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The food industry is facing a major transition regarding methods for confirmation,
characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is
rapidly becoming both the method of choice and the gold standard for Salmonella
subtyping; however, routine use of WGS by the food industry is often not feasible due
to cost constraints or the need for rapid results. To facilitate selection of subtyping
methods by the food industry, we present: (i) a comparison between classical serotyping
and selected widely used molecular-based subtyping methods including pulsed-field gel
electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar
prediction) and (i) a scoring system to evaluate and compare Salmonella subtyping
assays. This literature-based assessment supports the superior discriminatory power of
WGS for source tracking and root cause elimination in food safety incident; however,
circumstances in which use of other subtyping methods may be warranted were also
identified. This review provides practical guidance for the food industry and presents
a starting point for further comparative evaluation of Salmonella characterization and
subtyping methods.
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INTRODUCTION

A number of food safety incidents and recalls caused by Salmonella contamination have
been associated with ready-to-eat low-moisture products (e.g., milk powder, raw almonds, dry
seasonings, and peanut butter) (Pillai and Ricke, 2002; Maciorowski et al., 2004; Park et al., 2008;
GMA, 2009; Hanning et al., 2009), and other food commodities (e.g., meat products, eggs, and
vegetables) (Greig and Ravel, 2009; Wu et al., 2017; Ricke et al., 2018) in recent years. These
cases highlight the need to reinforce Salmonella control measures in the food industry, including
rapid and accurate tracking of pathogen contamination sources with appropriate subtyping tools.
Tools used in incident investigations that can differentiate Salmonella beyond the species level
(defined as Salmonella subtyping) are essential to improve control of this pathogen, as Salmonella
contamination can occur from diverse sources at any stage of food production (Olaimat and Holley,
2012; Barco et al., 2013; Shi et al., 2015).
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Conventional serotyping (White-Kauffmann-Le minor
scheme) has been used as a Salmonella subtyping method for
>80 years (Salmonella Subcommittee of the Nomenclature
Committee of the International Society for, Microbiology,
1934; Grimont and Weill, 2007; Guibourdenche et al., 2010;
Dera-Tomaszewska, 2012; Shi et al,, 2015) and has been a
certified approach for public health monitoring of Salmonella
infections for over 50 years (CDC, 2015). This method classifies
the genus Salmonella into serovars (also known as “serotypes”)
based on surface antigens including somatic (O), flagellar
(H), and capsular (Vi) antigens (Brenner et al., 2000). More
than 2,500 serovars of Salmonella enterica, the Salmonella
species responsible for virtually all salmonellosis cases have
been identified by conventional serotyping (Hadjinicolaou
et al., 2009; Ferrari et al.,, 2017), but less than 100 serovars
account for the vast majority of human infections (CDC, 2015).
Due to the large variety of Salmonella serovars, a laboratory
needs to maintain more than 250 different high-quality typing
antisera and 350 different antigens for conventional serotyping
of Salmonella (McQuiston et al., 2004; Fitzgerald et al., 2006).
The turnaround time (i.e., time needed from isolate submission
to a laboratory to receipt of the result) for serotyping a
single isolate is usually >3 days. In some cases, it can take
much longer (>12 days) as multiple antibody/agglutination
reactions may be needed in a step-wise fashion to assign a final
classification for complex serovars (Kim et al., 2006; Boxrud,
2010). Traditional serotyping is thus time-consuming and
labor intensive requiring well-trained, experienced technicians
(Boxrud, 2010; Shi et al, 2015). Unfortunately, it can also
be imprecise (McQuiston et al, 2011). Moreover, the low
discriminatory power of conventional serotyping may result
in false-positive identification of relatedness between two
unrelated isolates, as strains with the same serovar (such as the
serovar Salmonella Enteritidis) may originate from multiple
contamination sources. Further in-depth resolution beyond
the serovar level is thus required for incident investigations
(Ricke, 2017; Ricke et al., 2018). Various rapid molecular-based
subtyping methods have been developed to provide faster, more
discriminatory, and more accurate subtyping of Salmonella
thus overcoming the limitations of traditional serotyping.
Nevertheless, serovar data can still provide important historical
epidemiological information, as certain serovars have specific
virulence characteristics or may be associated with specific
contamination sources (Ricke et al., 2018). Thus, it is important
to link the subtypes identified by these molecular-based methods
to Salmonella serovars.

There is no current global recommendation for the application
of molecular characterization methods for Salmonella, although
the food industry has applied both banding pattern-based and
sequence-based subtyping methods for incident investigations.
This review will provide (i) a comparison between classical
serotyping and selected widely used molecular-based subtyping
methods including pulsed-field gel electrophoresis (PFGE),
multilocus sequence typing (MLST), and whole-genome
sequencing (WGS, including WGS-based serovar prediction),
and (ii) a scoring system to evaluate and compare Salmonella
subtyping assays.

BANDING PATTERN-BASED AND
SEQUENCING-BASED
CHARACTERIZATION METHODS FOR
Salmonella

There are two major types of molecular-based subtyping
methods: (i) nucleotide banding pattern-based subtyping
methods, representing the banding patterns generated from
the restriction digestion or polymerase chain reaction (PCR)
amplification of genomic or plasmid DNA (Wachsmuth et al.,
1991; Hartmann and West, 1997) and (ii) sequencing-based
subtyping, identifying variants at the single-nucleotide level of
the selected gene markers or the entire genome of an isolate.
A comparison of the resolution, turnaround time, ability of
serovar prediction, cost, and feasibility of these methods is given
below (Table 1).

Banding Pattern-Based Characterization

Methods

Pulsed-Field Gel Electrophoresis (PFGE)

Pulsed-field gel electrophoresis was first described in 1984
and developed as a subtyping method for Salmonella in the
1990s (Threlfall and Frost, 1990; Figure 1). PFGE is currently
the gold standard for PulseNet International, and has been
used by public health authorities and food regulators for
outbreak investigations and source tracking globally (including
USCDC, USFDA, USDA, and ECDC) (Zou et al., 2010; Wattiau
et al., 2011; PulseNet, 2014; CDC, 2016a). Alternative methods
for Salmonella subtyping are commonly compared against
PFGE (Call et al., 2008). However, PulseNet is transitioning
from using PFGE and multiple locus variable number of
tandem repeats analysis (MLVA) toward using WGS as the
standardized genotyping method for foodborne pathogens
(CDC, 2017a; Nadon et al, 2017). PulseNet International
has defined standard PFGE protocols (PulseNet, 2013; CDC,
2017b) and maintains a database of Salmonella PFGE profiles
with >350,000 PFGE patterns representing >500 serovars.
These PFGE patterns predominantly represent isolates collected
since 1996 in North America and Europe (Zou et al., 2013).
PFGE has relatively high concordance with epidemiological
relatedness with two decades of data accumulation (CDC,
2018a). However, the PulseNet database for PFGE patterns is
not publicly available and can only be accessed by PulseNet
participating laboratories.

The PFGE approach uses restriction enzymes that recognize
specific restriction sites along the genomic DNA and fragment
the DNA to sizes normally ranging from 20 to 800 kb (up
to 2,000 kb) (Schwartz and Cantor, 1984; Singh et al., 2006).
These large fragments are separated in a flat agarose gel
by constantly changing the direction of the electric current
(pulsed field), which causes the DNA to separate by size,
generating a specific “fingerprint pattern” for a given isolate
(Foley et al., 2009). The restriction enzymes Xbal, Notl,
Spel, and Sfil have been typically used for Gram-negative
bacteria including Salmonella (Barg and Goering, 1993). The
primary restriction enzyme used for Salmonella PFGE is Xbal.
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MLVA started to be applied to
scientific studies of prokaryotes
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&
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Salmonella multistate outbreak in
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internationalis making effortsto
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Conventionalserotyping (White- Rep-PCR was first

Kauffmann-Le minor scheme) has described as a subtyping
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Nadon et al., 2017).

2002

FIGURE 1 | Timeline of the development of selected molecular subtyping and characterization methods for Saimonella (Saimonella Subcommittee of the
Nomenclature Committee of the International Society for, Microbiology, 1934; Gilson et al., 1990; Threlfall and Frost, 1990; Hulton et al., 1991; Martin et al., 1992;
Lindstedt et al., 2003, 2013; Healy et al., 2005; Grimont and Weill, 2007; Zou et al., 2010; Wattiau et al., 2011; PulseNet, 2014; CDC, 2016a, 2019;

networkas a routine tool to replace
PFGE and MLVA.

