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The Elizabethkingia are a genetically diverse genus of emerging pathogens that
exhibit multidrug resistance to a range of common antibiotics. Two representative
species, Elizabethkingia bruuniana and E. meningoseptica, were phenotypically tested
to determine minimum inhibitory concentrations (MICs) for five antibiotics. Ultra-
long read sequencing with Oxford Nanopore Technologies (ONT) and subsequent
de novo assembly produced complete, gapless circular genomes for each strain.
Alignment based annotation with Prokka identified 5,480 features in E. bruuniana
and 5,203 features in E. meningoseptica, where none of these identified genes or
gene combinations corresponded to observed phenotypic resistance values. Pan-
genomic analysis, performed with an additional 19 Elizabethkingia strains, identified
a core-genome size of 2,658,537 bp, 32 uniquely identifiable intrinsic chromosomal
antibiotic resistance core-genes and 77 antibiotic resistance pan-genes. Using core-
SNPs and pan-genes in combination with six machine learning (ML) algorithms, binary
classification of clindamycin and vancomycin resistance achieved f1 scores of 0.94
and 0.84, respectively. Performance on the more challenging multiclass problem for
fusidic acid, rifampin and ciprofloxacin resulted in f1 scores of 0.70, 0.75, and 0.54,
respectively. By producing two sets of quality biological predictors, pan-genome genes
and core-genome SNPs, from long-read sequence data and applying an ensemble of
ML techniques, our results demonstrated that accurate phenotypic inference, at multiple
AMR resolutions, can be achieved.

Keywords: nanopore sequencing, Elizabethkingia, antimicrobial resistance, machine learning, AMR prediction

INTRODUCTION

Emerging antimicrobial resistance (AMR) is a global crisis. A recent report has predicted that by
2050 antimicrobial resistance will lead to 10 million deaths annually and cost the world’s economy
upward of $100 trillion (O’Neill, 2016; Tacconelli and Magrini, 2017). Currently, chemical assays
that determine the minimum inhibitory concentration (MIC) are standardly used as a diagnostic
tool to quantify antimicrobial resistance levels for cultured bacterial strains (Andrews, 2001).
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MICs quantify how susceptible, or resistant, a cultured strain is
to selected antimicrobial drugs by observing the visible growth
of the bacterium under antibiotic stress (Jorgensen and Ferraro,
2009). These protocols, however, are time-consuming and the
interpretation of susceptibility for many antimicrobial/pathogen
combinations have not yet been standardized (Horne et al., 2013).
Furthermore, these procedures rely on the successful growth of
bacterial isolates, making them incompatible with “unculturable”
bacteria (Vartoukian et al., 2010). As a result, full spectrum AMR
detection remains challenging (Chitsaz et al., 2011).

With the advancement of sequencing technologies, single-
molecule sequencing platforms are now regularly accessible and
can overcome some of the disadvantages of phenotypic methods
for AMR detection (Didelot et al., 2012; Fricke and Rasko, 2014;
Lim et al., 2019). Genetic determinants conferring AMR have
been identified in a few large studies. For example, the AMR
profiles for 501 Staphylococcus aureus isolates were predicted
from whole-genome sequencing (WGS) annotation results which
achieved an overall sensitivity and specificity of 97 and 99%,
respectively (Gordon et al., 2014). Another study investigating
681 Neisseria gonorrhoeae isolates achieved an acceptable major
error rate (93% accuracy within one MIC doubling dilution
and 98% for two) by regressing MIC phenotypes on genetic
mutations of known AMR genes (Eyre et al., 2017). While the
results are comparable to routine antimicrobial testing, they rely
on the prior knowledge of single-gene products that relate to
observable AMR phenotypes.

The wide range of expressed AMR phenotypes in the bacterial
domain suggests that the genetic basis for the evolution and
transmission of AMR is driven by a complex interplay of
several factors. These include the rate at which resistance
genes and mutations arise, the level of resistance contributed
by the acquired genetic variants, and the relative fitness of
the resistant mutants while under selective pressure from
the drugs (Sommer et al., 2017). In addition, there are a
large number of intrinsic chromosomal genes found in many
bacteria, such as the marRAB operon (Vinue et al., 2013),
which are involved in complex epistatic interactions regarding
antimicrobial resistance expression (Gambino et al., 1993; Martin
and Rosner, 2002; Lim et al., 2019). Specifically, the marRAB
operon, which confers AMR through changes in efflux pump
mechanisms and porin expression, encodes two critical DNA-
binding transcriptional regulatory factors, MarA and MarR
(Sharma et al., 2017). In the case of rifampicin for example,
current literature identifies that single-gene rifampicin resistance
products are actively mediated by larger regulatory elements
required for expressed resistance (Wong, 2017). This regulatory
machinery of AMR expression can further render single AMR
gene-based interpretations ineffective for predicting resistance
phenotypes (Vinue et al., 2013).

Machine learning (ML) has led the way in cutting-edge
prediction accuracy for vision tasks (Voulodimos et al., 2018),
time-series problems (Ahmed et al., 2010), and the clustering
of high-dimensional data (Assent, 2012). These methods
have seen success in genomics for gene-finding (Libbrecht
and Noble, 2015), predicting the functional consequences
of protein missense mutations (Shihab et al., 2013), and

genetic structure discovery using Markov clustering (Kopelman
et al., 2015). ML is capable of dealing with high-dimensional
interactions and nonlinear relationships in data, and has
shown promise in using SNPs for predicting phenotypes
that have a complex genetic architecture (Ban et al., 2010)
and using k-mer counts (Nguyen et al., 2018). Recognizing
the multifactorial, vertical, and horizontal genetic basis of
resistance, we propose that AMR can be predicted for
multiple phenotypes of a diverse group of multidrug resistant
Elizabethkingia species by exploiting the capacity of cloud-
knowledge driven ML approaches.

The Gram-negative rod genus Elizabethkingia demonstrates
resistance to β-lactams and related antimicrobials due to the
presence of multiple chromosomally-located β-lactamases
(Bellais et al., 2000; Gonzalez and Vila, 2012). The high
genetic diversity of Elizabethkingia also contributes to its
highly variable MIC values for a broad selection of antibiotics
(Perrin et al., 2017). In 2015 – 2016 in the states of Wisconsin,
Illinois and Michigan (United States), 63 patients were found
to have been infected by Elizabethkingia anophelis, which
expressed multidrug resistance (Perrin et al., 2017). In this
clonal outbreak, the individual pathogen isolates exhibited
significant ecological clustering with an uncharacteristic
mutational spectrum. The temporal and spatial distribution of
this population suggested on-going adaptation of the outbreak
strain, possibly owing to an accelerated nucleotide substitution
rate (Perrin et al., 2017).

Utilizing antimicrobial susceptibility and genomic data of
21 Elizabethkingia strains, including two newly completed
strains sequenced with third-generation Nanopore long-read
sequencing, this study examined the ML-powered predictability
of AMR profiles. An Elizabethkingia core genome, built from
the described strains, was established; and to leverage biological
cloud data, other non-Elizabethkingia isolates were included to
construct core-SNPs and pan-gene presence/absence matrices,
with which AMR predictability was evaluated for several ML
algorithms. In this report, we detail the methods used to
produce efficient AMR prediction for both binary and multiclass
resistance profiles.

MATERIALS AND METHODS

Elizabethkingia spp., Culture and
DNA Extraction
Single colony isolates of E. bruuniana ATCC 33958 and
E. meningoseptica KC1913 were grown overnight in LB broth
(10g NaCl/L) at 37◦C under constant agitation. These cultures
were then used to extract genomic DNA utilizing QIAGEN
Genomic-tips DNA purification kits (QIAGEN, Valencia, CA,
United States) according to the manufacturer’s protocol.

