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Plants and their pathogens are engaged in continuous evolutionary battles, with
pathogens evolving to circumvent plant defense mechanisms and plants responding
through enhanced protection to prevent or mitigate damage induced by pathogen
attack. Managed ecosystems are composed of genetically identical populations of crop
plants with few changes from year to year. These environments are highly conducive to
the emergence and dissemination of pathogens and they exert selective pressure for
both qualitative virulence factors responsible for fungal pathogenicity, and quantitative
traits linked to pathogen fitness, such as aggressiveness. In this study, we used
a comparative genome-wide approach to investigate the genomic basis underlying
the pathogenicity and aggressiveness of the fungal coffee pathogen Colletotrichum
kahawae infecting green coffee berries. The pathogenicity was investigated by
comparing genomic variation between C. kahawae and its non-pathogenic sibling
species, while the aggressiveness was studied by a genome-wide association approach
with groups of isolates with different phenotypic profiles. High genetic differentiation
was observed between C. kahawae and the most closely related species with 5,560
diagnostic SNPs identified, in which a significant enrichment of non-synonymous
mutations was detected. Functional annotation of these non-synonymous mutations
revealed a significant enrichment mainly in two gene ontology categories, “oxidation–
reduction process” and “integral component of membrane.” Finally, the annotation
of several genes potentially under-selection revealed that C. kahawae’s pathogenicity
may be a complex biological process, in which important biological functions, such
as, detoxification and transport, regulation of host and pathogen gene expression,
and signaling are involved. On the other hand, the genome-wide association analyses
for aggressiveness were able to identify 10 SNPs and 15 SNPs of small effect in
single and multi-association analysis, respectively, from which 7 were common, giving
in total 18 SNPs potentially associated. The annotation of these genomic regions
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allowed the identification of four candidate genes encoding F-box domain-containing,
nitrosoguanidine resistance, Fungal specific transcription factor domain-containing and
C6 transcription factor that could be associated with aggressiveness. This study shed
light, for the first time, on the genetic mechanisms of C. kahawae host specialization.

Keywords: genomics, coffee, host–pathogen interaction, coffee berry disease, host specialization, RAD-seq

INTRODUCTION

Plant diseases have become one of the most challenging threats
to modern agriculture, not only for their huge economic impact
caused by severe production losses, but also due to a global
food security problem. Fungi are among the most devastating
plant pathogens given their ability to overcome plant defenses
and exploit the host’s resources for their own reproduction
and dispersion (Möller and Stukenbrock, 2017). In fact, plants
and their pathogens are involved in a continuous battle, with
pathogens evolving to suppress plant defenses and plants
responding through enhanced protection mechanisms to reduce
or suppress pathogen damage, leading to a co-evolutionary
dynamics that shapes the genomic landscape of both plants
and pathogens (Zhan et al., 2014; Möller and Stukenbrock,
2017). In natural systems, this co-evolution is tempered by host
and environmental heterogeneity as well as pathogen trade-offs
between pathogenicity and several life style traits (Zhan et al.,
2014, 2015). By contrast, in managed ecosystems, crops evolve
through artificial selection, in which agriculturally desired traits
are favored and the genetic heterogeneity of the host is severely
reduced (Möller and Stukenbrock, 2017). In such homogeneous
environments, the pathogen has a selective advantage, and newly
pathogenic strains can quickly increase in frequency and spread
across the fields (Zhan et al., 2014). The genetic homogeneity
of these environments also means that pathogens spend more
time in a single selective environment when compared to the
wild system. Therefore, it is likely that the host exerts a selective
pressure for quantitative traits linked to pathogen fitness, such
as aggressiveness, as they do for qualitative virulence factors
responsible for fungal pathogenicity (Elad and Pertot, 2014).
Currently, the majority of plant pathogen studies are focused on
the ability of the pathogen to infect the host (pathogenicity), and
only few studies have focused their attention on the quantitative
aspects of host–pathogen interactions (aggressiveness). However,
it has been argued that it is the combination of these two
approaches that will guide the formulation of sustainable disease
management strategies that can minimize disease epidemics
while simultaneously reduce pressure on pathogens to evolve
and increase in pathogenicity and aggressiveness (Pariaud et al.,
2009; Zhan et al., 2014, 2015). From an evolutionary perspective,
it is well-known that the host is the strongest driver of pathogen
evolution, as a successful infection is required for pathogen
reproduction and dispersal. In this sense, genes related to
pathogenicity are expected to be under strong selective pressure,
and consequently, genomic signatures of selection can be used to
identify candidate genes involved in host–pathogen interactions
(Möller and Stukenbrock, 2017). However, the potential of

pathogens to evolve in response to host selective pressures can
also be constrained by trade-offs in quantitative traits, namely the
rate of infection progression. In fact, the existence of phenotypic
variation in aggressiveness is a key factor necessary for pathogen
adaptation (Delmas et al., 2016). Hence, aggressiveness can be
assessed by evaluating multiple phenotypic quantitative traits of
the pathogen directly linked to its fitness. These traits are likely to
be also under selection, resulting in differential adaptive patterns
according to the environment (Pariaud et al., 2009).

Nowadays, thanks to the development of high-throughput
sequencing (HTS) a new era in plant pathology has emerged,
making possible to unveil the genetic mechanisms underlying the
pathogenicity and aggressiveness of pathogens (Byers et al., 2016;
Grünwald et al., 2016). Genome scans for detecting genomic
regions under positive selection can be used to identify genes
involved in adaptation, both within and between closely related
species, while genome-wide association studies GWAS can
identify genomic regions associated with a particular phenotype
(Byers et al., 2016; Grünwald et al., 2016). Thus, a precise and
reproducible measure of the relevant phenotype is the major
limitation of GWAS (Talas et al., 2016). Both these approaches
have been used in fungi to investigate host adaption (Connelly
and Akey, 2012; Dalman et al., 2013; Palma-Guerrero et al., 2013;
Gao et al., 2016; Talas et al., 2016), but their application is still
in its infancy compared to model plant and animal systems.
Moreover, the genes identified as putatively under selection or
associated with a phenotype are only candidates that require
further experimental testing to determine how they affect the
phenotype (Grünwald et al., 2016).