2010s
o

O
2009

CRISPR was describedas a
MLST wasfirst applied to subtyping method for
Salmonella Typhiin 2002, Salmonella after 2010 and has
and extended to all been applied to subtyping of
Salmonella serovars in more than 100 serovars of
2012 Salmonella up to now

©

A public health laboratory usually has access to software [e.g.,
BioNumerics and GelCompar (Applied Maths, Sint-Martens-
Latem, Belgium); Diversity Database Fingerprinting Software
(Bio-Rad Laboratories, Hercules, CA, United States)], to analyze
a PFGE pattern (Nsofor, 2016) and uploads PFGE patterns
to a national database. PulseNet Central’s database managers
then analyze the uploaded pattern to see if a new outbreak
has emerged or whether the isolate is part of an ongoing
outbreak (CDC, 2018a). To make inter-laboratory comparison
of DNA patterns possible, standardized protocols, molecular
size standards (Salmonella Braenderup H2812, ATCC BAA-
664), software, and nomenclature of PFGE patterns are required
(PulseNet, 2015a). The approximate cost of the equipment and
reagents required by PFGE can be accessed on the PulseNet
International — PFGE site (PulseNet, 2015b).

Pulsed-field gel electrophoresis has been shown repeatedly
to be more discriminatory than methods such as conventional
serotyping, ribotyping, or MLST for many bacteria (Fakhr et al.,
2005; Harbottle et al., 2006; Oloya et al., 2009; Soyer et al., 2010;
Hauser et al., 2012). The combination of profiles generated by
using additional restriction enzymes can enhance the value of
this method for differentiating highly homogeneous Salmonella
strains (Zheng et al., 2011); however, the cost increases as
additional enzymes are used. PFGE can be used for subtyping of
both Gram-positive (e.g., Listeria monocytogenes, Staphylococcus
aureus) and Gram-negative (e.g., Salmonella, Escherichia coli,
Shigella, Campylobacter jejuni) pathogenic bacteria. Typically,

only the choice of the restriction enzyme and conditions for
electrophoresis need to be optimized depending on the bacterial
species investigated (PulseNet, 2015a).

Although various software platforms are available for PFGE
pattern analysis, artifacts (e.g., brightly fluorescing spot) may lead
to misidentification of bands. PFGE technology cannot usually
be used to reliably visualize smaller fragments (e.g., <20.5 kb;
Hunter et al., 2005) and has difficulty in differentiating bands
differing by <5-10% in size due to the limited resolution of
electrophoresis (Dijkshoorn et al., 2001; Persing et al., 2011).
To address these issues, it has been recommended that users
confirm PFGE pattern assignments using their experience and
additional information to avoid incorrect band calling and
systematic band shifts due to gel imperfections or imperfect
reproducibility of electrophoretic conditions (Van Belkum et al.,
2007). PFGE cannot be automated and requires high-level
technical expertise and, thus, is hampered by low throughput,
and may show low robustness and poor comparability of results
between laboratories (Hyytia-Trees et al., 2007; Fabre et al., 2012;
Kjeldsen et al., 2016).

No genetic information such as virulence potential or presence
of antimicrobial resistance genes can be provided by PFGE,
as the DNA fragments are separated by size rather than
sequence (Ferrari et al., 2017). Observed bands of comparable
size might not represent the same sequence of DNA, and a
small mutation in a restriction site may result in changes in
multiple bands. “Relatedness” determined by PFGE thus may
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not represent a true phylogenetic relationship between isolates
(CDC, 2018a). Typically, multiple distinct PFGE patterns can
be identified among isolates classified into the same serovar.
Polyphyletic serovars, which are derived from more than one
common evolutionary ancestor or ancestral group (e.g., serovars
Newport, Mississippi, Saintpaul, Kentucky), show high levels
of PFGE diversity (Porwollik et al, 2004; Sukhnanand et al,
2005; Alcaine et al.,, 2006; Harbottle et al., 2006; Sangal et al,,
2010). PFGE-based prediction of these serovars is unreliable if
isolates in the database are not representative of all clades of the
serovar. On the other hand, PFGE may cluster epidemiologically
unrelated isolates into identical PFGE types (Barco et al., 2013)
and may even provide similar or identical PFGE types for
isolates that represent different, but genetically very similar
serovars that have a common ancestor (Barco et al, 2013;
Shi et al, 2015), such as Typhimurium (antigenic formula:
1,4,[5],12:1:1,2) versus Typhimurium var. Copenhagen (antigenic
formula: 1,4,12:i:1,2) (Heisig et al., 1995; Hauser et al., 2011), and
Typhimurium versus 4,5,12:i:- (Guerra et al., 2000; Soyer et al,,
2009; Wiedmann and Nightingale, 2009; Hoelzer et al., 2010;
Ranieri et al., 2013). Furthermore, differentiation of genetically
homogeneous serovars such as serovar Enteritidis challenges the
usefulness of PFGE in Salmonella subtyping activities (Olson
et al., 2007; Zheng et al., 2007). Approximately 45% of serovar
Enteritidis isolates reported to PulseNet display the same PFGE
Xbal pattern (JEGX01.0004), although many of these isolates
are not epidemiologically related (Zheng et al, 2007). It is
important to mention that the serovars mentioned above (i.e.,
Enteritidis, Typhimurium, Newport, Mississippi, Saintpaul, and
Kentucky) are ranked among the most common Salmonella
serovars associated with human and animal salmonellosis
globally (Galanis et al., 2006; CDC, 2009).

Multiple Locus Variable Number of Tandem Repeats
Analysis (MLVA)

Multiple locus variable number of tandem repeats analysis is
a PCR-based typing method originating from forensic science
where it is used for DNA “fingerprinting” samples of human
origin. It has frequently been applied to scientific studies of
prokaryotes as well as to microbial outbreak detection and
source tracking (Lindstedt et al., 2003, 2013; Figure 1). MLVA
is the second major genotyping tool (after PFGE) used in the
PulseNet network (PulseNet, 2015c); prior to WGS, MLVA was
one of the most popular subtyping methods used in public
health surveillance and outbreak investigation of Salmonella,
particularly in Europe (Torpdahl et al, 2007; Hopkins et al.,
2011; Barco et al.,, 2013; Bauer et al,, 2013; Lindstedt et al., 2013;
Mughini-Gras et al., 2018). MLVA is usually performed following
serotyping or PFGE for routine surveillance as a complementary
technique for Salmonella subtyping (Torpdahl et al, 2007;
Lienemann et al,, 2015; Kjeldsen et al., 2016; CDC, 2017c; Ferrari
et al,, 2017), as it is challenging for PFGE to further differentiate
isolates of genetically homogeneous serovars such as Salmonella
Enteritidis (Kjeldsen et al, 2016). MVLA is especially used
for typing Salmonella Typhimurium and Salmonella Enteritidis
strains in reference or regulatory laboratories in Denmark,
France, Germany, and United States [e.g., CDC, USDA - Food

Safety and Inspection Service (FSIS) laboratories] (Barco et al.,
2013; Bauer et al., 2013).

Multiple locus variable number of tandem repeats analysis
is serovar specific, thus different Salmonella serovars usually
require different MLVA schemes (Kruy et al., 2011). The first
step toward uniform standardization of the MLVA profiles
was collectively taken by PulseNet International and ECDC
in defining the standard protocols of MLVA for Salmonella
Typhimurium and Salmonella Enteritidis (ECDC, 2011, 2016b;
PulseNet, 2015c). These serovars account for 26% of the
culture-confirmed human Salmonella infections reported by
US Laboratory-based Enteric Disease Surveillance (LEDS) and
>60% of the salmonellosis cases reported by ECDC (ECDC,
2016a; Kjeldsen et al., 2016; CDC, 2018b). This uniform
standardization of the MLVA profiles allowed direct comparison
between laboratories irrespective of the platform used for MLVA
(Larsson et al., 2009). Validated MLVA standard protocols for
additional Salmonella serovars of clinical importance worldwide
are largely missing, making MLVA use for serovars other
than Enteritidis and Typhimurium difficult. However, with the
advent of and transition into WGS, further development of
MLVA may not occur.

