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In proteomics, peptide information within mass spectrometry (MS) data from a specific
organism sample is routinely matched against a protein sequence database that best
represent such organism. However, if the species/strain in the sample is unknown or
genetically poorly characterized, it becomes challenging to determine a database which
can represent such sample. Building customized protein sequence databases merging
multiple strains for a given species has become a strategy to overcome such restrictions.
However, as more genetic information is publicly available and interesting genetic
features such as the existence of pan- and core genes within a species are revealed,
we questioned how efficient such merging strategies are to report relevant information.
To test this assumption, we constructed databases containing conserved and unique
sequences for 10 different species. Features that are relevant for probabilistic-based
protein identification by proteomics were then monitored. As expected, increase in
database complexity correlates with pangenomic complexity. However, Mycobacterium
tuberculosis and Bordetella pertussis generated very complex databases even having
low pangenomic complexity. We further tested database performance by using MS
data from eight clinical strains from M. tuberculosis, and from two published datasets
from Staphylococcus aureus. We show that by using an approach where database size
is controlled by removing repeated identical tryptic sequences across strains/species,
computational time can be reduced drastically as database complexity increases.
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INTRODUCTION

In the past decade, the development of Next Generation
Sequencing methods has made genome sequencing more
affordable and consequently more accessible. However, while
genome annotation approaches also undertook considerable
advances in the past years (Bocs et al., 2003; Davidsen et al., 2010;
Vallenet et al., 2013), correct gene prediction is still challenging
even for prokaryotes. Particularly, the correct assignment of
open reading frames (ORFs), the presence and classification
of pseudogenes and differences in translational starting site
(TSS) (de Souza et al., 2008, 2009; Cuklina et al., 2016) are
the main sources of variability. Consequently, for any given
strain or species, its predicted protein sequence information will
normally contain inaccuracies that will interfere with peptide
identification in mass spectrometry (MS)-based proteomics. The
use of accurate protein sequence databases is a key step in
most proteomic approaches, and this is particularly critical
for studies involving samples containing strains with little to
no genetic information or samples containing multiple strains
(metaproteomics) (Tanca et al., 2013).

In such cases when the establishment of a gold-standard
annotation that can represent the sample under investigation is
difficult, a viable alternative is to construct customized protein
sequence databases which are then inspected against peptide
sequence data collected by MS (Nesvizhskii, 2014). This has been
largely employed in proteogenomics, where “novel” sequences
are inserted in the customized database and, if identified, are
further used to validate and confirm proposed gene models and
other genetic polymorphisms (for recent reviews see Renuse
et al., 2011; Ruggles et al., 2017). Database customization is
often achieved using two different strategies: (i) through a 6-
frame translation of the genome of the strain (Fermin et al.,
2006; Baerenfaller et al., 2008); (ii) or by constructing a database
merging ab initio gene predictions from related strains of the
same species, taking into consideration variations caused by
SNPs, indels, divergent TSS choice, among others (de Souza
et al., 2010; Omasits et al., 2017). These approaches are not
mutually exclusive, as gene annotation from related strains can
be used to further optimize 6-frame translation approaches
(Castellana et al., 2008).

However, peptide identification in MS-based proteomics is
often performed through probabilistic calculations between the
observed peptide fragmentation pattern and theoretical MS/MS
data from a sequence database. Therefore, database size will:
(i) alter the search space and consequently the probabilistic
calculations performed during peptide identification
(Nesvizhskii, 2010); (ii) make protein inference more difficult,
especially in multistrain databases (Nesvizhskii and Aebersold,
2005); and (iii) demand more computational power due to the
handling of larger files. Therefore, building databases using either
6-frame translations or sequence merging approaches which are
larger than regular can become, at some point, detrimental for
the proteomic analysis (Blakeley et al., 2012).

Such issue might as well-contribute differently depending
on the species under study, how much genomic information
is available (number of strains with genome sequenced) and

genomic features particular to it. When we first developed
the MSMSpdbb approach (de Souza et al., 2010), the number
of genomic information available was a fraction of the
amount currently existent. For example, at the time there
were only complete genomes sequenced for eight strains from
the Mycobacterium tuberculosis (Mtb) complex (five from
M. tuberculosis and three from M. bovis). For such dataset we
observed that the size of a merged database Mtb complex was not
heavily incremented as more strains were considered (de Souza
et al., 2011). Each new strain added to the database contributed
with only few genetic polymorphisms when compared to the
reference H37Rv strain. However, the current 65 Mtb strains
with complete genome sequenced demonstrated the existence of
a pangenome in this species, i.e., the genome of all strains of a
given species contains only a set of genes from a larger pool of
accessory genes for that species (Rasko et al., 2008; McInerney
et al., 2017). We then wondered if the approach would still be
valuable as 100s of genome information are available to a single
species. It is then critical to address the impact of such approach
in the size of customized databases used in MS-based proteomics,
as well as in the performance for peptide identification.

Many reports have demonstrated that database size could
be controlled by creating protein entries where identical
peptides between homolog proteins are reported once and only
unique polymorphic tryptic peptides are inserted when merging
sequences (Schandorff et al., 2007; Omasits et al., 2017; Liao
et al., 2018). It is unclear if genomic features such as the
presence of a pangenome could impact database customization of
specific species. We then decided to test this by creating protein
sequence databases for 10 species using strains with complete
genome sequences and a modified version of MSMSpdbb (de
Souza et al., 2010). Database parameters such as the number
of entries and unique peptide sequences for each species using
increasing number of strains per round were then quantified.
As expected, species with large pangenomes such as Escherichia
coli showed the larger increase in database size per number
of strains used, and database size in general correlated with
pangenome size. Finally we performed proteomic identification
and computational performance of two different datasets from:
(i) eight clinical strains of Mtb using a database with 65
complete strain genomes; and (ii) two S. aureus datasets (Depke
et al., 2015; Hoegl et al., 2018) using a database with 194
complete strain genomes.