Colletotrichum kahawae Waller & Bridge is a highly aggressive
and specialized fungal pathogen, causing Coffee Berry Disease
(CBD) in Arabica coffee in Africa. This pathogen emerged within
the C. gloeosporioides complex, as a specialist pathogen with
the ability to infect green coffee berries, an ecological niche
previously unoccupied by other fungi (Silva et al., 2012). CBD
can lead to severe production losses that reach up to 80% in
extremely wet years, if no control measures are applied (Silva
et al., 2006; Loureiro et al., 2012; Kebati et al., 2016; Alemu
et al., 2017), and, for that reason, C. kahawae was ranked as
a quarantine pathogen and considered as a biological weapon
(Kebati et al., 2016; Batista et al., 2017). Consequently, the
pathogen’s potential dispersal to other Arabica coffee cultivation
regions is greatly feared, particularly to those at higher altitudes
in Latin America and Asia. So far, no absolute effective control
measure has been developed but some Coffea spp. genotypes
show high levels of resistance (Várzea et al., 2002). C. kahawae
has also been described as a pathogen with a low genetic
variability, clearly structured into three clonal and completely
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differentiated populations (Angolan, Cameroonian, and East
African) (Silva et al., 2012; Vieira et al., 2018), and two
clonal lineages within the Angolan population (Vieira et al.,
2019). Furthermore, significant differences in aggressiveness
of isolates were consistently observed, regardless of their
geographic origin (Bridge et al., 2008; Loureiro et al., 2011;
Pires et al., 2016). Recently, Vieira et al. (2019) performed
a comprehensive analysis and characterization of C. kahawae
aggressiveness trait, establishing three main aggressiveness classes
(high, moderate, and low). By providing consistent phenotypic
data on aggressiveness, this study brought the opportunity to
perform a GWAS for this trait in this pathogen.

Up to now, and in contrast with other Colletotrichum species,
little is still known about the adaptive genetic variation of
C. kahawae and no reports have been made on candidate genes
underlying its pathogenicity and/or aggressiveness. Therefore,
the current work aims to: (i) understand the genomic basis
underlying the pathogenic behavior of C. kahawae on green coffee
berries using a genomic comparative analysis with closely related
non-pathogenic fungi, and (ii) identify the genomic regions
potentially associated with aggressiveness through a GWAS.
These results will contribute to better understand the genomic
basis underlying these two complex processes, which may allow
the establishment of more evidence-based and effective control
measures in the future.

MATERIALS AND METHODS

Sampling, DNA Isolation, and
RAD – Sequencing
In this work, 30 C. kahawae isolates (CIFC/ISA/ULisboa
collection) representative of the three genetic groups described
by Silva et al. (2012), and covering almost all regions where
the disease exists (10 African countries) were used, as well
as 10 isolates from non-pathogenic sibling species collected
from different hosts and several countries across the world
(Supplementary Table S1). According to Weir et al. (2012), these
latter isolates belong to three different species [G. cingulata “f.sp.
camelliae,” C. aotearoa and C. kahawae subsp. ciggaro (Cc)].
However, in this study, the two C. kahawae subspecies sensu
Weir et al. (2012) are accepted as cryptic species as suggested
by Batista et al. (2017) and described accordingly. Culturing
and DNA extraction from fungal isolates were performed
as previously described by Silva et al. (2012), with slight
modifications. Briefly, isolates were grown in liquid media
containing 3% malt extract and 0.5% peptone, under a photo-
period of 12 h at 22◦C. DNA was extracted from freeze dried
mycelia with the Sigma Plant/Fungi DNA isolation kit (Sigma-
Aldrich, Darmstadt, Germany), according to the manufacturer’s
instructions. Genomic DNA quality was evaluated by agarose
gel and quantified using a Thermo Scientific (Waltham, MA,
United States) Nanodrop ND-1000 spectrophotometer. Three
micrograms of high-quality genomic DNA per sample were
sent to Floragenex, Inc. (Portland, OR, United States) for
RAD library preparation and sequencing. Libraries with sample-
specific barcode sequences [8 nucleotide (nt)] were produced

from DNA digested with PstI. RAD-seq pools were 100 bp single-
end-sequenced in a lane of an Illumina HiSeq 2000 machine. The
sequence data was deposited in the European Nucleotide Archive
under Accession Nos. PRJEB26929 and PRJEB28813.

RADseq Quality Filtering and SNP Calling
Sequence reads were de-multiplexed and quality filtered with the
process_radtags program from the package Stacks v1.20 (Catchen
et al., 2013). Reads with uncalled bases or distance to barcodes
higher than 1 were removed. Base calls with a Phred score under
20 were converted to Ns and reads containing more than 4 Ns
were discarded. Barcodes and Illumina adapters were excluded
from each read and length was truncated to 85 bp (-t 85).
Additional filtering, and de novo assembly within and between
individuals to identify loci was performed using the program
PyRAD v3.0.5 (Eaton, 2014). This software was chosen due to
its ability to handle indels when clustering sequence reads into
orthologous loci. In this study, several clustering parameters
were tested in order to minimize the number of missing
data and maximize the number of phylogenetic informative
sites (Supplementary Table S2). The sequence variants [single
nucleotide polymorphisms (SNPs)] were then exported into a
variant call format (VCF) and the “stacks” information exported
as a loci file. Handling and exploration of alignment data matrices
were performed using TriFusion v1.0.0 software1.

Phylogenetic Analysis
To assess phylogenetic relationships among the isolates we used
a single concatenated alignment that includes loci with SNPs
represented in more than 80% of the isolates and a minor allele
frequency (MAF) above 5% (total_dataset). Concatenation and
conversion of the alignment matrices to the appropriate formats
was performed with TriFusion. A maximum likelihood analysis
was conducted with RAxML v. 8. 2 (Stamatakis, 2014) on the
CIPRES Portal (Miller et al., 2010), using the general time-
reversible (GTR) model of nucleotide substitution with the CAT
distributed rate heterogeneity. Non-parametric bootstrapping
was performed with the fast bootstrap algorithm of RAxML with
1000 replicates using the GTRCAT substitution model. Bayesian
inference was performed using MrBayes v3.2.6 (Ronquist et al.,
2012) with the GTR + 0 model of sequence evolution. The
best-fitting model was determined according to the Akaike
information criterion (Posada and Buckley, 2004). Posterior
probabilities were generated from 1 × 107 generations, sampling
at every 1000th iteration, and the analysis was replicated three
times with one cold and three incrementally heated Metropolis-
coupled Monte Carlo Markov chains, starting from random
trees. The achievement of the stationary phase and mixing was
checked for all parameters using Tracer V1.4, and 1 × 106

generations (corresponding to 10% of the total of generations)
were discarded as burn-in. Trees from different runs were
combined using Logcombiner and summarized in a majority rule
50% consensus tree. All trees were visualized in FigTree2 and

1https://github.com/OdiogoSilva/TriFusion
2http://tree.bio.ed.ac.uk/software/figtree/
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FIGURE 1 | Schematic representation of the datasets used for the analyses conducted in this study. (A) total_dataset comprising all the detected SNPs;
(B) filtered_dataset comprising the diagnostic SNPs between pathogenic and non-pathogenic groups. The three Colletotrichum kahawae populations were named
as Ang (Angolan), Cam (Cameroonian), and East (East African). (C) ns_filtered_dataset comprising all the loci with non-synonymous SNPs within the diagnostic
SNPs; (D) ps_filtered_dataset comprising all the genes potentially under positive selection.

further edited in Inkscape3. Regardless of the dataset under study
(datasets generated with different PyRAD parameters), a similar
phylogenetic tree was reconstructed.