Antibiotic Resistance Profile Evaluation
Bacterial isolates were grown and maintained as described
previously (Johnson et al., 2018). Minimum inhibitory
and bactericidal concentrations (MICs/MBCs, respectively)
for each strain were determined by broth macrodilution
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following standard CLSI guidelines (Clinical and Laboratory
Standards Institute, 2018). Overnight cultures were diluted
in Mueller-Hinton broth (MHB) to an optical density
at 600 nm of 0.01 where upon 1 mL was transferred to
13 mm × 100 mm sterile screw capped tubes containing 1 mL
of antimicrobial. These tubes were subsequently incubated for
24 h in a stationary incubator at 37◦C, and the MICs were
determined as the antimicrobial concentration that inhibited
visual growth. Minimum bactericidal concentrations were
determined by plating 100 µL from each tube at and above
the MIC onto drug-free Mueller-Hinton Agar (MHA) and
incubating for 24 h (37◦C). The MBC was determined as
the lowest antimicrobial concentration in which no visual
colonies were observed.

Library Preparation
DNA libraries were prepared separately for each Elizabethkingia
isolate following the procedures outlined for the SQK-LSK208
2D sequencing kit (Oxford Nanopore Technologies (ONT),
United Kingdom) with the following protocol adjustments.
A total of 1.5 µg of gDNA was sheared in g-tubes (Covaris)
at 4200 RPM for a targeted fragment size of 20 kb. End-repair
was performed following the manufacturer’s recommended
protocol for Ultra II End-prep enzyme mix (NEB). Adapter
ligation reaction incubations were increased to 15 min.
All bead clean-ups used 0.4x AMPureXP beads (Beckman
Coulter, Brea, CA, United States) for additional size selection
and elutions were performed at 37◦C for 20 min. DNA
concentration of the library was quantified using Quant-
IT PicoGreen

R©

dsDNA Assay Kit (Thermo Fisher Scientific),
measured on Synergy H1, hybrid multi-mode microplate
reader (BioTek). Final DNA library yields were above the
recommended 200 ng.

Single Molecular Real Time Sequencing
Two R9.4 flow cells were prepared for two corresponding
MinIONs, each connected to a separate Windows PC using a USB
3.0 connection. MinKNOW GUI application 1.0.8.0 from ONT
was used to validate the MinION connection and to monitor
basic hardware details, like the number of active pores within
each flow cell during sequencing runs. Pore count validation
was completed beforehand, with the Platform QC command
in MinKNOW. Flow cell priming was done according to the
protocols provided by ONT for MinION use.

In a microfuge tube, 37.5 µL of running buffer (RBF), 25.5 µL
of library loading beads (LLB) and 12 µL of Elizabethkingia DNA
library were mixed to produce one loading library. The loading
library mixture was carefully prepared for each species separately,
to prevent fragmentation. The R9.4 flow cells received 75 µL of
loading library via the SpotON port.

The sequencing runs were administered through the
MinKNOW application, where each separate run was digitally
labeled and the NC_48Hr_Sequencing_Run_FLO-MIN105_
SQK-LSK208.py option was used for 2D R9.4 chemistries. After
running the sequencing script, the flow cells were allowed to
sequence for 48 h, during which E. bruuniana was reloaded at
the 24-h mark. E. meningoseptica KC1913 was only sequenced

for 20 h, after which the flow cell provided no further sequencing
capacity due to the depletion of nanopores.

Assembly and Polishing of
Elizabethkingia Genomes
The sequencing output from MinKNOW exists as the ONT
FAST5 format, and Albacore 1.3.25 (ONT) was used to base-
call the sequencing data. This transcribes the signal-level data
into FASTQ sequences embedded within FAST5 reads. Extraction
of the FASTQ data was completed using poretools version 0.6.0
(Loman and Quinlan, 2014). ONT changed the way that 2D
FAST5 files are parsed causing a parsing problem in a critical
downstream polishing tool for 2D FAST5 reads. Because of this
change, all 2D reads were converted to 1D reads for the remainder
of this study. The 1D template-strands and complement-strands
were extracted with poretools using the switch: –type fwd, rev.

Per-read quality filtering consisted of a multi-step procedure
to maximize read length and read quality for assembly. The
reads, in FASTQ format, were subjected to a quality filter pass
with a minimum Phred score of 12 using PRINSEQ (Schmieder
and Edwards, 2011) with the –min_qual_mean switch. Reads
with a length of 1,000 bp or lower were also discarded with
PRINSEQ’s –min_len switch.

De novo assembly of each organism’s reads was completed
with Canu v1.5 (Koren et al., 2017), a Celera Assembler successor
designed to generate high-quality assemblies from Nanopore
or PacBio long-reads. Canu was chosen because it provides
higher assembly sequence identity than competing long-read
assemblers, such as miniasm (Koren et al., 2017). Minimum
overlap length was 500 bp and suggested genome size was 3.8 Mb
and 4.5 Mb for E. meningoseptica KC1913 (Matyi et al., 2013), and
E. bruuniana ATCC 33958 (Matyi et al., 2015), respectively.

After producing the initial de novo assembly with Canu,
Nanopolish v7.1 (Loman et al., 2015) was used to improve
the overall assembly quality for each sequence using a hidden
Markov model. All original base-called, signal-level reads were
re-extracted to tag the reads with identifying information for
Nanopolish; these tagged reads were then aligned to their
respective assemblies using BWA-MEM 0.7.15 (Li, 2013) using
the –x ont2d switch. This command switch reduces the initial
seed lengths and uses a relaxed scoring matrix, which allows
the effective mapping of ONT’s noisy reads to the reference
assemblies without producing large-scale fragmentation. After
alignment, the produced SAM file was converted into the
corresponding binary format (BAM file) using samtools (Li et al.,
2009) using the view command and the –sB switch. Nanopolish
was run in parallel to produce the consensus sequence for each
assembly. The segmented output FASTA files were concatenated
to complete the polished consensus sequence.

Signal-level data was used to capture methylation information
(Simpson et al., 2017) across the genome. Nanopolish’s trained
hidden Markov model was used to detect and compute
likelihoods for potential 5-methylcytosine sites in the polished
genome (Simpson et al., 2017). The final polished consensus
sequence was then compared with the original unpolished
assemblies from Canu using the software Mauve and its
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progressiveMauve algorithm (Darling et al., 2010). Since Mauve
is not only an effective multiple genome aligner but also a variant
caller, it was used to produce SNP and insertion/deletion (indel)
tables for comparative purposes.

Circos (Krzywinski et al., 2009) was used to visualize the
assembly data. For both polished genomes, a circular histogram
was plotted to represent the per-chunk GC content. Each bar
in the histogram represented the mean GC content for a
2,000 bp chunk of the genome, scaled from a minimum of 20%
to a maximum of 50% GC content. Additionally, a heatmap
representing methylation density was rendered using circos. Only
methylation sites with a log-likelihood ratio greater than 3.5 were
included. Darker regions contain methylation sites with a higher
likelihood than lighter regions, and each region is represented by
a chunk size of 3,000 bp.

Annotation, Cloud Knowledge, and
Multiple Sequence Alignment
Each polished assembly was submitted to the online RAST
service (Aziz et al., 2008; Overbeek et al., 2014; Brettin et al.,
2015) for annotation. Default settings of Classic RAST were
used with Release70 as the RAST FIGfam version. Nanopore
assemblies commonly contain deletions at homopolymer regions,
resulting in frameshifts in the downstream DNA sequence;
thus, the frameshift correction option in RAST was used to
achieve better annotation results. Additionally, the building
of a functional, metabolic model was selected as one of the
options in RAST.