MATERIALS AND METHODS

Species Selection
Ten bacterial species were selected for database construction:
Acinetobacter baumannii (89), Bordetella pertussis (348),
Campylobacter jejuni (114), Chlamydia trachomatis (82),
Escherichia coli (425), Listeria monocytogenes (148),
Mycobacterium tuberculosis (65), Pseudomonas aeruginosa
(105) and Staphylococcus aureus (194). Burkholderia mallei
and Burkholderia pseudomallei (109) are considered genetically
very similar (Godoy et al., 2003; Song et al., 2010) and
were analyzed together. Number in parenthesis represents
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strains with complete genome sequenced according to
GenBank (Benson et al., 2013) in August 2017. Protein
sequences were obtained using the assembly file available at
ftp://ftp.ncbi.nih.gov/genomes/genbank/bacteria/.

Script Design and Availability
We redesigned MSMSpdbb (de Souza et al., 2010) in PERL
(version 5.24.1) and is present as two modules: all_fasta.pl
provides the sequence alignment and creates the outputs with
unique entries and homologs; pep_trip.pl process the homologs
output, and create the final database and the log file. In house
BLAST installation (version 2.7.1 or later) is required. All script
outputs are saved as txt files in the data folder. Rand.pl and
create_db.pl are also available to reproduce the experimental
design described below (see section “Database Analysis –
Experimental Design and Statistical Rationale”). For detailed
information on how to use and how each script (all_fasta.pl
and pep_trip.pl) performs, see Supplementary Text. A briefer
description of the tool is given below.

Data Processing
Even though MSMSpdbb is already published, we changed how
orthology is defined (using a Bidirectional Best Hit rather than
a Cluster BLAST approach) because BHH is considered a more
appropriate manner to define orthology. We provide below
further information about the method. To assign gene homology,
all_fasta.pl initially gathers the protein sequence data from all

strains and then performs pair wise alignments using BLASTP
(Altschul et al., 1990) through a Bidirectional Best Hit (BHH)
method (Tatusov et al., 1997; Bork et al., 1998; Overbeek et al.,
1999). The script performs in a manner that the strain with most
number of protein entries is initially selected as the query dataset
and consequently aligned to the remaining strains sequence
datasets (subjects). Two sequences from different strains will be
defined as homologs if: (i) they are the best hit possible for all
alignments performed; (ii) sequence identity is equal or higher
than 50%; (iii) sequence similarity is equal or higher than 70%;
and (iv) sequence coverage is equal or higher than 70%. These
have to be correlated on both directions (BHH) of the alignment.

When homologs are defined between query and subject
strains, all_fasta.pl will proceed by indexing homolog IDs for later
characterizations of polymorphisms. It will then define “unique”
protein sequences from the query dataset (i.e., a sequence without
a defined homolog in any of the subject strains), and add it to
the partial version of the final database output (see Figure 1). In
parallel, all entries from the subject strains which were properly
aligned to a query sequence will be removed from the respective
strains datasets. A new round of alignment will be performed
after excluding the query strain and selecting one of the previous
subject datasets as a new query strain. This will be performed
successively until all strains are used as query. At this point, the
script will had then defined all “unique” protein entries from all
datasets which did not aligned to any other annotated sequence
under the selected parameters.

FIGURE 1 | Building concatenated databases from a dataset of fasta files. (A) For a given set of fasta files, the script all_fasta.pl selects a Query file (Query 1) and
BLASTP is performed against the remaining files. A bidirectional approach is performed for homolog identification across all strains. (B) The script writes two files,
one with uniquely annotated entries from Query 1 and other with homolog clusters. (C) Query 1 fasta file is removed from the dataset, and the remaining subject files
will have entries removed (proteins which were already defined as a homolog of a Query 1 protein); a new fasta file is selected as Query (Query 2) for a new BLASTP
round. Such rounds will be performed until all files are analyzed. When this is achieved, the script pep_trip.pl will build the database and write the log file reporting all
tasks performed. First, uniquely annotated entries are copied “as is” into the final fasta database (D). (E) For each homolog group, a reference sequence is chosen,
and each polymorphic tryptic peptides from non-reference homologs are added into individual entries for each peptide (“Variant entries”); reference and variant
entries are then copied into the final database (F).
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Regarding all indexed homologs, our script pep_trip.pl then
defines the longest version of the protein as reference (not
necessarily from same strain used as query for the BHH step
above). This was done for two reasons: first, amino acid length
is an easier parameter to track; and second, the longer version
also provides the less redundant outcome for the remaining
TSS variants that our script must consider. For example, if a
shorter version was selected as reference, our script would need
to have additional coding to compare and sort out any repeated
sequences in the other possible TSS choices. The reference
sequence is copied integrally into the partial version of the
final output. The script performs an in silico trypsin digest
of the protein sequences, without allowing any miscleavages,
and compares amino acid composition of all generated tryptic
peptides. Peptides shorter than 7 or longer than 35 amino
acids are excluded. Whenever different tryptic peptide sequences
are observed in the non-reference dataset (due to differences
of TSS choices, SAAs or indels which result in frame shifts),
each peptide is added into the final output under a created
protein entry (Omasits et al., 2017). Amino acid changes as
a result from poorly annotated sequences, where X or U are
present in the sequence as an amino acid, are not considered.
Finally, a log file is created, reporting and classifying all
differences observed, describing the amino acid changes and
also in which strains those were observed. One must note
that our approach only works for samples treated with trypsin,
since variant peptides are added as tryptic peptide entries in
the final database.