Detection of Genomic Signatures of
Positive Selection Related to the
Pathogenicity of C. kahawae
In this study, pathogenic (C. kahawae) and non-pathogenic
fungi (G. cingulata “f.sp. camelliae,” C. aotearoa and Cc) to
Arabica coffee were analyzed in order to better understand
the pathogenicity of C. kahawae. The initial dataset named as
total_dataset comprise all the genetic variation observed within
the species (Figure 1A). In addition, a second dataset named
filtered_dataset was constructed using the diagnostic SNPs, i.e.,
the SNPs completely differentiated between pathogenic and
non-pathogenic groups, which were selected with the following
sequential filters: (i) by calculating the distribution of SNPs Fst
values using VCFTOOLS v0.1.14 (Danecek et al., 2011) and
Arlequin v3.5.2 (Excoffier and Lischer, 2010) and choosing the
SNPs with a Fst value equal to 1; (ii) by choosing the SNPs that
were conserved across all C. kahawae isolates and completely
differentiated from at least one of the non-pathogenic fungi
(Figure 1B). Both datasets, filtered_dataset and total_dataset,
were mapped against the genome of the most closely related
species within the Colletotrichum genus [C. fruticola (previously
mis-identified) as C. gloeosporioides Nara gc5 (Baroncelli et al.,
2016), accession_number (GCA_000319635.1) and reference
(SAMN02981487)]. A copy of the assembled scaffolds was
obtained from the Ensembl Genome Browser4. All loci were
then aligned to the reference genome using Bowtie 2.2.1.0
(Langmead and Salzberg, 2012) with the “–very-sensitive-
local default” setting. Alignments were sorted with SAMTools
0.1.19 (Li et al., 2009) and the loci that aligned to more than
one location were removed from the analysis. The SNPs
location, annotation, and classification of type of mutation
were assessed with a custom-made python script available on

3https://inkscape.org/pt/
4useast.ensembl.org/index.html

https://github.com/yanavieira/Mapping_SNPs_Genome.git. At
this point an additional filtration step was incorporated and the
non-synonymous mutations identified in the filtered_dataset
were used to create a new dataset named ns_filtered_dataset
(Figure 1C). The consensus of the RADseq loci of the three
datasets (total_dataset, filtered_dataset, and ns_filtered_dataset)
was functionally annotated. The categorization was made
through a similarity BLASTx search using Blast2GO (Gotz
et al., 2008), against the NCBI non-redundant database with
a minimum expectation value of 10−3, and the remaining
functional annotation was carried out using the default
parameters. The Gene Ontology (GO) terms were assigned to the
2nd level of the biological process, molecular protein and cellular
component categories. A GO enrichment analysis was performed
to determine if any GO term was over or under represented in
the filtered_dataset and ns_filtered_dataset when compared to
the total_dataset. Statistically significant enrichment was tested
against a reference of all genes analyzed using the Fisher’s exact
test and a significance of FDR < 0.05.

The dN/dS ratio was measured for the genes identified in
the filtered_dataset, and those having a ratio higher than 1
were considered as candidate genes under positive selection
and assembled as the ps_filtered_dataset (Figure 1D). The
annotation of these genes was further improved by searching
with BLASTx the C. kahawae Rad loci (E-value ≤ 1e-1) and the
orthologous C. gloeosporioides genes (E-value≤ 1e-9) against the
pathogen–host interaction reference database (PHI-base) v.4.2
(Urban et al., 2017).

Genome Wide Association Analyses for
C. kahawae Aggressiveness
The dataset used to perform the GWAS (gwa_dataset) was
filtered in three steps to remove: (i) all non-pathogenic fungi to
green coffee berries; (ii) all SNPs that contributed to the genetic
structuring within C. kahawae, since the power of GWAS can
be significantly reduced by the inclusion of related individuals
and population substructure (Connelly and Akey, 2012); (iii)
four isolates of C. kahawae that were not phenotypically
classified by Vieira et al. (2018).
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FIGURE 2 | Schematic representation of the dataset and GWA analyses conducted in this study. The pairwise analysis was performed taking into account the
aggressiveness classes (High, Moderate, Low) previously described by Vieira et al. (2018), and the continuous analysis was performed with the AUDPC
values obtained by Vieira et al. (2018).

The Bayesian variable selection regression (BVSR) model
proposed by Guan and Stephens (2011) and implement in
piMass v 0.9 has the ability to perform single and multi-SNP
association analyses using not only binary phenotypes but also
continuous response variables. In this work, we applied BVSR
to perform a single and multi-SNP correlation analysis between
SNP alleles and the aggressiveness phenotype using a pairwise
comparative analysis between the three aggressiveness classes
established by Vieira et al. (2018) (High, Moderate, and Low),
and a continuous analysis with the Area Under the Disease
Progress Curve (AUDPC) parameter recorded for each isolate by
Vieira et al. (2018). A schematic representation of all the analyses
performed and the datasets used is illustrated in Figure 2.

The single-SNP association analysis allowed the detection of
the associated SNPs even in the absence of interactions between
them (Guan and Stephens, 2011). In this analysis, the SNPs
with an empirical quantile for Bayes factor (BF) above 97.5%
(BF0.975 SNPs) were considered as strongly associated with
isolates’ aggressiveness. By contrast, the multi-SNP association
analysis, uses the phenotype as the response variable and the
genetic variants (SNPs) as covariates to evaluate SNPs that may
be associated with a phenotype (Guan and Stephens, 2011). SNPs
statistically associated with phenotypic variation were identified
by the posterior distribution of γ, or the posterior inclusion
probability (PIP). In our association analyses, markers with a
PIP greater than 97.5% empirical quartile (PIP 0.975 SNPs)
were considered as highly associated with an aggressiveness
class. For all 0.975 SNPs the respective PIP and the estimates
of their phenotypic effect (β) are reported. A positive β in
the pairwise X-Y aggressiveness class analysis means that the
frequency of the MAF is higher in the Y aggressiveness class and
a negative β means that MAF is higher in the X aggressiveness
class. Thus, to investigate the phenotypic effect size of each
PIP0.975 SNP, the |β| was considered. Additional parameters
contained in the model were estimated from the data: proportion
of variance explained by the SNPs (PVE), the number of

SNPs in the regression model (nSNPs) and the average of
phenotypic effect of the SNP contained in the model (σSNP).
For all pairwise and continuous analyses, we obtained 4 million
Markov Chain Monte Carlo samples from the joint posterior
probability distribution of model parameters (recording values
every 400 iterations), and discarded the first 100,000 samples
as burn-in. Imputation of missing genotypes was performed in
BIMBAM v1.0 (Servin and Stephens, 2007), in which the state of a
non-genotyped marker is inferred from the haplotype of the other
individuals. The loci where the SNPs potentially associated with
the aggressiveness trait are located, regardless the type of GWAS
analysis, were functionally annotated as previously described in
Section “Detection of Genomic Signatures of Positive Selection
Related to the Pathogenicity of C. kahawae,” including the search
on PHI-base for the SNPs located in coding regions.

