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Trypanosoma cruzi is the protozoan unicellular parasite that causes Chagas disease. It 
can be transmitted from infected mothers to their babies via the connatal route, thus 
being able to perpetuate even in the absence of Triatomine insect vectors. Chagas disease 
was originally endemic in Central and South America, but migration of infected women 
of childbearing age has spread the T. cruzi congenital infection to non-endemic areas like 
North America, Europe, Japan, and Australia. Currently, 7 million people are affected by 
this infection worldwide. This review focuses on the relevance of the T. cruzi parasite levels 
in different aspects of the congenital T. cruzi infection such as the mother-to-child 
transmission rate, the maternal and fetal immune response, and its impact on the diagnosis 
of infected newborns. Improvements in detection of this parasite, with tools that can 
be easily adapted to be used in remote rural areas, will make the early diagnosis of infected 
children possible, allowing a prompt trypanocidal treatment and avoiding the current loss 
of opportunities for the diagnosis of 100% of T. cruzi congenitally infected infants.

Keywords: Trypanosoma cruzi, mother-to-child transmission, parasitemia, infected pregnant women,  
congenitally infected infants, early diagnosis

EPIDEMIOLOGY OF THE CONNATAL CHAGAS DISEASE

The American trypanosomiasis, or Chagas disease, is caused by the protozoan parasite Trypanosoma 
cruzi, which affects about 6–7 million people worldwide, with most of the cases in Latin 
America (WHO | Chagas disease (American trypanosomiasis), 2019).

Given the great success in the control of Triatoma infestans, after which Brazil, Paraguay, 
Uruguay, and Chile were free of T. cruzi vectorial transmission, and appropriate control of 
blood supply that interrupted parasite infection through blood transfusion in most endemic 
countries, interruption of mother-to-child T. cruzi transmission became the new challenge in 
research and in public health policies. Around 9,000 babies are born to T. cruzi-infected 
mothers each year, and it is estimated that 1.1 million women of childbearing age are infected 
with T. cruzi in 21 countries from Mexico to Argentina, where this neglected tropical disease 
is endemic (WHO | Chagas disease (American trypanosomiasis), 2019).
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Currently, T. cruzi infection is globally distributed and has 
been increasingly detected in countries where vector transmission 
is absent, mainly due to migration of infected individuals from 
Latin America. Among the non-endemic countries, the United 
States is home to the largest number of Chagas infection cases, 
estimated to be  more than 300,000, of which a small number 
of cases were reported as autochthonous vector-borne transmission 
in the southern US (Bern et  al., 2011; Manne-Goehler et  al., 
2016), whereas the number of T. cruzi-infected people has 
exceeded 100,000  in Europe (Strasen et  al., 2013). It has had 
a smaller impact in Canada, Australia, and Japan (Buekens et al., 
2008; Imai et al., 2014; Jackson et al., 2014). There is a substantial 
proportion of T. cruzi-infected women of childbearing age and 
congenitally infected infants among the Latin American migrants 
(Soriano-Arandes et  al., 2016). Conversely, T. cruzi transmission 
through blood transfusion or organ transplants are of less 
epidemiological importance, since non-endemic countries with 
large immigrant populations have begun to intervene in blood-
borne T. cruzi transmission (Gascon et  al., 2010).

The outcome of congenital infection with T. cruzi is due 
to the result of complex interactions among the parasite, the 
placenta and the immune responses of the mother and the 
fetus, and studies about the mechanism of congenital infection 
are scarce. Understanding these relationships would help in 
successfully preventing congenital transmission of the parasite 
or facilitate better access to diagnosis and treatment of the 
newborns, which would eventually contribute to decreasing 
the number of cases of this disease around the world.