Multiple locus variable number of tandem repeats analysis
assesses the variation in the number of tandem repeated DNA
sequences referred to as “variable-number tandem repeats”
(VNTRs) in multiple regions of the bacterial genome to
characterize bacterial isolates. The number of VNTRs in a
given locus may vary between different microorganisms and
even among bacterial isolates of the same species and serovar
(Lindstedt et al., 2003; Torpdahl et al., 2007; Ngoi et al., 2015).
The VNTR profiles vary in length between a few base pairs long
to over 100 base pairs, enabling the development of techniques
that utilize variation in the size of VNTR to discriminate
closely related isolates (Lindstedt et al., 2003; Torpdahl et al.,
2007; Fabre et al,, 2012). The improved discriminatory power
of MLVA varies with the serovar and phage type investigated
(Torpdahl et al., 2007; Lienemann et al., 2015); e.g., in a study in
Denmark, MLVA could differentiate distinct clusters within the
most common phage types of Salmonella Typhimurium such as
DT104, DT120, and DT12 even though these isolates displayed
comparable PFGE patterns (Torpdahl et al., 2007). Public health
laboratories usually have access to software (e.g., BioNumerics,
GeneMapper, the free Peak Scanner) for analysis of MLVA
patterns (ECDC, 2011; PulseNet, 2015c). Minimum spanning
trees are frequently applied to MLVA profiles, yielding maps of
predicted relationships among isolates based on single-locus and
dual-locus variants (Van Belkum et al., 2007). However, web-
accessible MLVA databases are not widely used for international
collaboration (Guigon et al., 2008).

Multiple locus variable number of tandem repeats analysis is
cheaper, faster, simpler to execute, and shows a relatively high-
throughput compared with other molecular methods (Torpdahl
etal., 2005, 2007; Lindstedt et al., 2007, 2013; Hopkins et al., 2011;
Kruy et al., 2011). MLVA is less labor-intensive, time-consuming,
and it is easier to perform than PFGE and MLST, as the
protocol requires only a regular PCR step followed by capillary
electrophoresis (Torpdahl et al., 2007; Lindstedtetal., 2013).
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Reduced handling time of pathogenic bacteria is beneficial for
large-scale investigations. MLVA is also suitable for automation
using a pipetting robot work station, automated sequencer,
and analytical software (Barco et al, 2013; Lindstedt et al,
2013; Ferrari et al., 2017). Moreover, MLVA demonstrates
good international repeatability and reproducibility for specific
serovars such as Salmonella Typhimurium and Salmonella
Enteritidis (Larsson et al., 2013). The data generated by MLVA
can be readily analyzed and standardized for inter-laboratory
comparisons (Torpdahl et al, 2007; Hopkins et al, 2011;
Lindstedt et al., 2013; Wuyts et al., 2013).

A major drawback of MLVA for Salmonella subtyping is that
the most effective MLVA protocols described so far are serovar-
specific (Barco et al., 2013; Ngoi et al.,, 2015; Kjeldsen et al.,
2016); hence, isolates have to be serotyped prior to selecting
a specific MLVA scheme for further subtyping (Kjeldsen et al,
2016). At least 27 MLVA schemes have been developed to
subtype different Salmonella serovars, whereas only Salmonella
Typhimurium and Salmonella Enteritidis MLVA assays have been
standardized in Europe and in the PulseNet network (PulseNet,
2015¢; Kjeldsen et al., 2016). Another drawback is that rapid
evolution of the target loci may decrease the reliability of results
provided by MLVA regarding the relationship between strains
under investigation (Hopkins et al., 2007, 2011; Lindstedt et al,,
2013). This might hamper the use of MLVA, particularly in long-
term epidemiological studies (Lindstedt, 2005; Li et al., 2009).

Repetitive Element PCR (Rep-PCR)

Repetitive element PCR targets the repetitive elements of
genomic DNA to discriminate bacterial isolates. This method
has been developed using three families of repeat sequences
for subtyping Salmonella, including “enterobacterial repetitive
intergenic consensus” (ERIC) sequences, “the repetitive
extragenic palindromic” (REP) sequences, and the “BOX”
sequences (Gilson et al, 1990; Hulton et al., 1991; Martin
et al,, 1992). The PCR products amplified from genome regions
containing these repetitive elements are analyzed by agarose
gel electrophoresis, and the banding patterns generated are
used to investigate the genetic relatedness between bacterial
isolates (Sabat et al., 2013). The DiversiLab system (bioMérieux,
Marcy-I'Etoile, France) automated the whole process of the
Rep-PCR subtyping approach after 2000 and has been used
for subtyping pathogens in hospitals worldwide (Healy et al.,
2005; Chenu et al., 2012; Sabat et al., 2013; Figure 1). As the low
reproducibility of original Rep-PCR method may have resulted
from variability in reagents and gel electrophoresis systems
(Sabat et al.,, 2013), the application of the DiversiLab system
with microfluidic capillary electrophoresis increased both the
resolution and reproducibility of the Rep-PCR approach (Healy
et al., 2005; Chenu et al., 2012; Sabat et al., 2013). However, the
system has been discontinued, making Rep-PCR unavailable as a
commercial platform.

The major advantages of this method include its relatively low
cost (comparable to that of PFGE) and short turnaround time
(within one day) (Sabat et al., 2013; Ngoi et al., 2015). However,
the discriminatory power of Rep-PCR in subtyping Salmonella is
reportedly lower than that of PFGE (Tiong et al., 2010; Thong

and Ang, 2011; Elemfareji and Thong, 2013; Ngoi et al.,, 2015).
Its relatively low reproducibility (which can at least be partially
addressed by automation, such as in the DiversiLab system), and
low accuracy of serovar prediction (Weigel et al., 2004; Wise et al.,
2009) have limited its application in Salmonella subtyping.

Sequencing-Based Characterization
Methods

Legacy Multilocus Sequence Typing (Legacy MLST)
Multilocus sequence typing is a nucleotide sequence-based
approach that assesses DNA sequence variations (i.e., allelic
type) of typically three, four, or seven selected well-conserved,
housekeeping genes, usually using Sanger sequencing technology
(Liu, 2010; Achtman et al, 2012). Schemes targeting seven
genes are typically considered the “classical” MLST approach;
this typing approach was originally proposed for isolates of
Neisseria meningitidis (Liu, 2010). In this review, we focus
on the most widely used Salmonella scheme targeting seven
housekeeping genes [aroC, dnaN, hemD, hisD, thrA, sucA, and
purE; hereafter denoted as legacy MLST to distinguish newer
approaches (described below)] (Li et al, 2009; Yun et al,
2015). It was first introduced for Salmonella Typhi in 2002
(Kidgell et al., 2002), and extended to all Salmonella serovars
in 2012 (Achtman et al, 2012; Figure 1). Legacy MLST is
mainly used in research studies, assessing the population genetics
and evolution of Salmonella. Public Health England (PHE)
started adopting the seven-gene MLST (based on WGS data)
approach as a replacement for traditional serotyping in 2015
(Ashton et al., 2016).

Historical MLST data including legacy MLST sequence types
are maintained on EnteroBase (Alikhan et al, 2018). As of
November 2017, the number of legacy MLST sequence types
for Salmonella has reached 3,929 (Alikhan et al., 2018). Legacy
MLST analysis can be conducted online by entering the sequences
of amplified genes. Allelic variation at each locus is cataloged
and a sequence type is assigned by comparing the allele set.
The strains are characterized by their unique sequence type.
With the advent of next-generation-sequencing technologies,
legacy MLST data can also be extracted directly from WGS data
using bioinformatics pipelines (Achtman et al., 2012; Ashton
et al., 2016). The relatedness of isolates subtyped by legacy
MLST can be displayed as a dendrogram or a minimum
spanning tree based on the matrix of pairwise differences
between their allelic profiles (Francisco et al, 2009), or as a
phylogenetic tree built directly from the nucleotide alignment of
the seven genes.

Legacy MLST can deliver results more rapidly than PFGE
(Shi et al., 2015; Yun et al, 2015; Table 1), and the publicly
available databases and online query system enable legacy MLST
results to be highly reproducible and exchangeable between
laboratories. However, legacy MLST shows lower discriminatory
power than PFGE and MLVA, which limits its application to
further discriminate isolates within a given serovar (Torpdahl
et al.,, 2005; Alcaine et al., 2006; Foley et al., 2006; Harbottle
et al., 2006; Hauser et al., 2012; Ngoi et al., 2015), and for source
attribution (Barco et al., 2013). Protocols targeting sequences in
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genes that change more rapidly than housekeeping genes have
been developed to improve the discriminatory power of legacy
MLST (Ross and Heuzenroeder, 2005, 2008).