Database Analysis – Experimental
Design and Statistical Rationale
To investigate how each dataset contributes to the final database
size, for each species we constructed databases using 5, 10, 15,
30, and 65 randomly selected strains. This was performed a total
of three times to decrease the chances that a randomly selected
strain with very unique features might interfere with the final
result. Each database had its MS search space size measured
with respect to number of entries and number of unique tryptic
peptide sequences. Pangenomic size calculations were based on
the panX tool (Ding et al., 2018).

Mycobacterial Cell Culturing
Stock cultures of Mtb strains TB179, TB861, TB1430, TB1593,
TB1659, TB1841, TB1945, and TB2666 were inoculated
into mycobacterial growth indicator tubes and incubated
until positive growth was detected using the Bactec 460
TB system (BD Biosciences). Approximately 0.2 mL was
inoculated onto Löwenstein–Jensen medium and incubated
over 6 weeks with weekly aeration until colony formation.
Colonies were transferred into 20 mL of supplemented
7H9 Middlebrook medium (BD Biosciences) containing
0.2% (v/v) glycerol (Merck Laboratories), 0.1% Tween 80
(Merck Laboratories), and 10% dextrose, catalase. Once
the culture reached an A600 of 0.9, 1 mL was inoculated
into 80 mL of supplemented 7H9 Middlebrook medium
and incubated until an A600 between 0.6 and 0.7 was

reached. All steps were performed at 37◦C until Mtb cells
in mid-log growth phase were used for whole cell lysate
protein extraction.

Preparation of Crude Mycobacterial
Extracts
Mycobacterial cells were collected by centrifugation (10 min
at 2500 × g) at 4◦C and resuspended in 1 mL of cold lysis
buffer containing 10 mM Tris-HCl, pH 7.4 (Merck Laboratories),
0.1% Tween 80 (Sigma-Aldrich), one tablet per 25 mL Complete
protease inhibitor mixture (Roche Applied Science), and one
tablet per 10 mL phosphatase inhibitor mixture (Roche Applied
Science). Cells were transferred into 2 mL cryogenic tubes with
O-rings, and the pellet was collected after centrifugation (5 min
at 6000 × g) at 21◦C. An equal volume of 0.1 mm glass
beads (Biospec Products, Inc., Bartlesville, OK, United States)
was added to the pelleted cells. In addition, 300 µL of cold
lysis buffer including 10 µL of 2 units/ml RNase-free DNase
I (New England Biolabs) was added, and the cell walls were
lysed mechanically by bead beating for 20 s in a Ribolyser
(Bio101 Savant, Vista, CA, United States) at a speed of 6.4.
Thereafter the cells were cooled on ice for 1 min. The lysis
procedure was repeated three times. The lysate was clarified
by centrifugation (10,000 × g for 5 min) at 21◦C, and the
supernatant containing the whole cell lysate proteins was
retained. Thereafter the lysate was filter-sterilized through a
0.22 µm-pore Acrodisc 25 mm PF syringe sterile filter (PallLife
Sciences, Pall, Corp., Ann Arbor, MI, United States), quantified
using the Coomassie Plus Assay Kit (Pierce), and stored at−80◦C
until further analysis.

Gel Electrophoresis and In-Gel Trypsin
Digestion
Each whole cell lysate (60 µg) were mixed with electrophoretic
sample buffer (NuPAGE kit, Invitrogen, Carlsbad, CA,
United States) containing 100 mM DTT, and heated for
5 min at 95◦C prior to the electrophoretic run. Proteins were
separated in triplicate using a NuPage 4–12% Bis-Tris Gel in
2-N-morpholine ethane sulfonic acid (MES) buffer (Invitrogen)
at 200 V for approximately 40 min. Proteins were visualized
using a Colloidal Coomassie Novex kit (Invitrogen). After
staining, each triplicate was cut into 15 fractions, sliced into
smaller pieces and submitted to in-gel digestion with trypsin,
as previously described (Tomazella et al., 2012). Briefly, the
proteins in the gel pieces were reduced using 10 mM DTT
for 1 h at 56◦C and alkylated with 55 mM iodoacetamide
for 45 min at room temperature. The reduced and alkylated
proteins were digested with 0.125 µg of trypsin (Sequence
Grade Modified, Promega, Fitchburg, WI, United States) for
16 h at 37◦C in 50 mM NH4HCO3, pH 8.0. The reaction
was stopped by acidification with 2% trifluoracetic acid
(Fluka, Buchs, Germany). The resulting peptide mixture
was eluted from the gel slices, and further desalted using
RP-C18 STAGE tips (Rappsilber et al., 2003). The peptide
mixture was dissolved in 0.1% formic acid 5% acetonitrile for
nano-HPLC-MS analysis.
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LC-MS/MS Analysis
Peptides were separated by reversed-phase chromatography in
an Acclaim PepMap 100 column (C18, 3 µm, 100 Å) (Dionex)
capillary of 12 cm bed length and 100 µm inner diameter
self-packed with ReproSilPur C18-AQ (Dr. Maisch GmbH,
Ammerbuch-Entringen, Germany), using a Dionex Ultimate
3000 nano-LC system connected to a linear quadrupole ion trap-
Orbitrap (LTQ-Orbitrap) mass spectrometer (Thermo Electron,
Bremen, Germany) equipped with a nanoelectrospray ion source.
Peptides were onto loaded to the column with a flow rate
of 0.3 mL/min of 7–40% solvent B in 87 min and then 40–
80% solvent B in 8 min. Solvent A was aqueous 2% ACN in
0.1% formic acid, and solvent B was aqueous 90% ACN in
0.1% formic acid.