Prokka (Seemann, 2014) annotation relies on several
databases, including UniProt, to predict CDS features in DNA.
To provide an annotation comparison with RAST results,
BLAST+ was used first; then HMMER3 was used as a sensitive
search to mark features that were not found in the initial step.
This provided an annotation solution that can be compared
with earlier results produced from RAST. Prokka version 1.12
was used to annotate E. bruuniana and E. meningoseptica, using
default parameters.

Finally, a third approach using the precise HMMER3 (Eddy,
1998) model was used to identify protein domains from an
AMR database, Resfams (Gibson et al., 2015). MetaGeneMark
(Noguchi et al., 2006) was used to mark putative protein-coding
regions in both genomes with the gmhmmp –m command.
The hmmsearch program from the HMMER3 suite was used,
along with the Resfams HMM database v1.2, to identify potential
protein domains associated with AMR. Identification of AMR
gene clusters was done by filtering the output for regions
with four or more AMR genes that had at most three non-
AMR genes between any given gene pair. These results were
visualized with circos. Putative promoters were predicted using
the convolution neural network model software CNNProm
(Umarov and Solovyev, 2017).

The vast extent of sequence data and available annotation
information provide exciting opportunities for advances in
biomedical sciences. To benefit from biological data available
on cloud services and to enhance downstream analyses, the
assemblies of 19 other strains of Elizabethkingia were acquired

from the NCBI. Each assembly corresponds to a strain for which
a known antibiotic resistance profile exists (see Supplementary
Table S1 and Antibiotic Resistance Profile Evaluation section).
This group of the 19 assemblies, paired with the two
Nanopore assemblies (21 Elizabethkingia total), contained
the Elizabethkingia species E. bruuniana, E. meningoseptica,
E. miricola, E. occulta, and E. anophelis for use in core-
genome construction.

Several non-Elizabethkingia strain assemblies were also
acquired from the NCBI along with matching MIC results
for vancomycin, clindamycin, fusidic acid, ciprofloxacin,
and rifampin (see Supplementary Table S1). Following this,
a “group” was created for each antibiotic, where membership to
this group is determined by having an observed MIC value for
that antibiotic. In total, 12 assemblies for vancomycin resistance,
7 assemblies for clindamycin resistance, 4 assemblies for fusidic
acid resistance, 7 assemblies for ciprofloxacin resistance, and 8
for rifampin resistance were retrieved from the NCBI that were
not of the Elizabethkingia genus (see Supplementary Table S4).
Many of the additional strains had MIC data for only one
type of antibiotic.

For each antibiotic studied (vancomycin, clindamycin,
fusidic acid, ciprofloxacin, and rifampin), an “AMR group”
was formed containing strains that had corresponding MICs
for the corresponding antibiotic. This generates five groups,
each with a different number of individuals (Table 2).
Separately, statistics were generated for the core-genome of
Elizabethkingia strains only.

To generate a core genome for each group, a multiple
sequence alignment of the assemblies for the strains within
that group was first completed. The progressiveMauve algorithm
(Darling et al., 2010) in Mauve was used to create six different
alignments of the assigned bacterial groups. progressiveMauve
was used instead of the original Mauve alignment algorithm
for better scaling with multiple taxa and an improved
scoring approach that handles the highly divergent genomes
of the Elizabethkingia genus (Darling et al., 2010) and other
included species.

Core Genome Construction and SNP
Determination
Mauve produces a tabular “backbone” file containing alignments
for DNA regions that are conserved between subsets of the
genomes. These data are represented in a table with a header
that describes each genome. Each column name in the header
indicates the assigned ordinal-based index of the genome and
also specifies if the given coordinate has been aligned in a reverse
complement alignment. To extract only the core genome, all
rows that did not contain conserved regions across all genomes
were removed, leaving only the regions shared by all strains
(core-alignments).

SNPs were called from within Mauve, using default settings
for each alignment group. This did not include insertions or
deletions. These SNP positions matched the regions listed within
the “backbone” file that was produced prior to SNP calling. The
resulting Mauve SNPs output is a tabular format file containing
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a row for each SNP site and a column for each individual
in the alignment.

SNP and Gene Predictor Variables and
Response Variables for AMR
Classification
To prepare the input data for downstream predictive algorithms,
a predictor X matrix was constructed by directly loading the data
from the Mauve SNPs file. Genotypic information from SNPs was
represented as the encoded additive value for all polymorphisms
on that site. The smallest value (starting at zero) represented the
major allele. For the minor alleles, the encoded value increases
as the frequency of the allele at that polymorphic site decreases.
Effectively, the first minor allele will be encoded as 1, and in
the case of multi-allelic polymorphisms, the next most frequency
allele will be encoded as 2. The matrix was then transposed
to adhere to the traditional structure of an input X matrix,
in which all rows represent individuals and columns contain
additively encoded SNPs.

While SNPs often function as genetic predictors of phenotypic
traits, models utilizing only core-SNPs do not consider the
presence of genes that are out of the core genome. To include
these genes in the models, a list for all genes that exist
within the strains of each group (pan-genes) was generated.
A second, separate X predictor matrix was constructed using
a presence/absence value. Each column represents the presence
or absence of one putative pan-gene with a unique UniProt
ID. A value of 1 is given for strains that contain the gene,
while a value of 0 is given when the gene is absent. We
consider this gene-centric approach appropriate in cases when
genes, and not SNPs, are the true source of AMR, as seen
in the relevant Tn1546 transposons that carry the vanA gene
cluster conferring vancomycin resistant phenotypes (Dutka-
Malen et al., 1994) or fusB-mediated fusidic acid resistance
(O’Neill and Chopra, 2006).

Each set of predictors (pan-genes and core-SNPs) was used
in evaluating AMR prediction. A final hybrid method was also
evaluated by appending both matrices (SNPs and genes) together
to form a combined, third predictor X matrix.

In order to assess the predictability of AMR with gene/SNP
predictors, strains were labeled either “resistant” or “susceptible”
to a particular antibiotic. Members of the Elizabethkingia
genus have no standardized breakpoints so other species
breakpoints are used for reference. Therefore, MIC values
denoting resistance/susceptibility to the antibiotics vancomycin
and clindamycin were based on the CLSI 2018 standards
for Enterococcus spp. and Staphylococcus spp., respectively.
For vancomycin resistance, any strain with a MIC value less
than or equal to four was considered susceptible (CLSI 2018
M100 Enterococcus spp.), with the remaining strains being
resistant. For clindamycin, the same protocol was used with
a susceptibility label applied to MIC values of 0.5 or less
(CLSI 2018 M100 Staphylococcus spp.). Fusidic acid was not
considered for binary classification, as nearly every strain
exhibited resistance to fusidic acid based on the reference
breakpoints for Staphylococcus spp.

In each of the two AMR groups, the susceptible or resistant
values for all individuals were represented by a Y vector, where
each row in the vector (yi) is the observed phenotypic value for
the corresponding row in the X matrix (Xi). In the Y vector,
a value of 0 represents a susceptible strain, while a value of 1
represents a strain that is labeled as resistant, with each respective
group being assigned its own Y vector for that AMR category.