Clustered Regularly Interspaced Short Palindromic
Repeat-Based Subtyping (CRISPR-Based Subtyping)
The clustered regularly interspaced short palindromic repeat
(CRISPR) typing method uses the diversity of the content of
CRISPR loci to distinguish bacterial strains. The application
of the CRISPR system for subtyping foodborne pathogens is
discussed in detail elsewhere (Shariat and Dudley, 2014; Shi et al.,
2015; Barrangou and Dudley, 2016; Ferrari et al.,, 2017; Ricke
et al., 2018). Although the CRISPR system has been applied to
the subtyping of at least 100 Salmonella serovars (Shariat and
Dudley, 2014; Barrangou and Dudley, 2016), this approach is
not widely used by public health authorities or food regulators
(Ferrari et al., 2017).

Clustered regularly interspaced short palindromic repeat loci
contain variable lengths of CRISPR spacers obtained from foreign
nucleic acids of plasmids or bacteriophages (Shariat and Dudley,
2014; Wright et al., 2017). These CRISPR spacers are acquired or
lost during evolution of the pathogen over time in a sequential
manner (Ricke et al., 2018), thus constructing a unique set of
DNA sequence patterns that may provide sufficient resolution
for pathogen subtyping (Fricke et al., 2011; Barrangou and
Horvath, 2012; Shariat and Dudley, 2014; Wright et al., 2017). For
subtyping, amplified CRISPR loci PCR products are sequenced
by Sanger sequencing technology (Liu et al., 2011). The CRISPR
spacer sequences are analyzed to assign each locus with an allelic
type. The combination of the allelic types of analyzed CRISPR
loci determine the isolate’s allelic profile (also referred to as the
isolate’s sequence type) and is used to investigate the relationships
between isolates (Liu et al., 2011).

The CRISPR approach has been shown to be feasible for
subtyping of Salmonella (Liu et al,, 2011; Fabre et al., 2012;
DiMarzio et al., 2013; Shariat et al., 2013a,b,c; Almeida et al,
2017). Liu et al. (2011) developed a CRISPR-multi-virulence-
locus sequence typing (MVLST) approach using virulence genes
sseL and fimH with CRISPR1 and CRISPR?2 loci; this approach
was used to compare 171 isolates representing nine serovars
(Typhimurium, Enteritidis, Newport, Heidelberg, Javiana, I
4,[5],12:i:-, Montevideo, Muenchen, Saintpaul) and was reported
to be able to subtype Salmonella with resolution at the outbreak
level. CRISPR-MVLST using different schemes of virulence
genes has also been applied by others for subtyping Salmonella
(DiMarzio et al.,, 2013; Shariat et al., 2013a; Almeida et al.,
2017). The results from these studies suggest that CRISPR-
MVLST has a higher discriminatory power than legacy MLST
(Ferrari et al., 2017); however, discrimination is lower than
PFGE in some cases (Almeida et al., 2015). While CRISPR
typing has a relatively short turnaround time (comparable to
MLST), current major drawbacks include high cost (Almeida
et al, 2017; Ferrari et al, 2017), unstandardized protocol,
and database, as well as limited research on the concordance
between the diversity of Salmonella isolates reflected by CRISPR
loci content and by the other standard subtyping methods
(Shi et al., 2015).

Whole-Genome Sequencing (WGS)

Whole-genome sequencing captures DNA sequence changes
across the entire genome of single microbial isolates. The data
are useful to assess evolution, allowing accurate description
of the genetic relatedness of isolates. The use of WGS for
Salmonella subtyping in outbreak investigation and pathogen
source tracking has proven effective by a rapidly increasing
number of studies (den Bakker et al., 2011, 2014; Allard et al.,
2012; Leekitcharoenphon et al., 2014; Deng et al., 2015; Taylor
et al, 2015; Hoffmann et al., 2016; Inns et al., 2016). WGS
was first used to trace a Salmonella multistate outbreak in the
United States in 2009 (CDC, 2019), and has been used for
pathogen subtyping by the public health surveillance systems in
the United States (Allard et al., 2018), Canada (Vincent et al,,
2018), the United Kingdom (Ashton et al, 2016), Denmark
(Kvistholm Jensen et al., 2016), and France (Moura et al,
2016). PulseNet international is also making efforts to implement
WGS within the PulseNet network as a routine tool to replace
PFGE and MLVA (Nadon et al., 2017; Figure 1). Both PHE
(Ashton et al, 2016) and the US FDA (2018) have started
using “real-time” WGS to subtype Salmonella isolates. CDC is
also using WGS in state laboratories for Salmonella outbreak
investigations (CDC, 2016b). WGS will be used increasingly
for contamination incident investigations in the food industry,
particularly as cost continues to shrink and ease of use increases.
WGS (as well as other sequencing approaches that use the
same next-generation sequencing technologies used for WGS)
also have a number of additional applications in the food
industry, which will further drive implementation of these tools.
Examples of other applications include (i) monitoring ingredient
supplies, (ii) identification of microbial persistence in processing
environments, and (iii) prediction of antimicrobial resistance
(including in Salmonella) and other relevant phenotypes,
facilitating the improvement of sanitary management, microbial
hazard control, and microbiological risk assessment (Allard et al.,
2018; Rantsiou et al., 2018; Ricke et al., 2018).

Sequenced Salmonella genomes can be deposited and made
publicly available on the National Center for Biotechnology
Information site', the European Bioinformatics Institute site?,
or the DNA Data Bank of Japan site’ with data shared
between all three (Kodama et al,, 2012; Jagadeesan et al., 2019).
NCBI provides phylogenetic tree-based clustering of all publicly
available sequence data at the NCBI pathogen detection site®.
These phylogenetic trees show the closest matches to any newly
submitted data (Allard et al., 2018). NCBI also houses the data
using GenomeTrakr Network (FDA, 2018). This was developed
by the US FDA and NCBI as the first distributed network of
laboratories to utilize WGS, with both genomic and geographic
data, for foodborne pathogen characterization. This network
includes the WGS laboratories of the CDC and USDA (Allard
et al., 2016; Jackson et al, 2016). As of February 2019, there
are over 184,000 genome sequences or raw sequencing data

Thttps://www.ncbi.nlm.nih.gov/sra
Zhttps://www.ebi.ac.uk/ena/
*https://www.ddbj.nig.ac.jp/index-e.html
“https://www.ncbi.nlm.nih.gov/pathogens/
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of S. enterica available on NCBI. WGS data analysis can also
be performed off-line without using any public databases, an
approach that may sometimes be preferred by industry.

Sequencing platforms that can be used currently for WGS
include Illumina, Ion Torrent, Oxford Nanopore Technologies,
and Pacific Biosciences (PacBio). Procedures to validate the
complete workflow for S. enterica WGS with Illumina (MiSeq
and HiSeq) and PacBio platforms from subculture of isolates to
bioinformatics analysis have been reported by Portmann et al.
(2018). The Illumina sequencing system is one of the most widely
used sequencing platforms; it produces DNA-sequence reads with
the length of 50-300 bp using sequencing-by-synthesis (SBS).
This process uses fragmented DNA templates to detect single
bases as they are incorporated during a DNA replication reaction
on a solid surface flow cell (Illumina (2019)). For applications
including comparative genomics and phylogeny, these short
reads of DNA sequences can be aligned to a reference genome or
de novo assembled into longer sequences called contigs (Loman
and Pallen, 2015). The large amount of data generated by WGS
combined with a complex data analysis process generally requires
expertise in bioinformatics to deploy and run (Wyres et al., 2014;
Deurenberg et al., 2017). Software with a more user-friendly
interface, such as CLC Genomics Workbench’, BioNumerics,
and Geneious (Biomatters, New Zealand), however, is available,
including for industry users with limited bioinformatics expertise
and an increasing number of user-friendly bioinformatics tools
are being developed.

The rapid growth of WGS data in the publicly available
databases allows industry to compare isolates with global entries
of pathogen sequences used by food regulators and public
health authorities (Allard et al., 2018; Rantsiou et al., 2018).
Despite increasing availability of data analysis software, it is
still challenging to generate consistent analytical reports due
to the lack of standardized approaches to data analysis and
interpretation (Clooney et al., 2016); for example, even with
a standard software, choice of reference genomes can have
considerable effects on the data analyses (Pightling et al., 2014).
Furthermore, there are currently no clearly outlined safeguards
to protect companies from regulatory action if shared WGS
data show a relationship between pathogen isolates identified
by a company and an outbreak isolate. Development of a
mechanism for sharing data through anonymous hubs may
allay concerns on confidentiality and encourage data sharing
(FAO, 2016). This mechanism may also enable more effective
data capture and analysis for monitoring trends and identifying
related incidents.