The mass spectrometer was operated in the data-dependent
mode to automatically switch between Orbitrap-MS and LTQ-
MS/MS acquisition. Survey full-scan MS spectra (from m/z
300 to 2000) were acquired in the Orbitrap with resolution
of R = 60,000 at m/z 400 (after accumulation to a target
of 1,000,000 charges in the LTQ). The method used allowed
sequential isolation of the most intense ions (up to six, depending
on signal intensity) for fragmentation on the linear ion trap using
collisionally induced dissociation at a target value of 100,000
charges. For accurate mass measurements, the lock mass option
was enabled in MS mode, and the polydimethylcyclosiloxane
ions generated in the electrospray process from ambient air
were used for internal recalibration during the analysis (Olsen
et al., 2005). Target ions already selected for MS/MS were
dynamically excluded for 60 s. General MS conditions were as
follows: electrospray voltage, 1.5 kV; no sheath or auxiliary gas
flow. Ion selection threshold was 500 counts for MS/MS, an
activation Q-value of 0.25 and activation time of 30 ms were also
applied for MS/MS.

MS Data Analysis
In addition to in-house generated Mtb data, we have also
analyzed S. aureus MS files found in ProteomeXchange as
PXD006483 (Hoegl et al., 2018) and PXD000702 (Depke et al.,
2015). Raw MS files of all Mtb and S. aureus datasets were
analyzed by MaxQuant version 1.5.2.8. Peptides in MS/MS
spectra were identified by the Andromeda search engine (Cox
et al., 2011b). For Mtb dataset, MS files were searched against
a database containing all sequences from 65 strains without
any processing (263,683 entries), or the database generated
by our tool using the same 65 strains (15,979 entries). The
S. aureus dataset was searched against a database containing
all sequences from 194 strains without any processing (523,281
entries) or the MSMSpdbb generated database (15,073 entries).
All bacterial sequences were obtained from GenBank as written
above (August 2017). MaxQuant analysis included an initial
search with a precursor mass tolerance of 20 ppm which
were used for mass recalibration (Cox et al., 2011a). Trypsin
without proline restriction was used as enzyme specificity, with
two allowed miscleavages and no unspecific cleavage allowed.
In the main Andromeda search precursor mass and fragment
mass were searched with initial mass tolerance of 6 ppm and
0.5 Da, respectively. The search included variable modifications

of oxidation of methionine and protein N-terminal acetylation.
Carbamidomethyl cysteine was added as a fixed modification.
Minimal peptide length was set to seven amino acids. The
false discovery rate (FDR) was set to 0.01 for peptide and
protein identifications, and since the aim is to compare database
performance, no further score or PEP thresholds were used for
individual MS spectra. In the case of identified peptides that are
shared between two proteins, these are combined and reported as
one protein group. Protein and peptide datasets were filtered to
eliminate the identifications from the reverse database and from
common contaminants.

To test if time performance was biased by the MaxQuant
environment, we have also submitted both MS datasets
for peptide identification against reduced and concatenated
databases using Comet (Eng et al., 2013), OMSSA (Geer et al.,
2004), and X!Tandem (Craig and Beavis, 2004). All searches were
performed separately using SearchGUI (Vaudel et al., 2011), using
the same search parameters as for the MaxQuant searches. Data
regarding analysis time were retrieved from the SearchGUI log
file generated during each search.

RESULTS

Implementation and Database Format
MSMSpdbb was originally designed to use gene assembly
data from GenBank from selected bacterial strain genomes
to construct protein sequence databases, which considered all
possible sequence variations (SAP, TSS choice, for example) on
a non-redundant manner (i.e., without extensive entry usage
for very similar sequences). At the current version we modified
it to perform BBH BLAST, which is an approach more used
to define orthologous sequences, rather than Cluster BLAST.
Database formatting was also modified; each non-reference
peptides containing polymorphisms are now inserted as a new
entry in the database.

On average, the assemblies used on this work had a number of
genes ranging from 910 in Chlamydia trachomatis (average value
to all strains) to 6092 in Pseudomonas aeruginosa. The analyzed
species were selected not solely due to a higher number of strains
with complete genome sequences available but also considering
the complexity of their pangenomes. All selected species have
pangenomes that can be very diverse (for example, E. coli, 2,459
core genes to approximately 26,000 pangenomic genes) or just a
fraction of the core genome (such as Chlamydia trachomatis and
Mtb, which have only one accessory gene to every five core genes)
(Rasko et al., 2008; McInerney et al., 2017; Ding et al., 2018).