T. cruzi MOTHER-TO-CHILD 
TRANSMISSION

It has been reported that T. cruzi maternal-fetal transmission 
occurs in about 1–12% of the pregnancies, taking into account 
reports with the largest number of infected pregnant women 
studied in endemic areas (Russomando et  al., 1998; Torrico 
et  al., 2005; De Rissio et  al., 2010; Salas Clavijo et  al., 2012; 
Bua et  al., 2013). The rate of parasite transmission is variable 
in different countries: 6% in Argentina, 4.1% in Bolivia, and 
4.3% in Paraguay (Carlier and Truyens, 2015), 1.7% in Brazil 
(Martins-Melo et al., 2014), and between 0.8 and 4.08 in Mexico 
(Cardoso et  al., 2012; Montes-Rincón et  al., 2016), with an 
average rate of around 5% (Howard et  al., 2014). The wide 
variation in the reported rates is probably due to studies 
performed in different areas with and without vector transmission, 
with heterogeneous populations, experimental conditions and 
different diagnostic methods.

MATERNAL PARASITEMIA AND  
VECTOR EXPOSURE

The vertical transmission rate of T. cruzi is different in areas 
with or without the presence of insect vectors, as geographic 
regions where the disease is endemic are twice as likely to 
have congenital transmission, compared to the countries free 

of transmission vectors, 5.0 vs. 2.7% respectively, according to 
studies performed mainly in Spain (Howard et  al., 2014). It 
was intuitive that parasite load would be  enhanced under 
continuous vector exposure in endemic areas, increasing the 
risk of parasite congenital transmission (Dias et  al., 2002; 
Torrico et  al., 2006). However, it was also demonstrated that 
infected women living in houses under active vector control 
had significantly higher parasite loads compared to those women 
who lived in infested houses (Sánchez Negrette et  al., 2005; 
Rendell et  al., 2015). This is probably due to repeated parasite 
inoculations, which induce an enhanced immune response that 
helps to control the parasite levels (Rendell et  al., 2015).

MATERNAL PARASITEMIA AND RISK OF 
CONNATAL PARASITE TRANSMISSION

A correlation between high parasitemia in pregnant women 
and the risk of maternal-fetal T. cruzi transmission was observed 
when the blood from mothers of infected children showed a 
higher frequency of positive parasite hemocultures (Hermann 
et  al., 2004). A higher parasitemia was also observed in the 
blood buffy coats of women that transmitted the parasite to 
their offspring compared to those who did not (Salas et  al., 
2007; Brutus et al., 2010). A higher frequency of vertical parasite 
transmission was observed in T. cruzi acute infection, which 
is usually associated with an increased parasitemia (Moretti 
et  al., 2005). Among the studies that quantified parasite load 
in seropositive pregnant women, mothers of infected babies 
had significantly higher parasitemia, compared to the mothers 
of non-infected babies (Virreira et  al., 2007; Bern et  al., 2009; 
Bua et  al., 2012; Kaplinski et  al., 2015; Rendell et  al., 2015). 
When the parasitic load, quantified by quantitative polymerase 
chain reaction (qPCR), was correlated with the parasite 
transmission rate in 128  T. cruzi-infected pregnant women 
from Bolivia, researchers found that 31.3% of women with a 
high parasite load (35 Pe/mL or more) delivered infected 
children, compared to 15.4% in women with a moderate parasite 
load (between 1 and 34 Pe/mL), and 0% in women with a 
parasite load of less than 1 Pe/mL (Rendell et al., 2015). Similar 
results were obtained in another study in Spain, with migrants 
from Bolivia and Paraguay, where 31% of pregnant women 
with detectable T. cruzi DNA by conventional PCR delivered 
infected children, whereas a 0% parasite transmission rate was 
observed in babies born to chronic infected mothers with 
negative PCR findings (Murcia et  al., 2013).

A high T. cruzi parasite load was also detected in patients 
co-infected with HIV (Rosemberg et  al., 1992), and a 100% 
parasite transmission rate was observed in children born to 
mothers with reactivated Chagas disease, due to immunosuppression 
in four different studies (Freilij and Altcheh, 1995; 
Nisida et  al., 1999; Scapellato et  al., 2009; Agosti et  al., 2012).