The current cost of the entire WGS process, including
DNA library preparation, sequencing, data analysis, and storage,
is relatively high compared with the other molecular-based
subtyping methods. The cost difference is more apparent when
a small number of isolates are sequenced (as could be typical
for the food industry). The cost of maintaining data analysis
tools and bioinformatics personnel needs to be taken into
consideration (Leekitcharoenphon et al., 2014; Ferrari et al., 2017;
Nadon et al., 2017).

>https://www.qiagenbioinformatics.com

WGS-Analysis Procedures

Interpretation of WGS data for source tracking or outbreak
investigation typically uses two approaches to represent results:
(i) single-nucleotide polymorphism (SNP) or allelic differences
(often presented as distance matrix tables), and (ii) phylogeny
or clustering of the isolates. SNP or allelic differences show
objectively the genetic distance between two isolates. Hence, if
isolate A shows three SNPs or allelic differences to isolate B,
and 26 SNPs or allelic differences to isolate C, then we can say
that isolate A is more similar to isolate B than to isolate C.
If one assumes that all three isolates evolved at the same rate,
then we can say that isolates A and B are evolutionarily more
closely related to each other than they are to C. However, this
assumption (i.e., all isolates evolve at the same rate) may not
always be true. Environmental conditions or mutations in the
DNA repair system may influence the rate of genetic change
accumulated in a genome; e.g., a Salmonella isolate persisting
in a humid, nutritious environment such as in a chicken farm
may multiply much faster than an isolate persisting in a dry
food processing environment. This environmental difference will
allow the “chicken farm” isolate to accumulate more mutations
(per year or any other time unit) than the dry food processing
environment isolate, because the “chicken farm” isolate will
multiply more times during the same period than the dry food
processing environment isolate. Moreover, mutations in genes
involved in DNA repair may result in the so-called “mutator
phenotypes” (also sometime referred to as “hypermutators”).
Mutator isolates accumulate mutations at a higher rate than
non-mutator isolates (Muteeb and Sen, 2010). Hence, analyzing
the number of SNP or allelic differences alone may result in
misinterpretation of the results if the assumption that isolates
evolved at the same rate does not hold true. Phylogenetic or
clustering analyses are thus better suited to an investigation,
as these analyses group isolates by their similarities instead of
their differences (Pightling et al., 2018). To infer the evolutionary
relationship of the isolates within a data set, therefore, a
phylogeny must be constructed. For more detailed and technical
information on reconstructing bacterial phylogenies from WGS
data, the reader is referred to two in-depth reviews on this subject
(Collins and Xavier, 2017; Patané et al., 2018).

WGS Analysis Approaches for Serotyping
Genetic-based approaches have been developed for in silico
determination of serovars, because the phenotypic determination
of Salmonella serovars is costly, time-consuming, and labor-
intensive. These in silico methods have relied on two main
approaches: (i) indirect determination using genetic markers
associated with particular serovars and (ii) direct determination
using genes responsible for the expression of the somatic O
(rfb gene cluster) and flagellar H (fIjB and fliC) antigens. The
latter method has the advantage of relying on the same genetic
information that results in the phenotype assessed by traditional
serotyping, while the former method may require validation
for new described serovars. These two approaches can also be
combined for more reliable serovar prediction.

With the advent of whole-genome sequencing (WGS), in silico
direct serovar determination has become the most used approach,
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and at least two Salmonella serovar databases and programs have
been routinely used for in silico serotyping of Salmonella: SeqSero
(Zhang et al., 2015) and SISTR (Yoshida et al., 2016a). SeqSero
uses a database of 473 alleles representing 56 fliC antigenic types
and 190 alleles representing 18 fIjB antigenic types in a combined
H-antigen database (Zhang et al., 2015). The somatic O-antigen
database associated with SeqSero consists of 46 rfb gene cluster
sequences corresponding to the 46 O-antigens identified in
Salmonella (Zhang et al., 2015). The rfb database was specifically
designed to be used with genome assemblies (as opposed to raw
sequencing reads). A third database was specifically built for
determination of the somatic O-antigen using raw sequencing
reads (as opposed to genome assemblies). This third database
consists of the genes wzx (encoding the O-antigen flipase),
wzy (encoding the O-antigen polymerase), and other targets,
all of which are found within the rfb gene cluster. In total,
the authors claimed that the SeqSero scheme can theoretically
identify 2,389 of the 2,577 serovars that were described in the
White-Kauffmann-Le minor scheme by the end of 2014 (Zhang
et al,, 2015). The inability to predict 188 serovars is due to
the absence of the DNA sequences for the antigen-encoding
genes corresponding to these serovars in the SeqSero database.
Empirical data showed that the SeqSero database has an accuracy
of 91.5-92.6% for serotype prediction (Zhang et al., 2015).

SISTR is a platform for in silico analysis of Salmonella
draft genome assemblies. SISTR includes the Salmonella
Genoserotyping Array (SGSA) tool among other resources.
SGSA relies on the allelic differences found within the rfb gene
cluster for determination of 18 of the 46 somatic O-antigens,
and fIjB and fliC for determination of 41 flagellar H antigens
(Yoshida et al.,, 2014). SGSA targets the identification of 90%
(n = 2,190) of Salmonella serovars. When serovar determination
using genoserotyping is not possible or is incomplete, SISTR also
has the option to use the core genome MLST (cgMLST) scheme
to infer the serovar based on phylogenetic context. The accuracy
of SISTR in predicting Salmonella serovars has been assessed to
be close to 95% (Yoshida et al., 2016a,b; Robertson et al., 2018).

Since SISTR can use genoserotyping and the cgMLST scheme
to infer the serovar, higher confidence should be attributed
to assignments where both genoserotyping and cgMLST agree
on the serovar designation. Moderate confidence should be
attributed to serovar assignments when only cgMLST is able
to identify the serovar. When neither the genoserotyping nor
cgMLST can identify the serovar, SeqSero may be used and may
allow for serovar prediction.

WGS Analyses for Subtype
Characterization

Overview of WGS data analysis approaches

Different approaches can be used for analysis of WGS data for
subtyping characterization related to source incident tracking.
The most common approaches are based on (i) high-quality
single-nucleotide polymorphism (hqSNP) identification and
pairwise comparison of hqSNP differences, or (ii) whole-genome
(wg)/cgMLST typing using pre-defined schemes (i.e., databases)
containing allelic differences for either the pan (wg) or core (cg)

genomes of Salmonella and subsequent pairwise comparison for
assessing the number of allelic differences.

High-quality SNP analyses

High-quality SNP analyses rely on identification of SNP
differences across a set of closely related isolates using raw
sequence data, which are mapped to a closed or draft genome
assembly (also referred to as the “reference genome”). Only
SNPs that have been vertically transferred from an ancestral
isolate to the current isolates are subject to the hqSNP analysis,
while SNPs that were supposedly horizontally transferred are
filtered out from the results. The reference can be a closely
related genome outside the dataset, or a genome within the
dataset. The analysis consists of two main steps: (i) mapping the
raw sequence reads against the reference genome and (ii) SNP
calling using stringent criteria to prevent the misidentification
of sequencing errors or misaligned regions as SNPs (Davis et al.,
2015; Katz et al., 2017). The choice of a closely related reference
has been shown to be a key step in the analysis. Reference
genomes that are not closely related to the set of isolates under
investigation may result in underestimation of the number of
SNPs, due to specific regions of the genome that may be present
in the dataset under investigation, but that are missing in the
reference genome (Pightling et al., 2014). There are at least
two publicly available approaches that have been commonly
used for hqSNP analysis: (i) the US FDA CFSAN (The Center
for Food Safety and Applied Nutrition) SNP pipeline (Davis
et al., 2015) and (ii) the US CDC-developed Lyve-SET hqSNP
pipeline (Katz et al., 2017). These two pipelines rely on publicly
available software to carry out the mapping and SNP calling
steps and offer similar results despite some methodological
differences, including different criteria for filtering out low-
quality SNPs and masking regions supposedly acquired through
horizontal gene transfer.