RESULTS

RAD Tag Generation and
de novo Assembly
Illumina RAD-seq of 30 C. kahawae isolates, collected from
almost all coffee regions where CBD occurs, and 10 isolates from
several closely related species of the C. gloeosporioides complex,
generated an average of 3.76 × 106 reads per sample, amounting
to a total of 150.41 × 106 of 85 bp single-end reads after
barcode trimming. The individual read number ranged between
1.46× 106 and 6.14× 106, after an initial quality filter to remove
the low-quality reads, in which an average of 5.83 × 105 reads
were discarded. Ten de novo assemblies were performed, and the
results are summarized in Supplementary Table S2. The best de
novo assembly, i.e., the one that minimizes the number of missing
data and maximizes the number of phylogenetically informative
sites, was obtained with the following parameters: minimum
depth of coverage of 10, maximum number of low quality of 4,
clustering threshold of 0.90, minimal taxon coverage of 5, and
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FIGURE 3 | Maximum likelihood phylogenetic tree illustrating the evolutionary relationships among pathogenic and non-pathogenic fungi to green coffee berries.
Bootstrap and posterior probability values are provided above and below the branches, respectively.

maximum shared heterozygosity of 3. Additional filtering steps,
including the removal of SNPs with less than 80% of the taxa
represented and a MAF lower than 5%, yielded a final matrix
of 83,528 SNPs across 28726 loci and 40 isolates, referred as
total_dataset.

Phylogenetic Analysis
The phylogenetic analysis of the total_dataset produced a
completely resolved evolutionary tree for the C. gloeosporioides
complex species under study (Figure 3). Overall, a clear genetic
differentiation was observed between the pathogenic and non-
pathogenic species. The branches were well-supported in both
analyses (Maximum Likelihood and Bayesian analyses) with all
species being monophyletic, except for Cc that seems to be
paraphyletic. In fact, two isolates (ICMP_12953 and Cg_432)
are more differentiated from the remaining Cc isolates and may
even belong to a different species. The most differentiated species
of the C. gloeosporioides complex under study was C. aotearoa.
Finally, a geographical structuring within C. kahawae, like
the one previously described by Vieira et al. (2019) was
observed, in which three well-supported populations (Angolan,
Cameroonian, and East African) and two clonal lineages within
Angolan population are evident.

Genomic Regions Underlying the
Pathogenicity of C. kahawae
In this study, the isolates were sorted into two groups, pathogenic
and non-pathogenic, according to their ability to infect green
coffee berries. The pathogenic group has all C. kahawae isolates
(comprising 3,297 SNPs), while the non-pathogenic group has
isolates from the three closely related species (G. cingulata “f.sp.
Camelians,” C. aotearoa and Cc) with a total of 71,503 SNPs.

The genetic variability between the two groups comprises 83,528
SNPs, which as previously referred, constitutes the total_dataset
(Figure 1A). From this dataset, diagnostic SNPs were chosen
based on two sequential filtering steps (Figure 1B). The first
filtering led to the identification of 7,773 SNPs located in 5,974
loci that are completely differentiated between the two groups
(Fst = 1), while the second step reduced the data matrix to a
final group of 5,560 diagnostic SNPs located in 4,619 loci across
40 isolates, referred as filtered_dataset.

Both datasets, total_dataset and filtered_dataset, were mapped
against the genome of the most closely related species within
the genus Colletotrichum, C. fruticola (Nara gc5). Only 28%
(23,613 SNPs) of the total_dataset and 34% (1,869 SNPs) of the
filtered_dataset were successfully mapped. This analysis revealed
that, in the total_dataset, 47% (11,162 SNPs) are located in
non-coding regions, 53% (12,444 SNPs) are located in genes
and 7 SNPs in pseudo genes, while in the filtered_dataset,
55% (1,019 SNPs) are located in non-coding regions, 45%
(847 SNPs) are located in genes and 3 SNPs are located in
pseudo genes. Regarding the number of synonymous and non-
synonymous mutations, a significant increase on the number
of non-synonymous mutations was found in the filtered_dataset
(45%) when compared to the total_dataset (18%) (Figure 4).
The type of mutation in filtered_dataset was further used to
select the diagnostic SNPs that lead to a non-synonymous
mutation (ns_filtered_dataset-Figure 1C) and to screen the
genes under positive selection (ps_filtered_dataset-Figure 1D).
The ns_filtered_dataset contains 348 non-synonymous diagnostic
SNPs located in 336 loci, while the ps_filtered_dataset contains
258 genes under positive selection (dN/dS ratio > 1), from which
26 had more than 1 non-synonymous mutation.

Functional annotation of RADseq loci for the three datasets
(total_dataset, filtered_dataset, and ns_filtered_dataset) was
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FIGURE 4 | Comparative analysis of the number of synonymous and non-synonymous SNPs in total_dataset and filtered_dataset.

FIGURE 5 | Enrichment of gene functional categories among total_dataset and ns_filtered_dataset. Curve chart comparing the proportion of genes per GO
term between ns_filtered_dataset and total_dataset with a statistically significance of FDR < 0.05, according to the Fisher’s exact test. The two most distinct
GO term categories are evidenced in light gray.

performed, in which 34, 29, and 87% respectively, matched to
known genes in the NCBI nr database. GO terms were assigned
to 25% of the total_dataset, 16% of the filtered_dataset and
57% of the ns_filtered_dataset, and analyzed at the 2nd level of
functional annotation for biological process, molecular function
and cellular component categories. Only small differences were
observed between these three datasets (Supplementary Figure S1
and Supplementary Table S3). For the biological processes’
category, genes involved in “metabolic” and “cellular process”
were highly represented in all datasets, while genes involved
in “cellular component organization” were only present in the
total_dataset. For the molecular function category, “binding”
and “catalytic activity” is the most represented GO term, being
the “transporter activity” specific to both filtered_dataset and
ns_filtered_dataset. For the cellular component category, the
mostly represented functional classes in all datasets were “cell,”
“cell part,” “membrane,” and “membrane part.” Additionally,

fisher’s exact test between ns_filtered_dataset and total_dataset
revealed a significant enrichment of genes annotated into several
GO terms, particularly for the functional classes “oxidation–
reduction process” and “integral component of membrane”
(Figure 5), while no significant differences were observed
between the filtered_dataset and the total_dataset. Several genes
identified as members of these two functional classes were over-
represented, such as the gene encoding cytochrome P450 in
both classes, FAD dependent oxidoreductase and nitric oxide
synthase in the “oxidation–reduction process” class, and several
transports namely, MFS transporter, ABC-2 type transporter and
ammonium/hexose transporters in the “integral component of
membrane” class (Supplementary Table S4).