Figure 1 illustrates the approach workflow: briefly, a query
strain is selected, and pair wise comparisons are performed
with the remaining subject strains (Figure 1A). All_fasta.pl
will generate two files, one containing unique entries from
the query strain, which did not find an homolog in any of
the subject strains (i.e., sequences with no BHH significant
hit to any other protein entries in subject strains), and
another file with all homolog protein sequence clusters from
the strains that shared the required levels of identity and
similarity in BHH manner (Figure 1B). All_fasta.pl will then
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FIGURE 2 | Typical homolog comparison. For protein Rv0104, in this case selected as reference, three SAPs were identified across all Mtb strains, in addition to two
TSS choices, two premature stop codons, and a complete amino acid sequence change (region in yellow) most probably from an indel.

remove Query 1 strain from the dataset, and reduce the fasta
files from Subject strains by removing proteins that were
already identified as homologs to a Query 1 protein. One
of the subject strains will be selected as Query 2, and a
new round of BHH alignment will be performed using the
remaining subject strains (Figure 1C). This will be repeated
until all subject strains are used as Query. At this point,
the script pep_trip.pl will create the final database by first
copying all uniquely annotated sequences (Figure 1D). For each
homolog cluster, the script will select the longest homolog to
be used as a reference sequence (regardless of which strain it
is originated from), and save it into the final database. The
remaining homologs will have their tryptic peptides compared
to the reference sequence. Each tryptic peptide from a non-
reference sequence that does not match any of the reference
sequence (due to a different TSS choice or a SNP for example),
will be added in the database as a new entry. Pep_trip.pl
will finish the database (Figure 1F) and also create a log
file reporting all entries that were inserted into database,
their origin, how they were clustered and compared, and
classifying all tryptic peptides which were added to the final
database, showing the type of event (TSS choice, SNP etc.)
and in case of SNP, the resulting amino acid substitution.
Detailed information of this process can be found in the
Supplementary Text.

Figure 2 illustrates a typical homolog comparison leading
to the detection of polymorphic peptides. The hypothetical
protein AEM98552 [Rv0104 on the Tuberculist annotation (Lew
et al., 2011)] was set as reference, and nine other different
variants were observed. Those variants are the result of the
different combinations including: two additional TSS choices at
position 9 and 118; three SAPs at positions 402 (Tyr→His),
477 (Gly→Arg) and 493 (Leu→Val); a not-classified genetic
modification that leads to alternate amino acid sequence after
position 475 (yellow box, named as frameshift/indel); and finally,
two polymorphisms leading to premature stop codons and
generating different c-terminal tryptic peptides ending at position
378 and 426. For example, the variant from strain CAS/NITR204
(AGL25567) contains two SAPs, while the variant from strain
CCDC5180 (AEJ48929) has a different TSS choice at position 9 of
reference, and a premature stop codon, truncating the protein at
position 378. Each unique tryptic peptide characterizing all such
polymorphisms are added in the database as an additional entry.

Database Size Increase Ratio per
Species
Databases were created for 10 species to measure if the
rate of increase in the database size could be impacted
by unique features of each genome, such as the size of a
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FIGURE 3 | Number of entries per database after redundancy removal. The graph shows data when only considering reference and uniquely annotated sequences
in all strains, i.e., customized entries containing polymorphic peptides where not counted. Values in x axis show the number of strains used for database creation. All
values plotted in the graph are given in Supplementary Table S1.

TABLE 1 | Database size increase and pangenome size in 10 selected species.

1 strain Final DB Ref Gain per strain DB increase Pangenome? Pangenome size (%/100)∗

E. coli 4893 22525 271 4.60 Y 0.91

B. pseudomallei/mallei 5917 20876 230 3.53 Y 0.70∗∗

A. baumanii 3746 12536 135 3.35 Y 0.79

M. tuberculosis 4056 11490 114 2.83 Y 0.21

P. aeruginosa 6092 15814 150 2.60 Y 0.81

S. aureus 2697 6735 62 2.50 Y 0.67

B. pertussis 3619 8902 81 2.46 Y 0.15

C. jejuni 1644 3934 35 2.39 Y 0.62

L. monocytogenes 2913 6511 55 2.24 Y 0.58

C. trachomatis 910 1255 5 1.38 Y 0.19

∗As described in panX database (Ding et al., 2018) in March 2019. ∗∗Pangenome size for B. pseudomallei.

pangenome. For a fair comparison among species, we built
databases using a maximum of 65 strains, since at the time
Mtb had only 65 strains with complete sequenced genomes
available. To assist the visualization of how the database size
is incremented as more strains are used, we also created
databases using 5, 10, 20, and 30 randomly selected strains of
each species. And to avoid outlier behavior in case a strain
with very unique annotation being randomly selected, every
database was created three times in total. The rand.pl script
provided with the tool performs all such steps automatically,
if the data needs to be reproduced (replacing all_fasta.pl
described in section “Materials and Methods”). We then

counted total number of protein entries and tryptic peptides
in each database.

Supplementary Table S1 shows all values measured for all
tests including number of annotated proteins (excluding all
entries created to accommodate polymorphisms) (Figure 3 and
Table 1), and number of peptides with or without miscleavages
allowed (Supplementary Figure S1). Figure 3 shows graphically
the increase in number of annotated proteins in all species,
and Table 1 describe number of annotated proteins in the
database using 65 strains, rate of database size increase, number
of annotated proteins added per strain on average, and size of
pangenome for each species. As expected, the increase rate in
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the number of annotated proteins in the final database correlated
with the size of the gene pool in the pangenome. E. coli, which
has the largest genetic pool described, had indeed the larger
database increase rate of all species, at 4.6x increase compared
to the average number of genes per strain. The three exceptions
for this were: B. pseudomallei/mallei with the 2nd increase rate
(3.53x) even though the pangenome size of B. pseudomallei is
the 4th most complex (no data is available regarding B. mallei
pangenome); Mtb, which has the 3rd less complex pangenome
size, representing only 21% of total genetic pool, yet it has 4th

database increase rate (2.83x), surpassing P. aeruginosa which has
a larger genome size and a bigger genetic pool; and B. pertussis,
with the smaller pangenome but with a database increase rate
(2.46x) which surpassed three species with larger pangenomes.