Congenital T. cruzi infection cannot be  prevented during 
pregnancy as there are no studies on the possible teratogenic 
effects in pregnant women treated with trypanocidal drugs, 
benznidazole or nifurtimox. However, six different retrospective 
studies showed that no congenital infection was detected in 
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infants delivered from a total of 243 infected women that had 
been treated with benznidazole or nifurtimox prior to pregnancy, 
in childhood or even in early adulthood (Sosa-estani et al., 2009; 
Murcia et  al., 2013, 2017; Fabbro et  al., 2014; Moscatelli et  al., 
2015; Álvarez et  al., 2017).

Altogether, research in this field has strongly supported that 
parasitemia during pregnancy is a key factor for T. cruzi connatal 
transmission, considering that 100% of the infants were born 
infected with T. cruzi when their mothers displayed high 
parasitemia during pregnancy. On the other hand, 100% of 
the children born to drug-treated women or women with 
naturally very low or no parasitemia were uninfected (Murcia 
et  al., 2013; Rendell et  al., 2015). These studies reinforce the 
notion that decreasing the parasite load might be  beneficial 
in avoiding congenital infection, and supports the idea that 
either a specific trypanocidal treatment or a possible 
preconceptional therapeutic vaccine with T. cruzi recombinant 
proteins in near future (Dumonteil et al., 2019) should be offered 
to women of childbearing age who could potentially transmit 
the infection to their babies.

PARASITEMIA AND MATERNAL  
IMMUNE RESPONSE

Interferon-gamma (IFN-γ) and tumor necrosis factor (ΤΝF) 
are key mediators that control T. cruzi infection. IFN-γ 
activates monocytes/macrophages and stimulates, in synergy 
with TNF-α, the generation of nitric oxide which kills the 
parasite (Carlier and Truyens, 2015).

Regarding the maternal immune response during pregnancy, 
it has been observed that mothers that gave birth to infected 
children have decreased plasma levels of TNF-α (Cardoni et al., 
2004; García et al., 2008) and moderately decreased circulating 
levels of soluble TNF receptor 1 (sTNF-R1), compared to 
mothers of uninfected children. Soluble TNF receptors 
downregulate the biological activity of TNF-α by competing 
with its membrane receptors (García et  al., 2008).

A decrease in production of IFN-γ, in response to parasite 
antigens, was found in the blood cells derived from the mothers 
of infected children before and after delivery. However, similar 
levels of intracellular IFN-γ, within CD3+ cells derived from 
both groups of infected mothers, were found after polyclonal 
activation, indicating that they have a comparable ability to 
produce IFN-γ. Mothers that gave birth to infected children 
also showed decreased percentages of activated T lymphocytes 
and monocytes, compared to those who did not transmit the 
infection to their offspring (Hermann et  al., 2004).

Another study that compared cytokine production in  
T. cruzi-infected women that gave birth to uninfected children 
showed that the mothers with detectable parasitemia  
presented increased levels of IFN-γ and TNF-α in peripheral, 
placental and cord blood (Cuna et  al., 2009), compared to 
infected mothers with undetectable parasitemia. These results 
indicate that, when a higher parasite load is associated with 
a more robust but pro-inflammatory response, there is no 
congenital transmission.

Altogether, these findings indicate that the ability to control 
the infection through an appropriate innate and adaptive immune 
response against T. cruzi to maintain a low parasite load in 
mothers is associated with lower rates of vertical transmission. 
Alterations in the control of the inflammatory response may 
have direct consequences on the congenital transmission and 
on the children’s immune response. Taking into account the 
challenges related to congenital Chagas diagnosis, the identification 
of immunological mediators could be  very useful for the 
development of new biomarkers of vertical transmission risk.