Higher resolution AMR prediction is possible by training
models to predict a multiclass “resistance level” instead of a
binary resistant/susceptible label. This was accomplished by
assigning each strain a resistance level based on their MIC
score. Resistance levels are therefore represented categorically
as a sliding scale of AMR for the purposes of classification.
Raw MIC results for each phenotype were collapsed into these
resistance levels (see Supplementary Table S3 for resistance level
assignments). The selection of ranges for binning MIC values
for each phenotype was determined to maximize the uniformity
of the categorical phenotypic distribution within the classes.
This alleviated issues of outliers while minimizing the impact
of very small numbers of individuals for the AMR category.
Categories were encoded additively (similar to the SNPs), with
the lowest resistance level encoded “1”; each AMR resistance
category increases by one to reflect increasing resistance levels
until it reaches the maximum value of that phenotypic category.

Naïve Bayes
Naïve Bayes is a generative model used here to capture
the posterior probability of the AMR classification given
the SNP/gene predictors. This algorithm produces probability
distributions based on the observed frequencies of the input
variables and classifies using a simplified Bayes Rule. Using
the probability chain rule with the assumption of variable
independence, Naïve Bayes multiplies the probabilities of each
specific class of variable and calculates posterior probabilities.

When occasionally considering a variable type that has not
been observed in the training set the technique can result in
a final probability of zero and numerical instability. Laplace
smoothing was used to provide a small, non-zero probability to
the probability for these types of classes. This is controlled by
a smoothing parameter. α is a hyper-parameter that must be
optimized, where smaller values of α contribute less smoothing.
The α values tested were 0.000001, 0.0001, 0.1, and 1.0. Each
algorithm is assessed by stratified cross-validation where the
test set will contain a pre-determined representation of classes.
A uniform prior was used. The multinomial Naïve Bayes was
conducted to predict the AMR category for individual strains
using the sklearn package in python (Pedregosa et al., 2011).

Decision Tree and Random Forest
Algorithms
The decision tree is a non-parametric algorithm that can be
used for classification or regression. Unlike the Naïve Bayes
model, decision trees allow modeling of variable interactions and
perform well on samples that cannot be linearly separated. In this
tree structure, each node splits up samples based on a determined
variable rule. This can be a threshold for continuous variables
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or a categorical value for discrete and categorical variables.
To effectively split samples based on variables, the Gini impurity
metric measures how well a particular node split in the tree will
separate samples based on output category. Here, this calculation
is given by

LG (t)= 1−
∑

P
(
j|t
)2

where t is the SNP or gene predictor and

j ={1, 2, 3 . . . number AMR categories}

Minimization of the Gini impurity function maximizes the
correct grouping of all samples during a node split.

A decision tree’s structure permits for excellent model
interpretability and allows for the identification of important
predictors. However, when the predictor count is much larger
than the sample size, irrelevant SNPs/genes can produce trees
that are fit on noisy, unrelated variables. When this ratio
becomes particularly skewed, decision trees can become prone
to overfitting and are inheritably sensitive to changes in training
data. In this assessment, all nodes were allowed to keep expanding
until all leaves became pure and there was no maximum depth
limit; sklearn was used (Pedregosa et al., 2011).

Random forests, an evolution of the traditional decision tree
algorithm, has shown excellent modeling capacity by mitigating
the issues of overfitting and high-variance nature of the decision
tree (Breiman, 2001). This is done through an ensemble-based
learning approach, similar to bootstrap aggregation, also known
as “bagging” (Dietterich, 2000). Bagging follows the traditional
bootstrapping of generating subsamples, with replacement, from
the sample population and then allowing the model to classify
based on those subsamples. This reduces the overall variance
of the model while increasing the bias. Several models are then
trained with different subsets and a majority vote is used when
classifying test data. These random forests also only consider
a subset of all the total predictors; subsetting by predictors
provides similar advantages as subsetting the samples. As a result,
these random forests often outperform stand-alone decision trees
when the sample size is small and when the dataset is noisy
(Dietterich, 2000), because they are fit to only a small subset
of the samples of the variable. The sklearn package (Pedregosa
et al., 2011) was used to classify bacterial strains into phenotypic
categories, based on the predictors. The Gini impurity metric was
used as in stand-alone decision trees with the sklearn package
(Pedregosa et al., 2011).

Two hyper-parameters must be optimized to attain optimal
performance, the number of decision trees in the ensemble and
the number of variables to subset for each tree. To determine the
ideal number of trees, tree counts of 5, 10, 20, 40, 60, 80, and 100
were tested. To identify the ideal number of SNPs/genes to subset,
two subset counts were tested for each tree count:

log2(numbers of predictors)

and √
number of predictors

All nodes in the trees were expanded until all leaves became pure.
Similar to earlier, there was no selected maximum depth limit.

Boosting Algorithm
“Boosting” algorithms work in a similar sense to “bagging”
algorithms, in that several models are trained on a subset
of the collected samples. Like random forests, subsamples are
generated, with replacement, from the total sample population.
However, unlike “bagging,” a modified sampling method is used.
The probability of selecting any particular sample for training is
increased or decreased depending on how well the models classify
that subsample. Samples that are commonly misclassified are
selected more frequently for training, and the opposite is true for
correctly classified samples. This method attempts to minimize
misclassifications of samples that are difficult to predict.

A “weak learner,” any classification algorithm that provides
predictions that are only slightly better than random guessing,
is applied to learn to classify the training subsamples (Freund
and Schapire, 1997). Afterward, all samples are associated with a
weight value, which increases when they are classified incorrectly,
and decreases when they are correctly classified. New weak
learners are then generated, with the goal of minimizing the
weighted error term (which is higher for misclassified samples)
produced from the classification of new subsamples (Freund
and Schapire, 1997). This process is then iterated until the
weighted error term does not improve. This ensemble model
of “weak learners” therefore emphasize the correct classification
of “difficult-to-classify” samples. To correctly classify AMR
categories, a decision tree was used as the “weak learner,” with
a maximum leaf count of one.

The primary hyper-parameter to optimize with AdaBoost is
the number of decision stumps in the ensemble. Values of 10,
100, 500, and 1000 were tested. In cases where the number of
predictors was less than 1000, the total number of trees in the
ensemble was set to the maximum number of predictors in that
dataset. The sklearn package (Pedregosa et al., 2011) was used
with a learning rate of 1.

k-Nearest Neighbor (k-NN)
k-Nearest Neighbor (k-NN) is a non-parametric algorithm that
classifies test samples based on the Euclidean distance with
training samples. These samples are represented in “feature
space” as vectors, positioned in N-dimensional space, where N is
the number of predictors for that AMR category. After populating
the feature space with training data, new test data is classified
based on the AMR category of the nearest samples (neighbors)
in that space, using Euclidean distance as the metric, seen below
(where p and q are the two feature vectors to compare):

d(p, q)=

√√√√ n∑
i=1

(qi−pi)
2

k is a user-defined constant, that determines how many
neighboring samples are used in classification. When the nearest
neighbors are of different categories, a majority vote is used to
determine the class of the test sample.

This algorithm is negatively affected when the number of
predictors is very high (Beyer et al., 1999). As the total number of
predictors increases, the distance to nearby neighbors approaches
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the distance to the most distant data point (Beyer et al., 1999).
The model is particularly sensitive to its hyper-parameter k. The
sklearn python package (Pedregosa et al., 2011) was used to
model the performance of k-NN with six different values for the
k hyper-parameter being evaluated: 1, 3, 5, 7, 9, and 11.

