency of mutual restrain between the probiotic bacteria.
Therefore, it is very important to take the mutual interaction
of probiotics into consideration when develop probiotics or
“microbial based therapies.”

Frontiers in Microbiology | www.frontiersin.org 7 June 2019 | Volume 10 | Article 1205

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01205 June 2, 2019 Time: 12:14 # 8

Dai et al. Interaction Patterns of Gut Microbiota

With the growing recognition of the profound impacts of
gut microbiota on human health, it is urgent to understand
the molecular basis underlying the alterations of individual
species in this complex microbial ecosystem. Compared to the
undirected co-occurrence network, the metabolic dependency
network is directional and thus could provide mechanistic
insights into interspecies interactions. Numerous previous
studies have suggested that host genetic and environmental
factors can influence the diversity and composition of the gut
microbiota (Benson et al., 2010). Among the environmental
factors, dietary habits has proven to play a dominant role over
other possible variables such as geography, climate, sanitation,
hygiene, and ethnicity in shaping the gut microbiota (De Filippo
et al., 2010; Walker et al., 2011). Our results indicate that
at least in part, the alterations of the gut microbiota under
different healthy statuses of the hosts, could be attributed
to internal factors including species-species interactions of
the gut microbes.

Using metabolic interaction network based on pair-wise
metabolic dependencies, we found that unappreciated interaction
patterns of between-species metabolic interactions could underlie
alterations in gut microbiota during enteropathogenesis, and
between probiotics and other microbes. Our methods provided
a new framework for studying interactions in gut microbiome

and their roles in health and disease. Though carefully evaluated,
our results are still highly predictive and to be experimentally
validated in the future.
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