PARASITEMIA AND FETAL  
IMMUNE RESPONSE

T. cruzi infection in pregnant women can induce the activation 
of T lymphocytes in the fetus in utero, as supported by the 
production of proinflammatory cytokines like interleukin (IL) 
1β, IL-6 and TNF-α, in response to T. cruzi antigens in uninfected 
infants born to T. cruzi-infected mothers (Vekemans et al., 2000; 
Hermann et  al., 2002; García et  al., 2008).

The study of serum cytokines showed a distinct immune 
profile in congenitally infected infants, with a vigorous innate 
immune response skewed towards a Th17 profile. Decreased 
levels of IFN-γ, but increased levels of IL-17A, monokine 
induced by gamma interferon (MIG) and monocyte 
chemoattractant protein-1 (MCP-1), were revealed as early 
predictors of T. cruzi infection in the presence of either high 
or low parasitemia, while T. cruzi-infected infants also displayed 
increased levels of IL-6 and IL-17F, but only in the presence 
of low parasitemia (Volta et  al., 2016).

These demonstrations of a distinct and polarized profile of 
cytokines and chemokines in the circulation of infants born to 
T. cruzi-infected mothers, and its correlation with the newborn 
parasite load, reinforce the role of the immune system in 
restricting the severity of this parasitic infection, preventing the 
morbidity and mortality of a possible congenital Chagas disease.

PARASITE DIVERSITY AND THE 
PLACENTAL BARRIER

T. cruzi parasites display genetic differences that have been defined 
by molecular markers and can be  differentiated into six discrete 
typing units or DTUs (TcI to TcVI), with a localized geographical 
distribution (Zingales et  al., 2012). Although efforts have been 
made to correlate the different T. cruzi DTUs with parasite 
virulence or clinical manifestations in humans, there has not 
been any clear association so far (Del Puerto et  al., 2010).

T. cruzi parasites from almost all DTUs, except TcIV, have 
been found in babies born to infected mothers. TcV is the 
predominant DTU reported in the congenital cases in the 
Southern cone countries of Latin America (Burgos et al., 2007; 
Virreira et  al., 2007; Corrales et  al., 2009). In our laboratory, 
38 parasite isolates were obtained from 382  T. cruzi-infected 
pregnant women, which represents 10% positive hemocultures 
in this group. All of the isolated parasites were identified as 
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TcV, among which only six belonged to mothers who have 
gave birth to infected children (Bua et al., 2012); thus, we were 
not able to associate any parasite DTU with connatal transmission. 
Nevertheless, it would be  interesting to study the genetic 
differences between parasites isolated from mothers who did 
not transmit the infection in two or even three different 
pregnancies and those parasites isolated from infected children 
(Bua et  al., 2013), looking at other biomarkers that would 
probably help in discriminating the divergences in virulence 
and pathogenicity under the DTU classification.

Many studies have tried to mimic the human maternal-fetal 
T. cruzi transmission in experimental models with rare offspring 
infections (Carlier and Truyens, 2015), but some studies with 
TcI, TcII and TcVI strains revealed that infected pups were 
obtained only from acutely infected mice with Y and Tulahuen 
strains which were TcII and TcVI, respectively (Cencig et  al., 
2013). This suggests that the connatal transmission in 
experimental models were related more to mice parasitemia 
than DTU differences. It was possible to obtain a congenital 
transmission rate of 3.7% in chronically infected mice with 
the T. cruzi strain RA (TcVI), although maternal parasitemia 
in those mice was significantly higher than the mice infected 
with K98 clone/TcI, from which no congenitally infected offspring 
were obtained (Solana et  al., 2002).