Support Vector Machines (SVMs)
Support vector machines were also evaluated, due to their
effectiveness at classifying high-dimensional data like biomarkers
and microarrays (Clarke et al., 2008). SVMs work by generating
a N-dimensional hyperplane, so as to separate samples by their
classification category. This hyperplane is defined as being an
N-dimensional plane that sits between two margins (for binary
decisions), and these margins are produced by the data points
of opposing classes which are closest to the decision boundary.
For data that is linearly classifiable, a linear SVM can be used;
however, for non-linearly classifiable data, kernels are often
employed to map these data into a feature space where a linear
hyperplane can be constructed.

SVMs can use several strategies to evaluate more than two
classes. In the case of classification as a multiclass problem, the
“one-against-one” method trains a classifier for each different
pair of categories for a total of N (N−1)/2 classifiers. At test
time, all the classifiers are tested on the test samples, where
each classification is a vote for that particular class. The class
with the most votes is determined as the correct category
for that sample.

A key hyper-parameter for SVMs is the constant C, which acts
within the soft margin cost function; this C term controls the
tightness of the two margins used to produce the hyperplane.
Larger C’s will produce tighter margins, resulting in less
misclassified training samples. A smaller C will produce larger
margins, allowing for the misclassification of some training
samples. Smaller values may help deal with outliers and form
a more generalizable hyperplane by trading error penalty for
model robustness. In this study, the penalty hyper-parameter C
term was tested with the following values: 0.01, 0.1, 1.0, 10, 20,
1000, and 10000, and the hyperplane was optimized as a dual
optimization problem using the sklearn library (Pedregosa et al.,
2011). Both linear SVMs and SVMs with radial basis function
kernels were tested.

Evaluation of Prediction Accuracy
To evaluate the performance of the predictive models, accuracy
of the classification algorithms was determined with 18,000
iterations of stratified shuffle cross-validation and a computed
f1 micro-score, representing the harmonic mean of both recall
and precision. The f1 micro-score is more descriptive than
calculating classification accuracy as a percentage. Stratified
shuffling was used in combination with cross-validation so as to
maximize the uniformity of the category distribution in the test
and training sets.

The test set sample size for binary classification of AMR for
vancomycin and clindamycin was six, which was performed
to allow a reasonable number of test samples to be involved
in classification assessment. Multiclass “resistance level”

classifications were evaluated for all five AMR types, with a test
set size of six and the same number of iterations described above.

RESULTS

Antibiotic Minimum Inhibitory and
Bactericidal Concentrations
MICs and MBCs, for all antibiotics investigated, varied
among the Elizabethkingia species and strains investigated. The
ciprofloxacin MICs ranged from 0.125 mg/L to 1 mg/L and MBCs
ranged from 0.5 mg/L to 2 mg/L as shown in Supplementary
Table S1. The clindamycin MICs ranged from 0.0625 mg/L
to 1 mg/L and MBCs ranged from 0.0625 mg/L to 8 mg/L
(Supplementary Table S1). The rifampin MICs ranged from
0.0625 mg/L to 1 mg/L and MBCs ranged from 2 mg/L to
32 mg/L. The fusidic acid MICs ranged from 4 mg/L to 128 mg/L
and MBCs ranged from 4 mg/L to 256 mg/L. The vancomycin
MICs ranged from 2 mg/L to 64 mg/L and MBCs ranged from
4 mg/L to 64 mg/L.

Nanopore R9.4 Sequencing Yield of
E. bruuniana and E. meningoseptica
The original 2D sequencing of E. bruuniana ATCC 33958
yielded 212,265 total reads (Table 1). During sequencing,
low-quality reads or reads containing errors were filtered out,
leaving a total of 166,167 quality reads. The errors in base-
calling were attributed to software exceptions (1,392 reads)
and failed 2D software base-calling (33,981 reads), while
10,725 reads did not pass the base-caller’s built-in quality
filter. Throughout sequencing, the mean Phred score
distribution of 2D reads was maintained at 16 at any given
hour, except during reloading, where the quality distribution
fell to 14. The median 2D read length was 5.78 kb and
the average 2D base-calling accuracy was 0.92. Template
and complementary base-calling accuracy was 0.85 and
0.80, respectively.

Sequencing E. meningoseptica KC1913 with Nanopore long-
reads produced a total of 57,521 2D reads. Of these reads 1,190
software exceptions, 8,111 instances where base-calling failed,
and 2,434 reads that didn’t pass the quality filter were removed,
yielding 45,785 passed reads. The median 2D read length was
6.53 kb. The mean quality score was 16 for the entirety of the

TABLE 1 | Comparison of Nanopore R9.4 2D sequencing statistics.

E. bruuniana E. meningoseptica

ATCC 33958 KC1913

Total quality yield (megabases) 1,090 330

Total number of quality reads 166,167 45,786

Median read length (kilobases) 5.78 6.53

2D Median quality score (phred score) 15.8 16.3

Template median quality score (phred score) 8.4 8.8

Longest read (kilobases) 32.8 42.4

All values reported here are from reads that passed the quality threshold.
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FIGURE 1 | (A) Read length distribution after extraction and filtering of raw read data of Elizabethkingia bruuniana. (B) Read length distribution after extraction and
filtering of raw read data of E. meningoseptica. (C) Per-read quality distribution of E. bruuniana. (D) Per-read quality distribution of E. meningoseptica.

sequencing run. Average 2D base-calling accuracy was 0.93, while
template and complementary base-calling accuracy was 0.86 and
0.81, respectively.

During 2D sequencing of E. bruuniana, per-hour base-pair
yield peaked at 2 h (54 mb). A second peak of 46 mb of DNA
sequenced was observed during reloading at 24 h, followed again
by a rapid decrease, converging to nearly zero bases sequenced
per hour by 45 h. E. meningoseptica was sequenced for a total
of 20 h (due to hardware failure), during which it received no
library reloads. The highest hourly yield peaks (30 mb) occurred
during hours 1 and 3, and yield rapidly diminished to 3 mb
per-hour by hour 20.

Following the results of read filtering, Figure 1 shows the
read length distributions and quality score distributions for
both sequenced strains. E. bruuniana and E. meningoseptica has
median 2D quality scores of 15.8 and 16.3, respectively (Table 1).

Genome Assemblies and Polishing
De novo assembly of E. bruuniana and E. meningoseptica resulted
in a single contig for each genome. The assembly of E. bruuniana
(ATCC 33958) was 4,626,295 bp long, with a mean GC content
of 35.9% and an average read coverage of 610x. The assembly of
E. meningoseptica (KC1913) was 3,862,237 bp long, with a mean
GC content of 36.5% and an average read coverage of 220x. The
read coverage for both Elizabethkingia strains are shown in the
Supplementary Figures S1, S2.

After polishing, the assembly size of E. meningoseptica
increased slightly to 3,889,109 bp, primarily due to corrections

in deletion errors at homopolymer regions. Deletions were
the most common per-base assembly error, consisting of a
total of 21,321 gap regions for E. meningoseptica. These
occurred almost exclusively at homopolymer repeat regions.
The majority of gap regions contained only a single deletion
(80% of all gaps were single-base deletions). A much smaller
quantity of insertion errors (74 regions) that met the reporting
criteria were also corrected by the polishing process. All of
these reported regions contained only a single-base insertion
error. Substitution errors were also minimal; only 1,273
substitutions were corrected within the E. meningoseptica
assembly, and the majority of these substitutions (>46%
of all substitutions) were made up of G to A and C
to T corrections.

Similar polishing results were also achieved with
E. bruuniana, where deletions were again the largest
source of corrected errors (20,133 deletions), resulting
in a slightly larger genome sequence (4,651,278 bp).
A total of 279 insertion errors and 990 substitution
errors were corrected. Unlike in E. meningoseptica, no
particular substitution error dominated the corrections.
The assemblies of the two newly assembled Elizabethkingia
genomes are available on NCBI with accession IDs
SUB4949836 (E. meningoseptica KC1913) and SUB4949835
(E. bruuniana ATCC 33958).