Proteomic Performance in Diverse MS
Datasets
When we first developed the MSMSpdbb approach (de Souza
et al., 2010), the number of genomic information available was
a fraction of the amount currently in existence. For example, the
analysis validation performed on an Mtb dataset used a database
with only eight strains (five from M. tuberculosis and three from
M. bovis). We then wondered if the approach would still be
valuable as 100s of genome information are available to a single
species. This was tested by performing proteomic analysis in two
independent datasets.

The MSMSpdbb processed databases created by the tool
contained 15,996 (Mtb), and 15,073 (S. aureus) protein entries. In
comparison, merely concatenated databases using all sequences
from the available strains for each species created a database with
263,683 protein entries for Mtb and 523,281 protein entries for
S. aureus. From now on, all MSMSpdbb processed databases are
called DB1, and simply concatenated databases are named DB2
for simplicity. The MS datasets were then challenged for peptide
identification using the respective DB1 and DB2 databases for
each species. It is important to note that all theoretical unique
tryptic peptides present in DB2 are also present in DB1 (data
not show), except for variant peptides in DB2 that are shorter
than 7 amino acids or longer than 35 amino acids, which were
not considered by the pep_trip.pl script which created DB1. The
complete results folders from each MaxQuant search including
protein and peptide lists with relevant identification parameters
are provided (see section “Data Availability”).

In all datasets, when comparing the results from DB1 and DB2
searches, the number of peptides identified was very similar in
both searches (Figure 4). For example, the Mtb dataset identified
32,986 unique peptides in both searches, while 515 peptides were
identified only in the DB1 search and 1,116 peptides only in the
DB2 search result (Figure 4A). When all peptides are considered,
95.28% of the peptides were identified in both searches. For
S. aureus, DB1 and DB2 searches were in agreement for 92% of
the identified peptides in all searches combined. We observed
that the majority of such database exclusive identifications are
distributed in the lower range of the spectra scoring. For all
datasets, the median MaxQuant score for peptides identified in
only DB1 and DB2 were in the range of 52 to 75, while the

median scores of peptides identified both searches was from 128
to 137 (see histograms Figure 4). If a MaxQuant posterior error
probability (PEP) score lower than 0.01 is also considered as a
parameter for valid MS2 identification, the numbers of exclusive
peptides drop even further. For Mtb, DB1 exclusive peptides were
reduced from 515 to 315 peptides, 0.95% of the total number
of peptides identified. For DB2, the difference was even larger,
from 1,116 to 424 peptides (1.29% of the total peptides identified).
From these remaining 424 peptides with good PEP scores, 323
are peptides which are not present in DB1 because they did not
meet requirements used by our script, i.e., they are not reference
peptides, they contain polymorphisms (i.e., they should had been
added in DB1 as an additional entry), but they are fully tryptic
peptides with less than seven amino acids. The same was observed
for S. aureus dataset: DB1 exclusive peptides dropped from 1,500
to 1,075 (now 2.7% of total) and DB2 dropped from 2,916 to 1,738
(now 4.8% of total). While 4.8% variation is still a high difference,
from those 1,738 peptides, 1,121 are fully tryptic peptides with
less than seven amino acids not present in DB1.

We also had validated if a false-positive bias was present
in identified peptides from proteins that are annotated/present
in fewer strains, compared to peptides present in most strains
of both Mtb and S. aureus. For this, we divided the identified
peptides according to the number of strains containing those
peptides, and visualized their score distribution. As a control,
we observed the score distribution of the peptides identified
in decoys (reversed) entries. For Mtb, we divided peptides as
those present in 33 strains or more; in 13 to 32 strains; or
those annotated in 12 strains or less. For S. aureus, groups were
those annotated in 100 strains or more, 21 to 99 strains, or 20
strains or less. Supplementary Figure S2 shows the histograms
for all groups. Score distribution was similar to all identified
peptides, regardless if they are commonly observed between
strains or rarer. As a control, we compared the score distribution
of those peptides to the score of decoy (reverse) peptides, i.e., true
false-positives. As expected, the score distribution of peptides
belonging to decoy identifications was very low.

Interestingly, multiple TSS polymorphisms for the same
protein were also observed even for the same strains.
Supplementary Figure S3 shows the position of three peptides;
all predicted as possible N-terminal peptides of the protein lipase
lipV. MIIDLHVQR (Score 93.4, PEP 0.0019) represents the most
5′ prediction; LTIHGVTEHGR (Score 85.9, PEP 0.0005) starts at
position 19 of reference protein and HGVTEHGR (Score 100,
PEP 0.0077) starts at position 22 of reference. The longer form is
the most abundant in almost all samples, except S1430 where only
LTIHGVTEHGR was identified and S2666 where the N-terminal
HGVTEHGR is slightly overrepresented than MIIDLHVQR.