High-quality SNP analysis has been applied in several
outbreak investigations in the United States, Canada, and some
European countries, including a Salmonella Enteritidis outbreak
in the United Kingdom that was linked to a German egg
producer (Inns et al., 2015). Historical Salmonella Typhimurium
isolates from humans and foods involved in five outbreaks
and consisting of five distinct MLVA subtypes were re-analyzed
using hqSNP analysis by Octavia et al. (2015); in this study
at least 11 isolates not previously linked to the outbreaks
were ruled in based on less than two SNP differences to the
isolates previously linked to the outbreaks. Another retrospective
study used hqSNP to analyze a collection of 55 Salmonella
Enteritidis from seven epidemiologically characterized outbreaks
and sporadic cases. One isolate not previously linked to any
outbreak (i.e., sporadic) was identified to be part of one
outbreak (“ruled in”) (Taylor et al., 2015). An investigation
into a multi-state outbreak caused by Salmonella Poona was
carried out in 2015 using PFGE and hqSNP analysis. Analysis
by PFGE demonstrated three different patterns. However, WGS
results showed that isolates with different PFGE patterns were
genetically linked with less than six SNP differences (Kozyreva
et al., 2016). Subtyping of Salmonella Dublin with PFGE was
shown to have limited value in a recent outbreak investigation
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due to its low discriminatory power for this Salmonella serovar
(Mohammed et al., 2016). The nine clinical isolates associated
with the outbreak were indistinguishable by PFGE, but they
were also indistinguishable from other unrelated Salmonella
Dublin isolates. The nine isolates linked to the outbreak clustered
together with one to nine SNP differences when analyzed using
hqSNP, and they could be distinguished from other isolates
that shared the same PFGE pattern with epidemiologically
unrelated isolates showing more than 50 SNP differences when
compared to the outbreak isolates (Mohammed et al., 2016).
These studies show that public health agencies are increasingly
relying on hqSNP analysis for outbreak investigation, including
tracking the source of outbreaks. High-quality SNP analysis
clearly improves subtype accuracy and outbreak investigations
by not only allowing for increased discriminatory power, but
also reducing instances where closely related isolates are being
classified as “different.”

wgMLST

Whole-genome MLST (wgMLST) analysis relies on the
comparison of individual genomes against a database containing
all known alleles for all the genes representing the pan genome of
a defined group of strains (i.e., serovar, subspecies, species, and
genus). The pan genome is defined as all the genes present in at
least one genome from a defined group. Two main approaches
can be used, and these are often used in combination: (i)
assembly free mapping and (ii) assembly based mapping. Raw
sequencing reads are directly mapped against the database
in an assembly free approach. Hence, this approach does not
require de novo assembly of the genome prior to its utilization.
SRST2 (Inouye et al., 2014) and BWA-MEM (Li, 2013) are the
most commonly used programs to carry out this task. Because
this approach deals directly with the raw sequence reads, it
allows filtering low-quality reads or specific nucleotides with
low quality within a good-quality read. In an assembly based
approach the raw sequence reads are first used to generate a high-
quality draft genome (i.e., usually not a closed genome) using
a genome assembler. Later, the draft genome (i.e., assembly) is
used to find matches against the database. The program most
commonly used to map the draft genome against the database
is BLASTN (Altschul et al., 1990), although other options also
exist. Independently from the approach used (i.e., assembly free
or assembly based), the result of mapping a genome against a
database is a list of the alleles found in the analyzed genome.
When more than one genome is analyzed, the list of alleles
from each genome can be compared and the number of allele
differences can be computed. Assembly free and assembly based
wgMLST allele assignment should match for high confidence.
Results are often shown as a distance matrix of allele differences
and a dendrogram constructed from this distance matrix. The
wgMLST methods allow for comparison of non-closely related
isolates from different groups since all genomes are compared
against the same database, which is a great advantage of this
method over hqSNP (Maiden et al., 2013; Nadon et al., 2017).
A disadvantage of the method is that the database must be
constructed and shared across different groups, who must
agree in using the same database in order to make their results

comparable (Nadon et al., 2017). Construction of such databases
is also time-consuming and labor-intensive, with the difficulty
increasing with the diversity of the organisms included in the
same database (e.g., a database for S. enterica subspecies enterica
serovar Agona will require less time and labor than a database
for all S. enterica).

Core genome MLST (cgMLST)

The cgMLST method is very similar to the wgMLST method. The
major difference is the size and nature of the database. While
the wgMLST database contains alleles for all genes in the pan
genome of the defined group, the cgMLST only contains alleles
for those genes that are present in all (or almost all) genomes of
the defined group (i.e., the “core genome”). Hence, a cgMLST
database will not capture the genetic diversity present in the
accessory genes (i.e., genes that are not present in all isolates)
and hence tends to be much smaller than a corresponding
wgMLST database. The advantages of using the cgMLST are: (i)
speed; because the cgMLST database is smaller than the wgMLST
database, results can be obtained faster, and (ii) construction
of the cgMLST database is generally easier than the wgMLST
database, as typically less genomes are needed to identify the
core genome than the pan genome of a group (den Bakker et al.,
2010). While allele code schemes are used by some groups to
summarize the differences observed among isolates subtyped by
both cgMLST and wgMLST (Nadon et al., 2017), it generally
is easier to define standard, stable, cgMLST allele codes. This
allele code scheme can be easily transferred in a spreadsheet
and can be interpreted similarly to what has been in use for
PFGE. An allele code scheme may not, however, be fully stable
and may need to be revised as new cg- or wgMLST types are
identified (Nadon et al, 2017). A disadvantage of cgMLST is
that it may show reduced discriminatory power over wgMLST,
as shown in a comparison between the Salmonella cgMLST
and wgMLST schemes defined in EnteroBase (Alikhan et al,
2018), carried out using Salmonella Enteritidis historical isolates
from a UK egg-associated outbreak (Inns et al.,, 2015), as well
as closely related non-outbreak isolates identified previously
(Dallman et al.,, 2016). The 177 isolates from this dataset
resulted in 177 unique sequence types by wgMLST (Simpson’s
diversity index = 1.00) and 137 unique sequence types by
cgMLST (Simpson’s diversity index = 0.98) (P < 0.05), showing
the superior discriminatory power of wgMLST over cgMLST.
However, both approaches grouped the isolates into identical
clusters (Pearce et al., 2018).

Comparison of hqSNP-based analysis and genomic MLST
analysis

Theoretically, hqSNP analysis is the most discriminatory
approach for molecular subtyping, as it investigates all possible
SNPs between each pair of isolates in the dataset. The second
most discriminatory approach is wgMLST, which is designed to
investigate virtually all genes in the genomes; intergenic regions
and genes not present in the wgMLST scheme will not be
investigated and polymorphisms present in these regions will
be missed. The c¢gMLST approach is the least discriminatory
of the three as it relies on only a subset of the genes present
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in the wgMLST scheme. Hence, similarly to the wgMLST
approach, polymorphisms present in intergenic regions and in
genes not included in the cgMLST scheme will not be assessed
(Chen et al.,, 2017). Both wgMLST and c¢gMLST are reference-
independent which makes the results more reproducible and
transferable than hqSNP analysis (Nadon et al., 2017). In order to
reproduce the results obtained from hqSNP analysis, one needs
to use the same reference and parameters that were used in
the original analysis (Nadon et al,, 2017). This is not an issue
with wgMLST or cgMLST analysis as long as analyses use the
same scheme containing the same genes and alleles to allow for
comparisons. Transference and communication of the results
also seem to be more complicated for hqSNP analysis than
for cgMLST or wgMLST (Nadon et al., 2017). This is because
hqSNP analysis, as compared to cgMLST or wgMLST analyses,
requires more parameter settings, which must be communicated
for better interpretation. wgMLST and cgMLST analyses are
also typically integrated into commercially available software,
while the hqSNP pipelines are available as free open software
or integrated into commercial software. Free-of-charge hqSNP
pipelines require UNIX-based systems and are run through the
command line, which may require specialized expertise (Nadon
et al,, 2017). Commercially available software, which can run
cgMLST and wgMLST (e.g., BioNumerics) tends to be more
user-friendly. BioNumerics uses a graphical user interface and
can be installed in Microsoft Windows computers. The hqSNP
analysis can easily be kept private as the analysis can be run
within a closed dataset of genomes. The cgMLST and wgMLST
can also be kept private; however, it may require some additional
infrastructure (i.e., a private cloud) to be built around the
commercial software.