The assemblies of the two newly assembled Elizabethkingia
genomes have been deposited in a NCBI BioProject (for early
access, contact charles.chen@okstate.edu).
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FIGURE 2 | Competed genomes of both E. bruuniana (red) and E. meningoseptica (blue) are displayed with histograms representing average GC content (ranged
20 – 50%) in the outermost circles of each genome. The middle genome circles display a heatmap indicating methylation frequency (darker regions indicate high
methylation frequency). The inner genome circles indicate conserved regions belonging to the Elizabethkingia core genome found in each respective genome.
Putative AMR gene clusters, identified by HMMR3, are shown on the outer edges of the core genome circles.

Genome Annotation, AMR Gene
Identification and Methylation Prediction
Annotation with RAST discovered 5,114 putative features in
E. bruuniana ATCC 33958 and 4,887 putative features in
E. meningoseptica KC1913. In E. bruuniana we found that
RAST had putatively identified 19 ß-lactamases and 18 efflux
pumps. In E. meningoseptica there were 14 putatively identified
ß-lactamases and 19 efflux pumps.

Annotation with Prokka produced 5,480 features in the
E. bruuniana genome, among which 5,426 were identified to
be coding regions, 53 identified as tRNA genes and one feature
identified as a tmRNA gene. In E. meningoseptica, there were
5,203 features found in total, 5,152 of these features matched
coding regions, 50 matched tRNAs, one matched tmRNA and one
was identified as a repeat region. Details of Prokka annotation
of E. bruuniana genome can be seen in the Supplementary
Tables S5, S6 for E. meningoseptica.

With respect to putative AMR genes related to vancomycin
resistance, all Elizabethkingia strains contained a vanW gene,
with E. meningoseptica KC1913 additionally containing a vanB
gene (Supplementary Table S2). Several erm genes were found
associated with clindamycin resistance; however, only two
isolates had observed clindamycin MIC values to compare
with: the gut Gram-negative pathogen Parabacteroides goldsteinii

910340 and Gram-positive pathogen Enterococcus faecium
805447/07. Both isolates exhibited strong clindamycin resistance
based on the observed MIC values of 256 and 8 mg/L, respectively
(Supplementary Table S1). No gene annotations were found
relating to fusidic acid, rifampin and ciprofloxacin resistance in
any of the species investigated.

High-quality annotation with the Resfams database and
HMMER3 identified 569 unique putative genes associated with
AMR in E. meningoseptica KC1913 and 685 in E. bruuniana
ATCC 33958. The 15 gene clusters in KC1913 and the 12 clusters
in ATCC 33958 are visualized in Figure 2.

Prediction of methylated cytosine sites using Nanopolish
generated 82,175 non-redundant sites of potential cytosine
methylation for E. meningoseptica. Methylation was predicted in
29,545 of the total reads and totaled 5,566,105 sites, many of
them shared across separate reads. Similar results were found
with E. bruuniana; 89,788 non-redundant cytosine methylation
sites were predicted. In total, 17,316,177 shared sites were found
over 109,339 reads. The distribution of methylation is shown as a
heatmap in Figure 2. Dark blue regions (for E. meningoseptica)
and dark red regions (for E. bruuniana) show sites with
high frequencies of predicted cytosine methylation regions. In
E. bruuniana, methylation-rich CpG-rich regions often appeared
in non-core genomic regions of the strain (Figures 2B, 3C).
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FIGURE 3 | f1-micro scores for each algorithm (with their best respective hyper-parameters), for each AMR group. Mean f1-micro score over the given iterations for
that group is shown by the values above the bars and standard deviation is shown by the error bars. The binary prediction algorithms are show in panels (A,B). The
multiclass classification is shown in panels (C–G).

Summary of Core and Accessory
Genomes, and SNP Determination
Multiple-sequence alignment of the Elizabethkingia-only
genomes produced a larger core-genome size when compared
to the other groups (Table 2), resulting in core genome size of
2,658,537 bp, with 32 core-AMR genes and 77 pan-AMR genes
based on Uniprot IDs. It also produced the largest number of
called SNPs (712,703 SNPs). When including bacterial species
from different taxonomic groups, the increased genetic diversity
drastically reduced the size of core-genomes, as well as the
number of SNPs called. However, the reduction in core-genome
size was not proportional to the reduction of SNPs. The largest
non-Elizabethkingia core-genome was formed from the genomes

TABLE 2 | Core genome and SNP statistics for each phenotypic group formed
from participating strains.

Number of Core genome Number of

Phenotype strains size (bases) SNPs

Elizabethkingia-only 21 2,658,537 712,703

Vancomycin 33 27,066 11,066

Clindamycin 28 3,488 1,996

Fusidic acid 25 20,006 9,851

Rifampin 29 3,368 2,044

Ciprofloxacin 28 3,662 1,931

in the vancomycin MIC group, with the fusidic acid MIC
group being only a few thousand bases smaller. The complete
core-genome of the two sequenced isolates KC1913 and ATCC
33958 is visualized in yellow in Figure 2.

Comparison of Machine Learning
Classifiers for AMR Phenotypes
For all categories of classification, the hybrid method of using
both the SNPs and genes as the predictors in one matrix,
significantly underperformed compared to using just SNPs or
just gene predictors, and will not be further reported here.
Classification using random forests always performed better
when using the square root number of variables instead of
the log2 number of variables. Therefore, only results from the
random forest with a square root number of variables per
tree are reported.

Vancomycin
The vancomycin group contained a total of 11,066 SNP
predictors. With the gene-centric approach, the pan-genome
consisted of 4,865 genes.

Binary classification of vancomycin resistance revealed that
genes are a superior predictor for this particular task. With the
exception of the decision tree, Naïve Bayes, and AdaBoost, the
gene-centric approach produced consistently superior f1 micro-
scores with every algorithm. The highest scoring algorithm, the
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FIGURE 4 | f1 micro-scores for each algorithm over the course of different hyper-parameter changes. k-NN (C) and the SVM, with a radial basis function (B) as a
kernel, are most sensitive to hyper-parameter changes. Y-axis (f1 micro-score) is scaled from 0.5 to 1.0. The remaining plots (A,D–F) show minimal changes to f1
micro-score from changing the respective hyper-parameter.

support vector machine, was able to achieve a mean 0.84 f1 micro-
score (standard deviation 0.152) with gene predictors (Figure 3).
Both the linear SVM and a radial basis kernel SVM performed
similarly with large C parameters. In particular, the radial SVM
dramatically improved in classification accuracy when increasing
C from 0.1 to 10000 (Figure 4).

Outside of support vector methods, k-NN with k = 1
performed with similar accuracy to the linear SVM, in the binary
case, being very sensitive to the neighbor parameter: as shown
in Figure 4, k-NN performed best when k = 1, with subsequent
degradation in accuracy. Conversely, greater consistency can be
achieved with larger k values. For example, k= 9 and k= 11 reduce
the total f1 micro-score compared to k = 1, but have a smaller
standard deviation when computing their mean f1 micro-score

over many iterations (when k = 1 std. = 0.15 and when k = 11
std. = 0.11 for SNPs).

With SNP predictors, accurate binary AMR classification with
a decision tree produced comparable results to gene-based SVMs
and k-NN and required no hyper-parameter tuning. This method
performed the best of all SNP predictor based methods.