The potential virulence role of the 258 genes found under
positive selection was searched on the pathogen–host interaction
database (PHI-base), using two distinct approaches: (i) blasting
the complete gene retrieved from C. fruticola genome where the
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RAD loci mapped; and (ii) blasting the RAD loci of C. kahawae
obtained during this study. A total of 77 C. fruticola genes
had homology in the PHI-base, from which 40 gave also a
match for C. kahawae’s RAD loci (Supplementary Table S5).
From the total genes with a hit, 41 genes were reported to
show a relevant role in fungal pathogenicity and virulence
when a mutant phenotype was produced in other host–pathogen
interactions (Supplementary Table S6). The majority of these
genes belonged to the category of “reduced virulence” in the PHI-
base, while others belonged to different categories, including “loss
of pathogenicity” (chitin synthase, GTP-binding protein, ATP-
binding cassette (ABC) transporter, alpha-mannosyltransferase
cmt1 and cytochrome p450) and “lethal” (ataxia telangiectasia
mutated, C6 transcription factor, protein transport protein, ccr4-
not transcription complex subunit) (Supplementary Table S6).
Overall, the genes detected as being under positive selection,
and consequently, with a putative role in the pathogenicity of
C. kahawae are mainly involved in oxidation–reduction processes
and transport, but signaling, binding and biosynthesis seems
to have additional important roles in the infection process
(Supplementary Table S5).

Genome-Wide Association Study for the
Phenotypic Trait of Aggressiveness
After filtering the data for the GWAS, 173 SNPs located in 141
loci across 26 isolates were identified. This dataset was used to
test for associations of the population genetic variation with the
phenotypic trait of aggressiveness. The efficiency of the filtering
correction for the effect of population genetic structure can
be confirmed in Supplementary Figure S2, showing that the
selected SNPs were unable to recover the structuring pattern
characteristic of C. kahawae.

The Single-SNP analysis, for all pairwise combinations (High
vs. Moderate, High vs. Low, Low vs. Moderate) and continuous
analysis (AUDPC), identified a total of 10 SNPs with BF0.975
(>97.5 quantile Bayes factor) associated with aggressiveness,
corresponding to 6% of the analyzed markers. When a stricter
threshold was applied (99% quantile), 6 BF0.99 SNPs (3.5%)
showed the strongest association with aggressiveness (41944.81;
34174.84; 18945.9; 18945.8; 12430.32; 46939.8). The number of
SNPs identified in High vs. Low class was always two regardless
the threshold used, while for the remaining pairwise analyses
(High vs. Moderate and Low vs. Moderate) and continuous
analysis (AUDPC) the number of SNPs ranged from 5 to 2
when a more restricted threshold was applied (Table 1 and
Supplementary Figure S3).

For the multi-SNP association analysis, estimates of the
mean number of SNPs (nSNPs) underlying the aggressiveness
variation ranged from 26.5 to 52.2 SNPs (Supplementary
Table S7). When considering only models with the highest
BFs [log10(BF) > BF0.99], the mean number of SNPs included
in the model (nSNPs_BF) for each comparison decreased to
values between 8.6 and 30.1, while the mean effect size of
the SNPs (σSNP_BF) increased, ranging between 2.13 and
4.72 (Supplementary Table S7). The PIPs for the analyzed
SNPs were similar among all analyses but slightly higher

in the pairwise comparisons involving High vs. Moderate
(PIP = 0.314) classes and the continuous analyses with the
AUDPC values (PIP = 0.312) (Supplementary Table S7).
In multi-association analysis, a subset of 5 SNPs, with the
highest inclusion probabilities (PIP0.975), were detected for all
pairwise combinations (High vs. Moderate, High vs. Low, Low
vs. Moderate) and continuous analysis (AUDPC) (Figure 6).
Estimates of the strength of association between genotype
variation at individual SNPs and phenotypic variation (|β|)
were always greater than 0.36, but changed according to the
analyses (Table 2). Overall, we obtained SNPs with larger effect
in the continuous analysis than in the remaining pairwise
analyses. Three PIP0.975 SNPs were shared between at least
two pairwise analyses (34174.84; 18945.7; 14003.77), and no
common SNP were detected between the continuous and all
the pairwise analyses. In total, 15 different SNPs revealed a
multi-SNP association with aggressiveness, from which 7 were
also significant in the single-SNP analyses (34174.84; 18945.9;
14003.77; 46939.81; 18945.8; 18945.6; 12430.32). Despite that, no
causal SNP, i.e., able to explain the total phenotypic variation
observed, was detected.

In total, 18 different SNPs putatively associated with aggres-
siveness were retrieved from both analyses. The loci containing
those SNPs were BLASTed and functionally annotated, being
described as genes located into “integral component of
membrane” and “nucleus.” The search for the virulence role
was performed in the PHI-base, revealing that the mutant
phenotype for two transcription factors (FZC28 and GzZC184)
was described as unable to affect pathogenicity in other host–
pathogen interactions, while for other two genes (GIT3, srbA)
the mutant phenotypes showed reduced virulence in Candida
albicans and Aspergillus fumigatus, respectively (Supplementary
Table S8). Finally, most of the SNPs putatively associated with
aggressiveness in the single and multi-association analyses are
in non-coding regions, with only six SNPs (34174.84; 44503.84;
17838.69; 1691.81; 41944.81; 35951.85) located in coding regions
(Tables 1, 2). The annotation of these genomic regions allowed
the identification of four candidate genes coding for F-box
domain-containing, nitrosoguanidine resistance, Fungal specific
transcription factor domain-containing and C6 transcription
factor and several hypothetical proteins that could be associated
with aggressiveness (Tables 1, 2).