Another interesting study on the genetic response of the 
placenta in chronic experimental infections in mice compared 
the virulence of T. cruzi K98 clone with an isolated parasite 
from a congenitally infected child (VD/TcVI), and demonstrated 
that the murine placental infection with the VD isolated 
parasite was associated with upregulation of genes related to 
components of the innate immune system and IFN-γ. Even 
so, no congenital transmission was observed in pups born 
to infected mice with VD nor K98 parasites (Juiz et  al., 
2017). The VD/TcVI parasite proved to be  more infective 
in the human trophoblast-derived cell line BeWo compared 
to the T. cruzi Y strain/TcII (Medina et  al., 2018), probably 
due to a higher virulence and placental tropism, as it was 
isolated from a human case of congenital infection (Risso 
et  al., 2004). Nevertheless, no significantly different infection 
levels could be  observed on placental explants with a  
T. cruzi isolated from a congenitally-infected newborn (Lucky, 
TcII/VI) compared to the Tulahuen strain (TcVI), although 
the isolated parasite Lucky showed a greater survival rate in 
a deleterious placental milieu (Triquell et  al., 2009). It was 
demonstrated that a high inoculum of these two parasites 
resulted in increased infection of placental explants, producing 
structural and physiological changes through nitric oxide 
synthase and oxidative-nitrosative stress of the placental barrier 
(Triquell et  al., 2018).

The human placenta forms an anatomical barrier between 
the maternal blood and fetal tissue, and when infected by T. cruzi, 
a reorganization of the extracellular matrix occurs (Duaso et  al., 
2012), and a differential expression of pro-inflammatory and 
immune-modulating cytokines has been observed in infected 
human placental explants (Castillo et  al., 2018), confirming the 
important role of this organ in avoiding parasite infectivity 
(Liempi et  al., 2014; Díaz-Luján et  al., 2016; Juiz et  al., 2017).

PARASITEMIA AND DIAGNOSIS IN 
CONGENITALLY INFECTED INFANTS

Since most T. cruzi-infected pregnant women and children are 
asymptomatic, this parasite infection can go undetected. 
Additionally, there is a current under-diagnosis of this infection 
due to losses of opportunities in the prenatal care and proper 
child follow-up by the health system surveillance programs 
(Carlier et  al., 2015).

The diagnosis of T. cruzi congenitally infected children under 
8–10  months of age relies primarily on the detection of the 
parasite, usually live parasites in blood by microscopic methods, 
as specific antibodies are usually transferred by their seropositive 
mothers. Only when parasitological assays fail to detect the 
infection are infants required to be  monitored over time for 
the detection of parasite-specific antibodies, which confirm 
additional cases of T. cruzi infection when maternal antibodies 
disappear (De Rissio et  al., 2010).

In most of the Latin American countries, an early diagnosis 
of infants born to T. cruzi-infected pregnant women relies on 
the direct examination of the buffy coat from fresh blood samples 
collected in microhematocrit heparinized tubes or microtubes. 
This micromethod has limited analytical sensitivity (40–50 parasites/
mL) and strongly depends on trained operators (Freilij and Altcheh, 
1995; De Rissio et  al., 2010), due to the fact that this method 
needs a minimal 30  min of microscopic observation per sample. 
Since the micromethod only detects 40–60% of congenitally infected 
newborns, it is necessary to perform additional serological tests 
at 8–10  months of age, a period in which around 40–60% of 
the children do not complete the follow-up for the final diagnosis 
of this infection (De Rissio et  al., 2010; Bua et  al., 2013).