With genes, ensemble based methods are less accurate
than SVMs and neighbor methods in binary classification.
Ensemble techniques did not show significant improvements
when increasing the number of trees; although, adding more trees
improved f1-scores slightly (Figure 4).

In the case of the multiclass classification, the core-SNP
approach with a radial SVM performed the best, with an f1-score
of 0.71 (Figure 3). k-NN (k = 1) with genes performed roughly the
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same. Multiclass classification with tree based methods (random
forest and decision tree) showed a 0.06 – 0.07 improvement to the
f1 micro-score by using SNP variables.

Clindamycin
The clindamycin group of 28 individuals contained an initial total
of 1,996 SNP predictors. With the gene-centric approach, the
pan-genome consisted of 6,949 genes.

Prediction of binary AMR classification with respect to
clindamycin was most effective using SNPs (Figure 3). An f1
micro-score of 0.94 was achieved using a linear SVM and SNP
predictors, compared to a lower micro-score of 0.89 using gene
predictors. The radial SVM performed slightly worse than the
linear variant and required a carefully chosen C parameter.
As seen with other AMR classifications, larger C values were
necessary for the radial SVM to perform adequately (Figure 4).

k-NN with SNPs produced an f1 micro-score of 0.92 with
k = 3. With gene predictors, this score decreased dramatically
(0.85 score, k = 1 was best with gene predictors). When using
SNP predictors, any k > 3 marked a consistent degradation
in algorithm prediction performance. A similar trend was seen
in the variation of the f1-scores during cross-validation; k = 3
yielded a lower standard deviation (std. = 0.10) when compared
to most other k values.

The random forest, with either genes or SNPs as predictors,
performed competitively with SVM methods and neighbor
methods in terms of f1 micro-score. The other ensemble method,
AdaBoost, also generated similar performance between SNPs
and genes as predictors but is significantly outperformed by
random forests. Changing the number of estimators (trees) in
either ensemble algorithm did not affect accuracy; although,
having less than 20 trees in a random forest negatively
impacted performance.

Using SNPs, and a large alpha value, Naïve Bayes achieved
a 0.93 f1 score for clindamycin AMR prediction (Figure 3B).
A large discrepancy between the gene predictor and SNP
predictor methods was also found in Naïve Bayes AMR
classification accuracy where using gene predictors resulted in a
∼22% reduction in performance.

In the multiclass AMR classification, SVMs (with SNPs)
again outperformed all other algorithms with a 0.71 f1 micro-
score (for both kernels). Using the other described algorithms
results in lower, and generally uniform, f1 scores, except for
AdaBoost which underperforms with a score of 0.55 using
both SNPs and genes.

Fusidic Acid
The fusidic acid group contained a total of 9,851 SNP predictors.
With the gene-centric approach, the pan-genome consisted of
4,727 genes used as predictors.

Multiclass classification of the fusidic acid group, with four
possible AMR categories, showed that gene variables dominated
as the best predictor across all tested algorithms with an average
f1 score improvement of 0.06. Gene-centric k-NN performed the
best, with a mean f1 micro-score of 0.70 and a standard deviation
of 0.17 (Figure 3E). Like with the other phenotypes, SVMs (linear
and radial) were top performers, achieving a 0.67 score. In the

case of ensemble methods, using genes, both the decision tree
and AdaBoost were out-performed by random forests, using 100
trees, which achieved an almost comparable score to SVMs and
k-NN (Figure 3E).

Rifampin
With a total of 29 individuals in the rifampin group, a total of
2,044 core SNPs were generated. The pan-genome consisted of
7,805 unique genes.

Multiclass prediction of rifampin resistance levels produced
the most successful results among the multiclass tests, with
a mean f1 micro-score 0.75 (0.173) with a decision tree and
SNPs. Radial kernel-based SVMs and random forests provided
similar accuracy (Figure 3F), SNP predictors produced superior
accuracy with all algorithms except for k-NN and Naïve Bayes.
The decision tree showed the largest discrepancy when changing
predictor type, going from top classifier with SNPs to nearly the
lowest scoring classifier with genes, showing extreme sensitivity
to predictor type.

Ciprofloxacin
The ciprofloxacin group contained 28 individuals. The core-SNPs
were 1,931 in total. The total number of pan-genes was 6,975.

The results of ciprofloxacin multiclass prediction proved
inferior to other phenotypes, despite the uniformity of the
training and test set distribution. Although the decision tree
with SNPs produced the top f1 micro-score of 0.54 (Figure 3G),
it also produced the largest standard deviation (0.20) in its f1
micro-score. Alternatively, Naïve Bayes with SNPs produced a
slightly lower mean score of 0.52, but with greater model stability
(standard deviation of 0.15).

DISCUSSION

The rapid evolvability of AMR systems and the subsequent
surge of extended-spectrum resistance phenotypes (Shaikh et al.,
2015) has dramatically impacted the characterization of virulent
microbes. In this manuscript, we inspected the predictability
of AMR using six ML algorithms, and the results suggest a
promising ML-based approach for the prediction of binary AMR
classification (i.e., resistant versus susceptible). The employment
of multiple different learning algorithms on a small set of in-
house samples, combined with “cloud knowledge,” revealed that
SVMs, k-NN, and random forests can be trained to high accuracy
with less than 35 samples, using thousands or tens of thousands of
predictors (Table 2). Using sequence data, two types of biological
predictors are immediately available: core-genome SNPs and
gene presence/absence matrices, both of which yield similar levels
of prediction accuracy. However, based on our results, one set
of predictors may prove particularly effective at AMR prediction
than other predictor sets for a particular phenotype. For example,
SNPs seem to be the preferred predictors for clindamycin
predictive tasks (Figure 3B), whereas vancomycin favors gene
predictors (Figure 3A). Limited sample sizes continue to make
multiclass AMR challenging, as demonstrated in the cases of
fusidic acid and ciprofloxacin (Figures 3E–G).
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Susceptibility testing of Elizabethkingia strains investigated in
this study revealed some species-specific trends with regards to
MICs and MBCs (Supplementary Table S1). For instance, with
the exception of strain R26, the E. anophelis clindamycin MICs
(all 1 mg/L) and MBCs (1–8 mg/L) were consistently higher
than all other species investigated. The E. meningoseptica MICs
and MBCs for vancomycin were higher than most other strains
investigated. When investigating the genetics underlying AMR,
annotation-based discovery can only be effective when genetic
annotation for the genotype responsible for the observable AMR
is available and when homology exists. A successful case is
seen in a recent study (Bosse et al., 2017) that concluded a
100% correlation between annotated putative genes and targeted
AMR phenotypes. In our case, annotation of both genomes
disclosed a small number of genetic components associated
with the corresponding MIC results. For example, vanA and
vanH, genes belonging to the vanA operon, were identified
in the extremely vancomycin resistant Enterococcus faecium
strain 805447/07 (MIC value of 256 mg/L, Supplementary
Table S1). The vanA operon is a genetic element that provides
resistance to vancomycin by facilitating the replacement of a
dipeptide in peptidoglycan synthesis, making vancomycin less
likely to bind to peptidoglycan precursors and inhibit cell
wall synthesis (Perichon and Courvalin, 2009). Also suggested
by recent findings, the development of vancomycin resistance
can be significantly associated with ecological stratification and
environmental conditions. A 2016 study found that mildly
thermophilic Gram-negative hot-spring bacterial isolates were
completely vancomycin susceptible due to the predominance of
alanine-terminated muropeptide precursors, acting as a high-
affinity binding target for vancomycin (Roy et al., 2016). Such
discovery has global bearings on the drug resistance of widely
distributed cohorts.