DISCUSSION

Phylogenetic Relationships and
Host Specialization
One of the first and most striking findings of this work was
the high genetic differentiation, at the genomic level, between
pathogenic and non-pathogenic fungi to green coffee berries,
reinforcing the idea that C. kahawae should be considered as a
distinct species. The phylogenetic analysis, besides confirming
the clear pattern of population structure proposed by Vieira et al.
(2019), also revealed that Cc is the only paraphyletic group, and
consequently, the possibility of this group harboring in fact more
than one species cannot be discarded and should be further
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TABLE 1 | SNPs associated with aggressiveness for each pairwise comparison (High vs. Moderate, High vs. Low, Low vs. Moderate) and for the continuous analyses
(AUDPC) obtained through Single-SNP association tests using Bayesian regression approach.

Alternative Reference SNP PHI-base Phi-base

SNP_ID allele allele location BF0.975 |β| Blast_hit (Cf gene) (Ck RADloci)

High vs. Low

41944.81 a G T CoR 0.08 0.06 F-box domain-containing No hits No hits

34174.84 a,b C T CoR 0.08 0.06 Nitrosoguanidine resistance No hits No hits

Mean_BF0.975 0.06

Mean all SNPs −0.02

High vs. Moderate

18945.5 A G NcR 0.16 0.07 Hypothetical protein No hits No hits

41944.81 a G T CoR 0.16 0.07 F-box domain-containing No hits No hits

34174.84 a,b C T CoR 0.28 0.08 Nitrosoguanidine resistance No hits No hits

35951.85 T C CoR 0.14 0.06 Fungal specific transcription
factor domain-containing

FZC28 GzZC278

Mean_BF0.975 0.07

Mean all SNPs 0

Low vs. Moderate

18945.9 a,b C T NcR 0.18 0.09 Hypothetical protein No hits No hits

14003.77 b T G NcR 0.14 0.08 —NA– x No hits

46939.81 a,b T A X 0.21 0.09 —NA– x No hits

7756.83 C A X 0.18 0.09 —NA– x No hits

Mean_BF0.975 0.09

Mean all SNPs −0.02

AUDPC

18945.8 a,b A T NcR 0.22 −1.86 Hypothetical protein No hits No hits

18945.6 b C T NcR 0.2 −1.8 Hypothetical protein No hits No hits

12430.32 a,b A G NcR 0.57 −2.49 —NA– x No hits

14003.77 T G NcR 0.19 −1.74 —NA– x No hits

34174.84 C T CoR 0.16 1.68 Nitrosoguanidine resistance No hits No hits

Mean_BF0.975 −1.24

Mean all SNPs 0

aSNPs also selected with a BF 0.99; bSNPs identify.

investigated. The non-pathogenic isolate most closely related
with C. kahawae was Cg126212 (ICMP18539) instead of Cg_432
as previously referred by Silva et al. (2012), which reinforces the
importance of using a large number of loci to capture a more
accurate phylogenetic relationship. The remaining phylogenetic
results corroborate the taxonomic classification proposed by
Weir et al. (2012), and place C. aotearoa as the most distant
species of the C. gloeosporioides complex under study.

Footprints of Genomic Adaptation and
Candidate Genes for Pathogenicity in
C. kahawae
In this study, we identified 5,560 diagnostic SNPs potentially
involved in the pathogenicity of C. kahawae to green coffee
berries. Although it is not probable that all these SNPs are
related to this specific trait, the probability of finding the genetic
variation involved in C. kahawae‘s pathogenicity is quite high.
In fact, the enrichment in non-synonymous mutations found in
this dataset (filtered_dataset) when compared to the total_dataset
is quite promising, especially because this pattern was not
observed for the total number of SNPs located in non-coding

regions and/or coding regions. Functional annotation of these
non-synonymous SNPs (ns_filtered_dataset), as well as of the
diagnostic SNPs (filtered_dataset) and those of the total_dataset,
revealed, for the 2nd level of the “biological process,” “molecular
function,” and “cellular component” categories, only small
differences between the datasets. In the “biological process”
category, genes involved in “cellular component organization
or biogenesis” are only present in the total_dataset, while for
the remaining datasets a small enrichment in genes involved in
“response to stimulus” was observed. In the “molecular protein”
category, the genes involved in “transporter activity” seems to
be over represented in both filtered datasets (filtered_dataset
and ns_filtered_dataset), which could suggest that transporters
have an important role in the pathogenicity of C. kahawae.
Additionally, a significant enrichment of specific GO terms
was detected in the ns_filtered_dataset when compared to the
total_dataset, particularly the “oxidation–reduction process” and
“integral component of membrane.” It is noteworthy that most
of the genes associated with the term “integral component of
membrane” are in fact transporters, namely, MFS transporter,
ABC-2 type transporter and ammonium/hexose transporters.
MFS transporters are the most common category of secondary
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FIGURE 6 | Posterior inclusion probabilities (PIPs) for each SNP in each pairwise comparison in multi-SNP association test. The horizontal blue lines correspond to
the PIP 99% empirical quantile threshold and red lines to the 97.5% empirical quantile. Blue dots: SNPs with a PIP > 99% empirical quantile, Red dots: SNPs with a
PIP > 97.5% empirical quantile, Light gray dots: SNPs with a PIP < 97.5% empirical quantile.

carrier proteins. Members of this group are involved in the uptake
of essential minerals and nutrients, also functioning as nutrient
sensors, while others are responsible for the transport of various
drugs and toxins (Liu et al., 2017). Moreover, MFS transporters
also play an important role in cellular resistance to oxidative
stress in Alternaria alternata (Chen et al., 2017) and in some
cases can act as virulence factors (Liu et al., 2017). In turn,
ABC transporters confer tolerance by efflux of compounds across
the membrane, thereby preventing an increase in intracellular
concentration of toxic substances (Coleman et al., 2011). Hexose
transporter, on the other hand, is vital for the fungi to access
the organic carbon sources of their host (Wahl et al., 2010).
Finally, the ammonium secretion carried out by its transporter in
developing hyphae contributes to the necrotrophic colonization
of Colletotrichum spp. (Miyara et al., 2012; O’Connell et al.,
2012; Shnaiderman et al., 2013) but, at early stages of spore
germination, ammonia modulates the induction of appressorium
formation (Miyara et al., 2010). Other genes found in the
“integral component of membrane” category, code for instance
for a tetraspanins which have been also implicated in fungi
appressorium mediated penetration in Botrytis cinerea (Gourgues
et al., 2004). Genes encoding cytochrome P450s are highly
represented in both enriched categories (“oxidation–reduction

process” and “integral component of membrane”) and this
protein has an important role in primary and secondary
metabolism, and fungal pathogenicity (Rao and Nandineni,
2017). Additionally, the most represented genes falling in the
“oxidation–reduction process” category encode proteins closely
involved in the detoxification of drugs produced by the plant in
an effort to shield itself from the invader, such as FAD dependent
oxidoreductase, Short chan dehydrogenase (SDS) and nitric oxide
synthase (NOS) (Wang and Higgins, 2005; Kwon et al., 2010;
Sygmund et al., 2011). The mutant phenotype of SDS and NOS
in Magnaporthe oryzae and Colletotrichum coccodes, respectively,
showed modifications in the pathogen efficiency to penetrate
the host in the initial phase of the infection process (conidia
production and germination) (Wang and Higgins, 2005; Kwon
et al., 2010). Within this functional category, a gene coding for
a taurine catabolism dioxygenase (TauD) was also found. This
enzyme is involved in taurine degradation, catalyzing it into
sulfite and aminoactyledhyde, and under starvation conditions,
taurine can be used as a sulfur source by some microorganisms
(Yew et al., 2016). Therefore, most of the genes representative of
these two enriched categories are involved in biological processes
able to give a survival advantage of the pathogen in an adverse
environment, like host colonization.