Comparison of Molecular Methods for

Predicting the Serovar of Salmonella
A comparison of different molecular methods for predicting the
serovar of Salmonella is shown Table 2. Acceptable correlation
between PFGE patterns and serovars has been described by
several researchers (Weigel et al., 2004; Nde et al., 2006; Gaul
et al, 2007; Kerouanton et al., 2007; Zou et al, 2010; Shi
et al., 2015; Bopp et al, 2016). Shi et al. (2015) summarized
the serovar-prediction accuracy of different molecular serotyping
methods with studies from 1993 to 2013. The proportion of
isolates that may not be accurately serotyped with PFGE is
generally comparable to the proportion that is not typeable,
or that requires extensive additional labor and reagents using
conventional serotyping (Bopp et al., 2016). Examples of serovars
incorrectly predicted by PFGE are summarized below (Table 3).
Opverall, with PFGE patterns for approx. 500 Salmonella serovars
in the PFGE pattern database (Ranieri et al., 2013; Shi et al,
2015) and the reported good correlation between PFGE patterns
and serovars, PFGE-based serovar prediction should be possible
for a large proportion of these serovars, but will not be possible
for a large number of less common serovars not represented
in the database.

Multiple locus variable number of tandem repeats analysis
is not widely used for serovar prediction even though efforts

have been made to develop MLVA subtyping schemes to subtype
multiple serovars of Salmonella with one protocol (Van Cuyck
et al., 2011; Kjeldsen et al., 2016). A universal MLVA scheme
for most frequently isolated Salmonella serovars (accounting
for 80% of the clinical isolates from humans in Europe) has
been developed by Kjeldsen et al. (2016). In another study, an
MLVA scheme identified 31 serovars (Van Cuyck et al.,, 2011).
Nevertheless, further development of multiple-serovar MLVA
schemes and robust MLVA profile databases is unlikely to occur
given the benefits offered by WGS.

The serovar-prediction accuracy of Rep-PCR has been
reported to range between 0 and 100%, indicating some
limitations of this method (Shi et al., 2015). Ranieri et al. (2013)
showed that Rep-PCR accurately predicted the serovar of 30 out
of 46 isolates representing the top 40 Salmonella serovars isolated
from human and non-human sources, with an accuracy of 65%.
This accuracy was relatively lower than that obtained with PFGE
or MLST, when the same set of isolates were evaluated.

Ashton et al. (2016) compared the serovars predicted by
using legacy MLST sequences extracted from WGS data to the
results generated by conventional serotyping, for 7,338 isolates
representing 263 serovars of Salmonella enterica subspecies 1.
The 10 most common serovars in this S. enterica subspecies
I dataset were serovars Enteritidis, Typhimurium, Infantis,
Typhi, Newport, Virchow, Kentucky, Stanley, Paratyphi A,
and Java. They found that the serovar prediction accuracy of
legacy MLST was 96%.

The overall serovar-prediction accuracy for the CRISPR
subtyping approach has been reported to range from 78 to
90% (Liu et al., 2011; Fabre et al, 2012; Shi et al., 2015).
More studies are needed to further assess serovar-prediction
accuracy using CRISPR.

Given the range of serovars represented in the SeqSero
and SISTR databases, WGS can be used to theoretically
predict 2,389 and 2,190 of the 2,577 serovars described in the
White-Kauffmann-Le minor when using the serovar prediction
programs SeqSero (Zhang et al., 2015) and SISTR (Yoshida
et al., 2016a), respectively. Using empirical data, the accuracy of
serotype prediction with SeqSero and SISTR has been reported to
be approx. 92 and 95%, respectively (Zhang et al., 2015; Yoshida
etal., 2016a,b; Robertson et al., 2018). By comparison, traditional
Salmonella serotyping had an accuracy of 73% when 33-36
independent laboratories performed serotyping of the same eight
Salmonella strains representing seven different serovars (Petersen
et al., 2002), suggesting that WGS-based methods may be more
reliable than traditional serotyping to assign Salmonella isolates
to serovars. Nevertheless, further experimental studies are needed
to continue to quantify the ability of WGS-based methods to
identify Salmonella serovars.

Comparison of Molecular Methods for
Subtype Differentiation of Salmonella

Molecular methods are used for subtyping Salmonella isolates
that belong to the same serovar, as well as being used for
serovar prediction. This section briefly provides some examples
of comparative studies of subtyping methods. In one study, PFGE
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TABLE 2 | Comparison of molecular characterization methods for prediction of Salmonella’ serovars.

Number of
serovars tested

Number of
isolates tested

Isolate sources

Serovar-prediction

accuracy (%)

References

PFGE

80 6
68 10
674 12
866 8
1,128 31
46 40
1,486 110
1,437 131
1,558 107
Legacy MLST

25 7
66 1
110 25
152 33
4,257 554
46 40
42,400 624
7,338 263
WGS-(SeqgSero)

308 72
3,306 228
354 44
WGS-(SISTR)

4,291 246
42,400 624

Turkey processing plant 99
Swine farms 84
Swine 85
Food animals, production facilities, and clinical samples 96
Food, animals, humans, natural environment, and processing plants 97
Human and cattle 75
New York State Department of Health, isolates received in 2012; 96
human clinics

New York State Department of Health, isolates received in 2013; 91

human clinics

New York State Department of Health, isolates received in 2014; 90
human clinics

Chickens 92
Cattle, birds, horses, and other animals 99
Human and veterinary source 98
Reference collection 100
Reference collection 88
Human and cattle 91

SRA collection 91

Human 96
CDC collection 99
Genome Trakr collection 93
GenBank collection 92
SRA and NCBI Assembly collections 95
SRA collection 97

Nde et al., 2006
Weigel et al., 2004
Gaul et al., 2007

Zou et al., 2010
Kerouanton et al., 2007
Ranieri et al., 2013
Bopp et al., 2016

Bopp et al., 2016

Bopp et al., 2016

Liu, 2010

Sukhnanand et al., 2005
Torpdahl et al., 2005
Ben-Darif et al., 2010
Achtman et al., 2012
Ranieri et al., 2013
Robertson et al., 2018
Ashton et al., 2016

Zhang et al., 2015
Zhang et al., 2015
Zhang et al., 2015

Yoshida et al., 2016a
Robertson et al., 2018

" This table is revised from the information provided by the review of Shi et al. (2015).

TABLE 3 | Examples of serovars incorrectly predicted by PFGE.

Major incorrectly predicted serovars “0” antigens Phase 1 “H” antigens Phase 2 “H” antigens References
Montevideo (clustered with Senftenberg) 6,7 g,m,s No phase 2 antigen Nde et al., 2006
Senftenberg (clustered with Montevideo) 1,3,19 gst No phase 2 antigen Nde et al., 2006
Typhimurium var. Copenhagen (clustered with 1,412 | 1,2 Gaul et al., 2007
4,[5],12:i:- and Typhimurium)

4,5,12:i:- (clustered with Typhimurium var. 4,512 No phase 2 antigen Gaul et al., 2007
Copenhagen and Typhimurium)

Typhimurium (clustered with Typhimurium var. 1,4,512 1,2 Gaul et al., 2007
Copenhagen and 4,[5],12:i:-)

Saintpaul (clustered with Typhimurium var. 1,4,5,12 e,h 1,2 Ranieri et al., 2013
Copenhagen and Typhimurium)

Putten (clustered with Agona) 13,28 D I, w Gaul et al., 2007
Agona (clustered with Putten) 4,12 f,9,s No phase 2 antigen Gaul et al., 2007
Paratyphi B 1,4,5,12 B 1,2 Kerouanton et al., 2007
Give 3,10 Iv 1,7 Kerouanton et al., 2007
Newport 6,8 e,h 1,2 Kerouanton et al., 2007

was compared to MLVA to subtype 163 non-typhoidal Salmonella
isolates representing 15 serovars; MLVA differentiated the isolates
into 79 MLVA subtypes while PFGE differentiated the same