MOLECULAR APPROACHES FOR THE 
PARASITOLOGICAL DIAGNOSIS OF  
THE CONNATAL T. cruzi INFECTION

T. cruzi nucleic acid amplification by PCR has been utilized 
since 1998 (Russomando et  al., 1998) for the detection of  
T. cruzi in congenitally infected babies, offering a higher sensitivity 
and specificity than parasitological methods involving direct 
microscopic examination of blood buffy coat samples (Schijman 
et al., 2003; Virreira et al., 2003; Mora et al., 2005). Later, qPCR 
technology was developed (Piron et  al., 2007; Virreira et  al., 
2007; Duffy et  al., 2009, 2013; Ramírez et  al., 2015) and was 
able to detect 0.85 or 0.43 parasite equivalents per mL (Pe/mL) 
of satellite DNA and kinetoplastid DNA, respectively, providing 
more sensitivity than the conventional PCR technique (Cura 
et  al., 2017). qPCR emerged as a potential tool for an accurate 
and early diagnosis of congenital T. cruzi infection (Virreira 
et  al., 2007; Bua et  al., 2013). However, a positive amplification 
of parasitic DNA in newborns could be ambiguously interpreted 
as a result of maternal parasite DNA debris not related to the 
passage of live parasites (Virreira et  al., 2007), and thus for a 
positive DNA amplification in babies close to birth it would 
not be  confirmative of parasite infection (Carlier et  al., 2015). 
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This represents a disadvantage over microscopic detection methods, 
which rely on the observation of viable and motile parasites 
(Freilij et  al., 1983). To avoid misinterpretations, PCR diagnosis 
would be  more reliable at 1  month after delivery (Bua et  al., 
2013) or for the confirmation of diagnosis with a subsequent 
blood sample (Murcia et  al., 2017).

It is important to highlight that qPCR requires highly equipped 
laboratories and robust quality controls, frequently found in urban 
areas or reference health centers but rarely available in maternities 
or primary point of care units in endemic areas (Porrás et  al., 
2015; Messenger and Bern, 2018; Picado et  al., 2018). In fact, 
PCR is not included as a tool for diagnosis of congenital  
T. cruzi infection in the Latin American guidelines, with the 
exception of Chile, although its use is sometimes recommended 
(Picado et  al., 2018). In Argentina, this molecular technique is 
in the process of being transferred to different laboratories of 
the national public health network (Cura et  al., 2017).

Other molecular methods that could be  implemented for the 
T. cruzi diagnosis are the techniques based on isothermal 
amplification of DNA. These methods overcome the needs for 
specialized PCR equipment and have been proven to amplify 
the T. cruzi DNA successfully. Loop-mediated isothermal 
amplification (LAMP) can be performed at a constant temperature 
of 60–65°C with a simple heat-block (Besuschio et  al., 2017; 
Rivero et al., 2017), and the recombinase polymerase amplification 
(RPA) can be  run at 37–42°C (Castellanos-Gonzalez et al., 2018) 
with a sensitivity similar to that of the quantitative PCR amplification 
(Besuschio et  al., 2017; Jimenez-Coello et  al., 2018). These new 
molecular approaches await the necessary standardization and 
validation, but, as with all molecular techniques, the main issue 
is that parasite DNA amplification cannot be  performed without 
purification of DNA from patient blood samples, which cannot 
be performed easily in health centers in rural areas, as it requires 
experienced operators, infrastructure and the necessary quality 
controls recommended by good practice guidelines.

PARASITEMIA IN T. cruzi  
INFECTED-CHILDREN AT A  
1-YEAR FOLLOW-UP STUDY

Parasitemia levels in infants congenitally infected with T. cruzi 
are significantly higher at birth than in their infected mothers, 
who are usually in the chronic phase of this infection (Schijman 
et  al., 2003; Virreira et  al., 2007; Bern et  al., 2009; Bua et  al., 
2012), and no correlation has been observed between the parasitemia 
of pregnant women and their babies (Bua et  al., 2012).