Database Size Impact in Computational
Performance
As shown before, database size reduction from DB2 to DB1 was
approximately 16x to Mtb and 35x to S. aureus. By inspecting
MaxQuant log folder we calculated the amount of minutes used
for each step in its proteomics pipeline. For Mtb, the time spent
for the whole pipeline was reduced by half, from 853 min for DB2
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FIGURE 4 | Peptide identification performance in reduced (DB1) vs. concatenated (DB2) databases. All unique tryptic peptides identified in DB1 and DB2 in the Mtb
(A) and S. aureus (B) datasets are compared. Venn diagrams show that majority of tryptic peptides were identified in both searches. Unique peptides identified in
each dataset had their PEP score inspected. Values in parenthesis shown number of peptides with valid scoring (PEP < 0.01). Peptide MS2 scores of each group
were plotted in a histogram, and a median was calculated. Median of the score distribution for peptides exclusive to DB1 or DB2 ranged from 51.03 to 75.67, while
median scores of peptides identified on both searches were 138.28 for Mtb and 128.88 for S. aureus.

FIGURE 5 | Computational demand in reduced (DB1) vs. concatenated (DB2) databases. Processing times for Mtb (A) and S. aureus (B) datasets. The bar is
divided into MaxQuant stage number, as described in Neuhauser et al. (2013) (value at bottom) and time in minutes is at the top of the bar. For Mtb, analysis was
hasten mainly at stage 12 (Main search), 22 (Second peptide search), and 40 (Writing tables); in addition to those, for S. aureus improvements were also observed
for post-search steps 13–21 and 23–29, and step 30 (“Protein groups assembly”).
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to 434 min to DB1 (Figure 5). Main differences were observed
for steps related to the peptide search, i.e., the ‘main search’
(5x) and the ‘second peptide search’ (4x) steps, and during the
creation of results and other final files named ‘writing tables’
(3.5x). For S. aureus the differences were far more evident, as
the complete pipeline took 7,553 min for DB2 and 2,147 min
for DB1. Time reduction in peptide search steps were similar
to Mtb at 4.5x and 4x respectively. But in addition to those,
other steps which are related to read and finish the main and
the second search results had improvements of 42 and 19.6 times
respectively. Steps related to assignment and assembly of protein
groups had improvements of 42 times, and ‘writing tables’ had a
time improvement of 10.4 times.

Arguably, such differences could be specific to the MaxQuant
environment. Therefore, Mtb dataset and databases were
additionally tested by three different peptide search engines:
X!Tandem (Craig and Beavis, 2004), OMSSA (Geer et al., 2004),
and Comet (Eng et al., 2013). All searches were performed
independently using SearchGUI environment (Vaudel et al.,
2011). Those searches are comparable to the “Main search” step in
MaxQuant, which represents the task performed by Andromeda
peptide search engine (Cox et al., 2011b). All processing times are
shown in Supplementary Figure S4. Peptide searches using the
concatenated DB2 database, searches took 174 min in X!Tandem,
1,455 min in OMSSA and 2,708 min in Comet. For the reduced
DB1 database, the searches took 58 min in X!Tandem, 322 min
in OMSSA and 184 min in Comet, representing analyses time
reduction of three times, 4.51x and 14.7x respectively.

DISCUSSION

Database size is a known bottleneck in proteomics, and its
implications had been already discussed in proteogenomics
and metaproteomics research (Jagtap et al., 2013; Heyer
et al., 2017). Therefore, controlling database information is
of key importance. A manner to achieve this is to construct
customized databases where identical sequences/tryptic peptides
from homolog proteins are not exhaustively present in different
entries within the database. We had already applied this for the
characterization of samples with unknown genetic background
such as bacterial clinical strains (de Souza et al., 2011; Tomazella
et al., 2012). Such databases allow the validation of coding regions
and confirmation of sequence polymorphisms normally omitted
from reference databases. This is a critical characterization,
considering that even genomes with two decades of considerable
investigation still have gene annotation issues (Abascal et al.,
2018). It is true even for prokaryotes (de Souza et al., 2008,
2009), with their simpler genomic structure and higher coding
density. However, as the amount of genomic information
exponentially increases with time, we wished to further evaluate
the impact of such approach with the current amount of
available genomic data.

First, we were curious to investigate how different species with
diverse genetic features (such as the presence of a pangenome)
would impact database size and structure. As expected, database
size increase correlated with the pangenome complexity of each

species. Surprisingly Mtb and B. pertussis databases size increased
at rates higher than expected based on the low complexity
of their core and pangenomic genes. Previous data from Mtb
suggested that database size increment was not heavy, when at
the time only five Mtb strains and three strains of M. bovis
were considered (de Souza et al., 2011). Our data here however
shows that Mtb database size increment was one of the most
prominent, arguably the most relevant if its small pangenome is
considered. Something similar happened to B. pertusis databases,
which has the smallest pangenome and database increase was
higher than three species with bigger pangenomes. However,
C. trachomatis, L. monocytogenes, and C. jejuni have smaller
genomes than compared to B. pertussis, all also having higher
density of coding regions (Parkhill et al., 2000, 2003; Thomson
et al., 2008). More nucleotide regions in the genome marked as
non-coding will offer more opportunity for different strategies to
generate conflicting gene annotation data, which could explain
B. pertussis database size increase in our analysis. The database
size increase for B. pseudomallei and B. mallei was not taken into
consideration by us on this analysis, because while we decided to
merge both species as one based on genotyping data (Godoy et al.,
2003), large scale rearrangements in B. mallei (Losada et al., 2010)
might be interfering with our approach.