Frontiers in Microbiology | www.frontiersin.org 10 June 2019 | Volume 10 | Article 1374

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01374 June 17, 2019 Time: 17:32 # 11

Vieira et al. Selection Signatures for Ck Host Specialization

TABLE 2 | SNPs associated with aggressiveness for each pairwise comparison (High vs. Moderate, High vs. Low, Low vs. Moderate) and for the continuous analyses
(AUDPC) obtained through multi-SNP association tests using Bayesian regression approach.

Alternative Reference SNP PHI-base Phi-base

SNP_ID allele allele location PIP 0.975 |β| Blast_hit (Cf gene) (Ck RADloci)

High vs. Low

18638.64 a G A x 0.3 0.61 —NA– x No hits

41138.71 G A NcR 0.28 0.37 —NA– x No hits

34174.84 b C T CoR 0.28 0.43 Nitrosoguanidine resistance No hits No hits

44503.84 a A G CoR 0.29 0.45 C6 transcription factor GzZC184 FZC55

High vs. Moderate

18945.7 G C NcR 0.35 0.68 Hypothetical protein No hits No hits

17838.69 C T CoR 0.35 0.65 Hypothetical protein SrbA No hits

14003.77 a T G NcR 0.37 0.79 —NA– x No hits

34174.84 a,b C T CoR 0.36 0.66 Nitrosoguanidine resistance No hits No hits

Low vs. Moderate

18945.7 G C NcR 0.31 0.57 Hypothetical protein No hits No hits

18945.9 a,b C T NcR 0.38 0.92 Hypothetical protein No hits No hits

14003.77 b T G NcR 0.31 0.49 —NA– x No hits

46939.81 a T A x 0.37 0.87 —NA– x GIT3

AUDPC

18945_6 T A NcR 0.56 0.71 Hypothetical protein No hits No hits

18945_8 b A T NcR −0.37 0.62 Hypothetical protein No hits No hits

12430_32 a,b A G NcR −0.49 0.89 —NA– x No hits

1691_81 G A CoR 0.51 0.79 —NA— No hits No hits

28376_85 a T C NcR −0.54 0.73 Hypothetical protein x No hits

aSNPs also selected with a PIP 0.99; bSNPs identified as potentially associated in single and multi-association analyses; CoR, coding region; NcR, non-coding region;
x, no information.

The analysis of the dN/dS ratio on the filtered_dataset
showed that 258 genes could be under positive selection
(ps_filtered_dataset), from which 26 have more than one non-
synonymous mutation. The potential role of these genes in
fungal pathogenicity and virulence was assessed by a BLAST
search against the PHI-base. A total of 30% (77 genes) had
homology, and 15% (40 genes) were described as important for
fungal pathogenicity and virulence when a mutant phenotype
was produced. Five of them were identified as genes required
for pathogenicity in other fungi, inducing mutant phenotypes
of “total loss of pathogenicity” (encoding chitin synthase, GTP-
binding protein, ABC transporter, alpha-mannosyltransferase
cmt1 and cytochrome p450) and the remaining 36 genes,
including the ones responsible for a change in virulence,
are mainly involved in oxidative responses (for instance,
cytochrome P450) and transport (mainly, ABC Superfamily
and MFS transporters). Once again, these two biological
processes stand out in our study and their importance is
well-documented in the literature (Buiate et al., 2017; Chen
et al., 2017; Liu et al., 2017; Rao and Nandineni, 2017; Zeng
et al., 2018). A comparative genomic analysis between two
Colletotrichum species (C. sublineola and C. graminicola) in
different hosts, showed an enrichment of proteins of these
classes in the non-conserved proteins dataset, with transporters
being the most represented PFAM category (Buiate et al., 2017).
Additionally, the enrichment of genes encoding proteins related

to oxidative responses can be a result of host–pathogen evolution,
since reactive oxygen species (ROS) have been described as
vital for stress responses, programmed cell death and plant
defenses (Silva et al., 2006). Finally, transcription factors (TFs)
were also highly represented, especially “the fungal specific
transcription factor” and “C6 transcription factor,” which could
suggest that changes in gene expression patterns may be also
important for C. kahawae’s pathogenicity. In conclusion, most
of the loci with non-synonymous mutations and genes of
under positive selection with an enriched representation were
associated with transporters, oxidative response, and signaling,
suggesting an important role for these biological processes in
the adaptation of C. kahawae to C. arabica, and providing
candidate genes for evolutionary changes. Similar findings were
also reported by Buiate et al. (2017) and Rao and Nandineni
(2017) based on different genomic comparative analyses within
the genus Colletotrichum, which suggest that these adaptive
mechanisms could be globally associated to varying aspects
of each host environment, and to the secretion of or evasion
to toxic secondary metabolites. In this sense, host specificity
in closely related pathosystems of the Colletotrichum genus
could be not only a matter of pathogen recognition, but also
a much broader adaptation to the living host environment
across the entire course of pathogen development, which
has presumably occurred during co-evolution of the host
and its pathogen.
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Nevertheless, it is important to note that only around∼30% of
the RAD loci contained in each dataset was mapped or annotated
due to the lack of a properly annotated reference genome.
Associated with this, all the genomic variation located in non-
coding regions was not further studied, and consequently, a high
amount of information may have not been retrieved. Moreover,
the reproductive characteristics and the evolutionary history of
C. kahawae, make it difficult to separate the demographic signal
from the selection pattern. In fact, it has been proposed that
C. kahawae is a true clonal pathogen that has emerged by a
host-jump from a non-pathogenic group (Silva et al., 2012). In
such scenario, C. kahawae was subjected to a strong disruptive
selection during the first stages of the adaptation to C. arabica.
According to Grünwald et al. (2016), asexual reproduction could
greatly amplify new advantageous mutations to extremely high
frequencies along the entire genome by hitchhiking, and not just
at the neighboring genes. This would eliminate polymorphisms
and maintain only the intact genome of those individuals in the
population that had the favored mutations, resulting in a strong
genetic bottleneck and the lack of shared polymorphisms with
the remaining non-pathogenic fungi. Thus, in a perfectly clonal
pathogen, each adaptive allele that arises, will be linked to every
other allele in the genome, and consequently the selection is more
likely to act at the level of individual clones than individual alleles
(Shapiro et al., 2009; Grünwald et al., 2016; Plissonneau et al.,
2017). In this sense, if the goal is to distinguish adaptive loci
from other fixed mutations in a clonal background, the typical
genome-scan may be a limited approach, and hence it is crucial to
look for the excess of functional changes, such as the enrichment
of non-synonymous mutations and search for genes putatively
under selection (Shapiro et al., 2009; Plissonneau et al., 2017).