Parasite load was quantified by qPCR in 51 infected babies 
born to T. cruzi-infected mothers in a retrospective study. These 
babies were grouped according to the time and method in 
which congenital infection was diagnosed during 1-year follow-up 
after delivery. A group of 19 newborns diagnosed by micromethod 
at 1 month showed the highest median parasitemia, around 
1,700 Pe/mL. The infected infants that came back for a second 
parasitological diagnosis at 6  months of age showed a median 
parasitemia of around 20 Pe/mL in the sample obtained at  

1 month of age, which was under the threshold of the 
micromethod sensitivity. This group of 10 infants could 
be  diagnosed by microscopy at 6  months of age because 
parasitemia increased up to 500 Pe/mL. In the infants (22/51) 
negative for the first and second parasitological control, who 
required serological diagnosis at around 1 year of age, the 
median parasite load was 5,800 and 20 Pe/mL in the blood 
samples obtained at 1, 6, and 12 months after delivery, respectively. 
This study helped to understand the differences among diverse 
groups of T. cruzi congenitally infected children during 1 year 
follow-up in centers where molecular techniques are not available 
(Bua et  al., 2013). An infected child that is not diagnosed at 
8–10  months after delivery and not treated will experience a 
drastic decrease of parasitemia, indicating the transition from 
the acute phase to the chronic phase of the T. cruzi infection, 
and most importantly, will be  excluded from the possibility 
of being treated with trypanocidal drugs.

Although DNA amplification has shown great sensitivity for 
the detection of cases of T. cruzi mother-to-child transmission, 
qPCR does not detect 100% of congenital cases, and in case 
of negative PCR findings, it is necessary to detect the congenital 
infection by serology at 8–10  months of age. Quantitative PCR 
was able to detect T. cruzi infection in 50/51 babies in the first 
control visit, and we  did not observe any false positive PCR 
in the babies diagnosed by micromethod at 1 month after delivery 
(Bua et  al., 2013). The only T. cruzi-infected infant that could 
not be  diagnosed by qPCR at 20  days nor at 6  months of age 
was infected by a TcI T. cruzi parasite that was isolated by 
hemoculture at 7  months of age, a period in which the specific 
anti-T. cruzi serology was also positive (Volta et  al., 2018).

SEARCH OF BIOMARKERS FOR THE 
EARLY SEROLOGICAL DIAGNOSIS OF 
THE CONNATAL T. cruzi INFECTION

As mentioned, the detection of anti-T. cruzi specific antibodies 
in infants born to seropositive mothers can be performed when 
they are 8–10 months of age, when maternal passively transferred 
antibodies are no longer detectable (Moya et  al., 1989). A 
positive serological result at this time is a conclusive diagnosis 
for the T. cruzi congenital infection in infants where previous 
parasitological methods failed to detect the parasite. 
Unfortunately, only 40–60% of congenitally infected children 
complete the required 1-year follow-up (Sosa-Estani, 2005; De 
Rissio et  al., 2010). Efforts are being made to find specific 
serological markers to diagnose this infection at an earlier 
stage and overcome the loss of opportunities to detect 100% 
of the T. cruzi infected children as soon as they are born.

The T. cruzi Shed Acute Phase Antigen (SAPA) (Affranchino 
et al., 1989) proved to be a reliable and highly sensitive marker 
for the early parasite detection of congenital T. cruzi infection 
(Reyes et al., 1990). An ELISA test available in Paraguay detects 
anti-SAPA IgG antibodies in children born to infected mothers 
at 3  months of age (Russomando et  al., 2010). The anti-SAPA 
IgG levels in binomial blood samples from seropositive mothers 
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and their babies also allowed for diagnosis in 90.5% of the 
T. cruzi-infected children at around 1 month of age (Volta 
et  al., 2015) by subtracting the anti-SAPA OD value of the 
mother from the one in the child (Mallimaci et  al., 2010). 
We  observed a positive correlation between parasitemia levels 
in mothers and infants, evaluated by qPCR, and the anti-SAPA 
IgG antibody titers detected by ELISA, which more likely 
accounts for the secretion of SAPA antigen by the trypomastigotes 
in the bloodstream (Volta et  al., 2015).