We then selected two MS datasets from Mtb and from
S. aureus to identify peptides using a routine probabilistic-
based approach, but now using the complete set of available
genomes (194 strains) for S. aureus. Overall, DB1 and
DB2 performance was very similar, and differences were
negligible (highest difference was 2.5% for DB1 exclusive peptide
identifications in S. Aureus), as most could be possessing
low MS2 scores and low PEP values. Valid identifications
which are exclusive to DB2 (323 and 1121 peptides in
Mtb and S. aureus, respectively) were peptides containing
miscleavages that were not selected by MSMSpdbb (i.e., the
peptides without miscleavages were shorter than seven amino
acids and not present in the selected reference protein)
and therefore were absent in DB1 due to the parameters
used for DB1 construction. We also investigated if “rarer”
identified peptides, i.e., those containing polymorphism or
from proteins present in a minority of the strains of
the species, could have an identification bias. MS2 score
distribution was very similar, regardless if peptide belonged
to a commonly observed variant or not, and distribution had
higher medians than peptides identified from decoy entries,
i.e., distinguishable false-positives. Therefore we conclude no
bias exists toward common or rare peptides. It is worth
mentioning that surprisingly, we have identified multiple
N-terminal predictions for the same protein, in some cases
observed in the same strain (Supplementary Figure S3).
While normally the identification of a protein N-terminal
peptide in proteogenomics is used to validate and confirm
the TSS of the protein, our data suggest that excluding the
remaining TSS choices from the database might be undesirable,
considering they might be later identified when additional strains
are analyzed by MS.

The advantage of using a concatenated database is evident
when computational performance is measured. The main steps
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in Andromeda/MaxQuant pipeline which involve Fasta reading
(‘main’ and ‘second peptide’ searches) were similarly improved
in both datasets tested. Similar observations were obtained
regardless if other peptide search engines were used. In S. aureus
dataset, where DB1 concatenation is larger when compared to
DB2 (from approximately 500,000 entries to 15,000 entries), time
processing improvements were observed in additional stages of
the MaxQuant pipeline. Particularly steps related to handle of
peptide search engine results and assembly of the protein groups
to be reported as final protein identifications. The step which
creates the final output files (‘Writing tables’), even though do
not directly use the Fasta file, was also significantly improved.
This makes sense, as MaxQuant will report all entries from the
database that share identical peptides. Entries from a protein with
high sequence identity present in all 194 strains for S. aureus, for
example, will have all 194 entries recorded in the output if that
protein is identified. For DB1, since those 194 highly identical
sequences are concatenated into a single reference entry, the
output reporting is vastly simplified.

As MS evolves and as detection sensitivity and peptide
identification coverage improves, one of the last bottlenecks in
metaproteomics research is database design. Building databases
for metaproteomics is often achieved by two approaches: either
by collecting metagenomic or metatranscriptomic data from
the sample; or by concatenating protein sequences from a
public repository such as UniProt (for recent reviews see Heyer
et al., 2017; Starr et al., 2018). Regarding the metagenomic
approach, even with the advances of next-generation sequencing
methods, proper genomic screening of a complex sample is
still costly, and assembly of short reads and contigs in complex
samples is challenging due to sequence similarity (Heyer et al.,
2017). On the other hand, concatenating protein sequences
from multiple organisms from a public repository results in
very large databases, making the analysis time costly and
susceptive to high false-positive rates (Tanca et al., 2013).
False-positive issues had been mostly solved by database size
restrictions using a multi-step peptide search or multiple
peptide searches using smaller datasets of refined sequences
on each search and further analysis to combine results (Jagtap
et al., 2013; Muth et al., 2016, 2018; Zhang et al., 2016;
Liao et al., 2018). While those are successful methods, they
are mostly provided as complete pipelines. We believe that
providing solutions solely at Fasta file level offers more
freedom to researchers, as they can use whichever peptide
search engines or pipelines they prefer. We predict that
controlling database size such as done by MSMSpdbb without
losing peptide identification coverage and drastically reducing
computational processing time will be of key importance
for metaproteomics.
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FIGURE S1 | Number of tryptic peptides per MSMSpdbb database. In (A) only
fully tryptic peptides are considered, while in (B) peptides with up to two
miscleavages are also counted, a standard search parameter choice in
proteomics. Values in x axis show the number of strains used in the database. All
values plotted in the graph are given in Supplementary Table S1.

FIGURE S2 | Score distribution in subpopulations of identified peptides. All
identified peptides in S. aureus (A) and Mtb (B) datasets were divided according
to their occurrence across all strains. For Mtb they were divided as peptides
annotated in more than 33 strains, annotated in 13 to 32 strains, or in 12 strains
or less. For S. aureus the values for similar groups is 100, 21 to 99 and 20 strains
or less, respectively. Score medians in all valid identifications ranged from 121.5 to
138.2, while decoy identification had median scores of 59.2 in Mtb and 51.3 in
S. aureus (red lines).

FIGURE S3 | Multiple TSS identified in protptionn lipV. (A) Three possible TSS
choices were identified in clinical Mtb strains. The most upstream prediction
(MIIDLHNQR) is the most abundant variant observed in all strains, except strain
S1430 which has only the variant with TSS at position 19 (ITIHGVTEHGR) of the
reference sequence, and strain S2666 which TSS at position 22 (HGVTEHGR) is
predominant. Two possible TSS choice variants were also observed at high levels
for strain S1593. (B–D) MS2 spectra for all three peptides mentioned above.

FIGURE S4 | Analysis time for peptide search engines other than
Andromeda/MaxQuant. Bars shows, in minutes, the time spent for peptide
identification using X!Tandem, OMSSA or Comet, using either the reduced DB1 or
the concatenated DB2 databases.

TABLE S1 | Database size increase and pangenome size in 10 selected species.
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