Annotation-based AMR detection can be complicated by
the accumulation of mutations at these gene sites, reducing the
effectiveness of alignment-based homology searches using a
database (Rost, 1999). Similarly, situations where the resistance
phenotype is the product of genetic pathways with undescribed
genes, or with genes of an unknown function, can make
meaningful annotation-based conclusions challenging. For
example, every Elizabethkingia strain was annotated as the
accessory gene vanW, believed to play a part in vancomycin
resistance but with unknown function (Guardabassi et al., 2005;
Raygoza Garay et al., 2016). Moreover, there is no evidence that
vanW plays any role in the defense mechanism of Elizabethkingia,
and this gram-negative genus is likely intrinsically resistant to
vancomycin due to the outer membrane’s impermeability to
large glycopeptides. However, these annotations failed to provide
satisfactory support to the diverse MIC values observed in our
Elizabethkingia strains (Supplementary Tables S1, S2).

In the post-NGS era, WGS provides a convenient means
to explore genomic variants of entire chromosomes. Raw
genomic data is often represented as genome assemblies or
sequenced reads and has historically been difficult to extract
genotype-phenotype relationships from. Producing genome-
wide predictors, like SNPs, has become a conventional approach,
but the SNPs generated by NGS techniques can be prone to

noise (Briskine and Shimizu, 2017; Wu et al., 2017); this, in
addition to limited sample sizes and the large quantity of SNP
predictors, has imposed significant challenges for many statistical
modeling approaches (Lange et al., 2014). This phenomenon is
known as the “curse of dimensionality” (Bellman, 2010). The
dimensionality issues, in combination with noisy predictors, can
lead to problems of overfitting and model mis-identification (Sun
et al., 2019). Careful consideration of the genomic data, with
respect to its usage in algorithms, must be applied for appropriate
predictive modeling.

Prediction accuracy is data-dependent and relies on the
quality of the predictor variables used as input. Also, some
algorithms, like SVMs and k-NN, require careful hyper-
parameter tuning to function properly (Figure 4). In this
study, we tested different biological predictor types and found
that, depending on the AMR phenotype, either genes or SNPs
reliably produce better results. For example, the multiclass
fusidic acid classification greatly favors genes over SNPs, while
the vancomycin multiclass classification performs better using
SNP predictors. Unlike the core-SNPs, our gene-centric model
can produce predictors from genomic regions outside of the
core-genome, and gene presence/absence predictors do not
suffer from small sequencing errors due to their reliance on
alignments, which can tolerate some errors using score matrices.
This is also advantageous when the strain exhibits an AMR
phenotype that is based around a gene product, such as fusB-
type fusidic acid resistance. In these genic AMR cases, the effect of
mutational changes in the core genome might be too insignificant
to be reliably explanatory for AMR phenotypes. Algorithmic
identification of causative variants continues to be challenging,
and expression and knock-out studies should be considered
when aiming to expose differentially expressed genes, and related
genetic networks responsible for AMR. Further, it must be
stressed that genomic data cannot always be a determinant of
the particular antibiotic susceptibility of an organism. Other types
of informative biological predictors, like protein expression data,
must accompany genomic data to fully understand the complex
nature of AMR phenotypes.

A common problem seen when analyzing biological data
from individuals that are not part of a controlled population is
the relative lack of available samples compared to the wealth
of genomic data. The curse of dimensionality characterizes
this problem as requiring a tremendous amount of sample
data to guarantee that each potential combination of SNP/gene
predictor exists within the dataset. As shown in Table 2, the
number of variables can far outnumber the sample size and,
the ratio of samples to SNPs can be as low as 0.002 (Table 2),
depending on the core genome. Such small sample sets are
challenging to model using traditional statistical methods, often
requiring feature selection or regularization, as shown in Wu
et al. (2009). For example, in a 2018 study (Manavalan et al.,
2018) this problem was approached using random forests to
reduce the total number of variables assigned to each tree, and
resulted in an improved 87% accuracy, using leave-one-out cross-
validation. Regularization is a core technique in ML used to
mitigate overfitting. The SVM, for instance, can allow for a wider
hyperplane when optimizing, permitting the misclassification of
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certain training samples in exchange for higher generalizability.
The use of support vectors also helps alleviate issues with small
sample size, because the decision boundary can be derived from
a small subset of the training data. Our results in Figure 3
demonstrate the merit of SVM-based classifiers with a small
sample size. The high classification accuracy was also achieved
in part due to the inbuilt regularization of determining the
margins of the decision boundary, since margin generation is
independent of the features’ dimensionality. The benefits from
SVM regularization are maintained even with a large sample size
(Araya and Hazelhurst, 2009). Recent studies have shown success
with ML in predicting biofilm inhibiting peptides (Gupta et al.,
2016), identifying bacteriophage virion proteins (Manavalan
et al., 2018) and productivity estimates using microbiome
composition (Chang et al., 2017). Through its effective modeling
of the relationships between predictors and reduction of the
effects of noisy data, ML has also made a significant impact on
genomics, where it has been used for expression prediction and
genomic element recognition (Libbrecht and Noble, 2015).

Together with this research, we suggest that this
sample size dilemma can be significantly lessened by
capitalizing on the wealth of information stored on cloud
services. There are currently more than 150,000 prokaryotic
genome assemblies available on the NCBI. We used this
community-driven “cloud knowledge” to increase our
sample population by 57 and 33% for the vancomycin
and clindamycin groups, respectively (Table 2), compared
to just using in-house Elizabethkingia strains and also
produced a more uniform phenotypic distribution which made
prediction more feasible.

Decreasing sequencing costs and the subsequent increase in
availability of genomic information stored on cloud services
like NCBI and the European Nucleotide Archive means that
“cloud knowledge” will be an effective means of improving
sample sets for AMR prediction, provided proper phenotyping
is performed. Practical use of a computational AMR prediction
pipeline in a clinical or hospital setting will also depend on
a computationally efficient predictor generation method. Also,
given the large, diverse collection on the NCBI, constructing a
core-genome could only be advantageous for species/strains that
share common ancestry; the same approach can be problematic
when including unrelated genera, owing to the decrease in
conserved genomic regions, reduced numbers of predictors
and possible losses of functional homology. Further, multiple-
sequence alignment software must be able to align 1000’s of
genomes in a time-efficient manner. Recently, alignment-free
variant calling has become an effective alternative and does
not demonstrate the excessive time-complexity of traditional
methods (Zielezinski et al., 2017). Our results also show
that gene presence matrices are equally as effective as SNPs,
sometimes better, in most cases (Figure 3). With current-
generation, high-speed annotation software, multiple-sequence
alignment may be unnecessary, and emerging pathogens with
unknown AMR resistance can rapidly and easily be annotated
and predicted. Supported by the latest improvements in
metagenomics assembly (Olson et al., 2017), it is feasible to
directly sequence from infected tissue and produce assemblies

from microbial communities for use in prediction. With the
strength of sequencing technologies in capturing biologically
informative predictors, like pan-genes and core-genome SNPs,
this study aims to encourage the use of predictive analytics
as a priori inference. New emerging technologies like shotgun
proteomics and single-cell expression profiling, are expected
to contribute to the mechanic viewpoint of AMR phenotypes
(Li et al., 2017), furthering the learning capacity of predictive
algorithms for AMR prediction. To conclude, we expect
ML predictive pipelines, in combination with metagenomics
and other omics approaches, will reinforce phenotype-based
diagnostics with a robust data-driven approach for AMR
detection and outbreak prevention.
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