Trypomastigote secreted/excreted (TESA) protein bands of 
120–200  kDa were blotted on membranes (Umezawa et  al., 
1996) and recognized by anti-SAPA IgM antibodies in acute 
and congenital T. cruzi-infected children, but with lower 
sensitivity than qPCR (Messenger et al., 2017). Western blotting 
with TESA antigen helped discriminate the chronic maternal 
infection by detecting IgG bound to TESA (a single 150–160 kDa 
band) from the blood of newborns with acute infection, 
highlighting the presence of four to six SAPA-specific protein 
bands between 120 and 200 kDa on the IgM TESA-blot (Noazin 
et  al., 2018). Although the sensitivity of the anti-SAPA IgM 
on TESA blots reached 80% in T. cruzi- infected newborns 
(Noazin et al., 2018), the immunodetection of membrane strips 
has several issues of reproducibility and standardization in 
care units outside urban areas (Messenger and Bern, 2018).

The SAPA antigen has been considered as a promising 
biomarker for the diagnosis of T. cruzi infection, and some 
new approaches for the development of diagnostic assays which 
include detection of SAPA along with other antigenic 
determinants in single multiplex assays, to confirm the T. cruzi 
infection in humans, are being developed (Granjon et al., 2016). 
SAPA has also been included in the design of chimeric molecules, 
named as CP1 and CP3, which were sensitive enough to 
circumvent inconclusive diagnosis in subjects with serodiscordant 
findings (Peverengo et al., 2018). These multi-epitope constructs 
are currently being tested for an improved detection of congenital 
infected newborns (Dr. Ivan Marcipar, personal communication).

Another recent development was to span T. cruzi linear B-cell 
epitopes and design antigenic short peptides to achieve an accurate 
diagnosis of this infection in chronic human samples by ELISA 
(Mucci et  al., 2017). The next step is to extend this approach 
with the aim of an early accurate diagnosis for congenital infection 
(Dr. Fernán Agüero, personal communication).

In summary, the current search for highly sensitive serological 
diagnostic tests based on multiple antigenic determinants in 
multiplex assays could offer the possibility to detect  
T. cruzi-infected children born to seropositive women. A prompt 
diagnosis may prevent dropout during the 1-year serological 
follow-up after delivery required for the accurate diagnosis of 
T. cruzi infection. Ideally, serological diagnosis for early parasite 
detection in newborns could be  available as a lateral flow 

immunochromatographic test, with an affordable cost for public 
health systems, easily performed by operators with minimal 
training, without the need of any specialized and costly equipment, 
no reagent preparations, with immediate results and easy 
adaptability for use in primary health care facilities,  
public hospitals or maternities in endemic area. As established 
by WHO, T. cruzi infection is curable if treatment is initiated 
soon after infection (Carlier et al., 2011; WHO | Chagas disease 
(American trypanosomiasis), 2019). Many reports have shown 
that benznidazole and nifurtimox treatments are well tolerated 
in children and resulted in undetectable parasite load (Russomando 
et  al., 1998; Blanco et  al., 2000; Schijman et  al., 2003; 
Altcheh et  al., 2005; Luquetti et  al., 2005).

Infants who fail to complete the required follow-up period 
for parasite diagnosis will be  deprived of access to immediate 
drug treatment and parasite clearance and will become T. cruzi-
infected adults. It is crucial to develop improved, rapid and 
simple diagnostic methods for a timely detection of T. cruzi 
congenital infection, soon after birth and before the newborn 
leaves the care unit, especially in rural areas where access to 
the health system can be  limited.

CONCLUSION

Mother-to-child transmission of T. cruzi infection represents 
a challenge in controlling parasite dissemination in endemic 
and non-endemic regions. Parasitemia in infected women plays 
a key role in congenital Chagas outcome, as it directly affects 
transmission rate and maternal and fetal protective immune 
response against the parasite. In fact, decreasing parasite load 
by trypanocidal treatment administered to women of childbearing 
age proved to be highly efficient in avoiding congenital infection. 
Parasite levels in congenitally infected newborns have a direct 
impact on their diagnosis, so it is crucial to develop improved 
diagnostic methods to facilitate access to treatment.
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