Genome-Wide Association Study of
Aggressiveness in C. kahawae
Based on the phenotypic evaluation of 26 C. kahawae isolates
performed by Vieira et al. (2018), a genome-wide association
analysis was conducted in order to better understand the genetic
mechanisms underlying aggressiveness. According to Dalman
et al. (2013), applying a GWAS to an organism in a haploid
stage, which can be clonally reproduced in high numbers and
phenotyped repeatedly, increases the accuracy of the phenotypic
measurements and the power of the association analysis in several
orders of magnitude, when compared to diploids. For this reason,
a low number of haploid individuals can be used to successfully
identify robust associations in small fungal genomes, whereas
several 100s of individuals are needed in diploid organisms with
large genomes such as humans and plants (Dalman et al., 2013).

In C. kahawae, the number of SNPs that are not associated
with population structure is low (173 SNPs) and correspond to
only 5% of the total genetic variation. No causal SNPs were
identified in this dataset, but instead a group of SNPs of small
effect was detected. In single-SNP association analyses, the 10
individual SNPs found to be associated (BF0.97) showed a low
phenotypic effect in aggressiveness (β| = 0.059 to |β| = 0.087) for
all the pairwise analyses (High vs. Moderate, High vs. Low, Low
vs. Moderate), but in the continuous analysis (AUDPC) 5 SNPs

presented a moderate phenotypic effect (β| = 1.24). Despite these
differences, three of the SNPs associated with aggressiveness in
the continuous analysis were also found in the pairwise analyses.

In the multi-SNP association test, 15 SNPs with a posterior
inclusion probability of 97.5% (PIP0.975) were found, showing
moderate effect for all pairwise analyses (High vs. Moderate, High
vs. Low, Low vs. Moderate) [PIP0.97 SNPs |β| > 0,36] and for
the continuous analysis (AUDPC) [PIP0.97 SNPs |β| > 0,62]. The
phenotypic effect seems to be smaller in all pairwise analyses that
included the High aggressiveness class, probably due to the low
number of isolates that compose this class. Moreover, 7 SNPs
were common to the SNPs identified in single SNP analyses,
specifically 1 in 5 SNPs was common to both approaches in High
vs. Low and High vs. Moderate pairwise analyses, 3 in 4 for Low vs.
Moderate pairwise analysis, and 3 in 5 for the continuous analysis
with AUDPC. These results provide additional support for the
reliability of the Low vs. Moderate and AUDPC analyses.

The annotation of the loci containing the total of SNPs
putatively associated with aggressiveness allowed the identi-
fication of three candidate genes in the single-association
analysis (F-box domain-containing, nitrosoguanidine resistance
and Fungal specific transcription factor domain-containing),
and two candidate genes in the multi-SNP association analysis
(nitrosoguanidine resistance and C6 transcription factor). The
gene coding for a nitrosoguanidine resistance protein, which is an
integral component of the membrane that is able to regulate the
fungal-type cell wall organization and phospholipid translocation
(García-López et al., 2010; García-Marqués et al., 2016), was the
only candidate common to both approaches. In addition, among
the few candidate genes identified, two encode transcription
factors located in the nucleus, which may suggest that differential
gene expression and/or associated regulatory mechanisms might
have a preponderant role in aggressiveness. However, none of
these genes was previously associated with aggressiveness in other
plant–pathogen interactions, which suggests that they may be
specific of the C. arabica – C. kahawae interaction. Some of
these SNPs were also found in genes annotated as hypothetical
proteins, in which for two of them, orthologs to the GIT3
and srbA genes of Candida albicans and Aspergillus fumigatus,
respectively, the mutant phenotypes showed a reduced virulence.
SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of
transcription factors and is crucial for antifungal drug resistance,
hypoxia adaptation, and virulence (Chung et al., 2014), while
glycerophosphoinositol permease GIT3 is required for early post-
inoculation growth, transport activity and full virulence (Bishop
et al., 2013). The remaining significantly associated SNPs were
in intergenic regions, or in not annotated loci. These SNPs
may represent regulatory elements or unknown genes that are
responsible for the trait variation.

Finally, the success and power of an association study relies on
the number of SNP markers and on the LD decay. In C. kahawae,
both conditions are far from ideal, as a low number of SNPs
not related with the population structure pattern was identified
and the entire genome is inherited asexually as a single, non-
recombining linkage group, which can increase the number of
false positives. Therefore, as in any GWA study, a further detailed
investigation of these candidate genes is required to confirm
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their involvement in C. kahawae’s aggressiveness and assess their
causative effect at the phenotypic level.

CONCLUSION

This work took the first step toward the understanding of the
genetic mechanisms underlying the ability of C. kahawae to
infect green coffee berries and its aggressiveness. Our results
suggest that C. kahawae’s pathogenicity involves several biological
processes such as detoxification and transport, regulation of host
and pathogen gene expression, and signaling. Fifteen percent of
the genes under selection were described as having an important
role in fungal pathogenicity and virulence, being some of them
identified as genes proven to lead to the total loss of pathogenicity
in other fungi when mutated. Finally, the high abundance of
TFs may suggest that expression changes in gene expression
patterns can be more important than the presence/absence of
individual gene alleles. On the other hand, aggressiveness does
not seem to be regulated by any causal mutation and even
the associated SNPs are of small effect, which leads to three
possible conclusions: (i) aggressiveness is regulated by a set of
many small effect SNPs difficult to detect with a GWAS analysis;
(ii) aggressiveness is a plastic trait regulated by differential gene
expression and associated regulatory mechanisms, consequently,
a transcriptome and epigenome analysis is needed to complement
the current study; (iii) aggressiveness is not under selection and is
governed by physiological conditions. Nevertheless, a repertoire
of candidate genes is now provided that can be studied through
gene expression and additional functional analyses (knockouts,
knockdowns and transgenics) to ascertain their causative role
in C. kahawae aggressiveness and pathogenicity. Finally, the
collected information may be of use to the development of future
evidence-based sustainable control measures.
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