isolates into 87 subtypes. The Nei’s diversity index for MLVA
was 0.979 compared to 0.999 for PFGE (Kjeldsen et al., 2016).
However, for specific serovars (e.g., Salmonella Enteritidis)
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MLVA has been reported to provide improved discriminatory
power over PFGE (Boxrud et al., 2007; Beranek et al., 2009;
De Cesare et al, 2015). MLST has the advantage of being
highly reproducible and easily transferable among laboratories.
However, in a study of 110 Salmonella isolates from 25 serovars
(Torpdahl et al., 2005), MLST resulted in 43 sequence types,
while PFGE was able to differentiate the isolates into 73
PEGE subtypes. The downside of PFGE in this study was
the inability to type 11 of the 110 (10%) isolates. In a study
comparing different molecular methods to differentiate 52
Salmonella Enteritidis isolates, PFGE resulted in eight subtypes,
while MLVA resulted in 18 subtypes and WGS resulted in
34 subtypes. The discriminatory power of PFGE, MLVA, and
WGS was 0.81, 0.92, and 0.97 (Simpson’s index of diversity),
respectively (Deng et al., 2015). In another study, PFGE and
WGS were used to differentiate 55 Salmonella Enteritidis isolates;
PFGE resulted in 10 subtypes; however, WGS was able to
further differentiate the isolates into 45 unique subtypes (Taylor
et al, 2015), showing the greater discriminatory power of
WGS over PFGE. In a study of isolates from a Salmonella
Poona outbreak (Kozyreva et al, 2016), 4 PFGE subtypes
and 7 WGS subtypes were observed among the 16 isolates;
in silico MLST using the WGS data resulted in one MLST
sequence type. Phylogenetic analysis using WGS data showed
that the distinct PFGE types did not necessarily correlate
with increased genetic distance between isolates. Isolates that
differed by 0 SNPs showed distinct PFGE subtypes, suggesting
that PFGE results would be misleading for these isolates
(Kozyreva et al., 2016). While the relative discriminatory power
of different subtyping methods depends on the strains and
serovars tested, WGS methods were consistently found to be
most discriminatory, followed by PFGE. While some MLVA
schemes provide enhanced discriminatory power over PFGE
for some serovars, for other serovars PFGE may be more
discriminatory than MLVA.

CRITERIA TO EVALUATE AND VALIDATE
DIFFERENT Salmonella
CHARACTERIZATION METHODS

Molecular-based Salmonella characterization methods including
WGS are evolving very fast. Many of the characterization
methods and technologies, as well as data analysis pipelines,
are operated as research tools, and are under continuous
development. Evaluation of these tools for Salmonella
investigation, especially for those serovars/strains highly
relevant to food products and processing environments, is
pre-requisite for the implementation of these methods. Methods
that can be used by the food industry must be thoroughly
validated before implementation to ensure reliability and
consistency of the method when it is used across different
laboratories. Validation should cover the end-to-end workflow
for source tracking from isolate subculture to bioinformatic
analysis, articulating the key quality requirements and criteria
(Ferrari et al., 2017; Nadon et al., 2017; Portmann et al., 2018).
Proposed criteria for evaluation of Salmonella characterization

methods for potential routine use in the food industry are shown
below (Table 4).

IMPLEMENTATION OF
MOLECULAR-BASED Salmonella
SUBTYPING METHODS BY THE FOOD
INDUSTRY

We consider that WGS is the most suitable method to
characterize Salmonella for incident investigation at production
facilities in the food industry. This opinion is based on
comparison of the resolution, turnaround time, ability of
serovar prediction, cost, and feasibility of the available methods.
Bioinformatics is a key capability required for WGS. The
food industry may choose to invest in in-house capability that
can interface with outside resources (e.g., academic partners,
industry partners, government agencies), however, there are
also opportunities to outsource data analyses to commercial
or academic partner labs. Both the CFSAN pipeline and
the Lyve-SET pipeline have been widely tested and seem to
provide comparable and reliable results for hqSNP analysis.
Implementation of wgMLST and cgMLST within BioNumerics
has been successfully completed for L. monocytogenes in the
United States. A cgMLST scheme is publicly available from
EnteroBase (EnteroBase URL: https://enterobase.warwick.ac.uk/)
and it is likely to be implemented within BioNumerics in the
future. Other data analysis methods such as genome distance
analysis (Pinho et al, 2009; Auch et al, 2010) can also
become possible future approaches that allow for the food
industry to develop data analysis capabilities for contamination
source tracking.

The turnaround time of in-house WGS subtyping can be
comparable to many conventional subtyping methods including
conventional serotyping and PFGE (Table 1). WGS, however,
provides much more information about an isolate with one
single experimental procedure, enabling full characterization
of the pathogen (including in silico serovar prediction and
antimicrobial resistance gene identification) and more accurate
clustering/discrimination of the isolates investigated. This is
faster than using multiple conventional subtyping approaches
in a stepwise approach to get equal information. The cost of
WGS is also comparable to that of the conventional subtyping
tools, considering the high quality and volume of information
provided by WGS within one experimental procedure. In silico
serotyping should be performed instead of traditional serotyping
for determination of serovars once WGS is implemented as the
subtyping method for Salmonella. This approach will greatly
reduce the costs and time associated with serotyping.

Legacy MLST targeting variants of seven housekeeping
genes of Salmonella can be used in combination with WGS.
While legacy MLST classification can be obtained using
Sanger sequencing technology (also known as first-generation
sequencing technology) within 1 week, it can also be obtained
by using the sequence information extracted from WGS data.
Although legacy MLST has relatively lower discriminatory
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TABLE 4 | Continued

Quantitative evaluation (scale of 0-5)

Key factors affecting

performance

Target

Description

Key criteria

for evaluation

0 - The given assay requires extremely high level of expertise and

Ease of use is important for the Poor ease of use is usually

Ease of use encompasses technical
simplicity, workload, suitability for

Ease of use

experience in specific techniques (PhD level scientist with >4 days of

specialized training)

caused by the high level of

implementation of an assay in the
internal laboratories of food

expertise and experience

high throughput test, ease of data

3 - The given assay requires average level of expertise and experience of a

microbiological technician

required by a given assay, e.g.,
bioinformatics expertise to

industry, less important when using
services provided by a commercial

laboratory.

analysis, and result interpretation

5 — No specific expertise or experience required; assay can be completed

by high school diploma and <1 day training.

analyze data produced by the

assay.

We recommend to use the actual reagent cost per isolate plus staffing cost
estimated with given turnaround time to compare the assay being validated

to the currently/previously used methods by food industry; data here are

High cost per isolate for routine
test is usually caused by high

reagent cost and long

Total cost encompasses cost of A balance between

Cost

efficiency/effectiveness and cost of
a given assay is more important

equipment reagent/consumables,

data analysis platform, and staffing.

For routine use, we usually just

based on costs from commercial laboratories in North America and Europe:

0->%1

turnaround time (leading to high

staffing cost).

than pursuing low cost, because
low cost may potentially lead to
larger economic loss and extra

000 per isolate

assess the reagent cost per isolate.

1 - $500-$1,000 per isolate
2 — $200-$500 per isolate
3 - $150-200 per isolate

Staffing cost can vary considerably
in different regions/countries within

a given turnaround time, thus

investigation time caused by poor

quality of typing result.

4 — $100-150 per isolate

5-<$100

needs to be assessed separately
with actual local situations.

" The parameters and information in this table are adapted from Van Belkum et al. (2007) and Wiedmann et al. (2014) with industry-specific practical needs. 2The serovar typing ability of conventional serotyping method

(Kaufmann-White Le Minor scheme) is around 90% taking the typeability and accuracy of it into consideration (Bopp et al., 2016).

power compared with PFGE and MLVA, it is faster than
PFGE when using an in-house Sanger sequencer such as
Applied Biosystems Genetic Analysis Systems (Thermo Fisher
Scientific). It is also more universal to all Salmonella serovars
than MLVA which usually requires a specific scheme for each
serovar. In addition, the serovar prediction ability of legacy
MLST has been demonstrated to be comparable to that of
PFGE (Tables 1, 3).

PFGE is currently still the “gold standard” and most widely
used Salmonella DNA fingerprinting method used by public
health authorities and food regulators to characterize and track
this pathogen in outbreaks, although it is being replaced by
WGS. PFGE remains a valuable tool for foodborne pathogen
characterization by the food industry, while a transition to
WGS occurs. PFGE has been repeatedly shown to be more
discriminatory than methods such as conventional serotyping,
automated ribotyping, or MLST for many bacteria including
Salmonella. In addition to these methods, single-plex or
multiplex PCR assays that can detect and identify specific
Salmonella serotypes have been described (Kim et al., 2006;
Akiba et al., 2011; Zhu et al, 2015; Xiong et al., 2018;
Xu L. et al,, 2018; Xu Y. et al.,, 2018); these tools provide an
alternative approach for detection and identification of specific
Salmonella serovars.

The results of any subtyping approach can be used to assess
the relationship of isolates in an investigation. Nevertheless, the
epidemiological context is indispensable in final decision making
in incident investigation and to determine further actions for
food safety management improvement. High-resolution WGS
subtyping results should not be interpreted in the absence of
epidemiological information.

The raw sequence data generated by molecular-based
subtyping methods, especially WGS, require both physical
and virtual space for storage. It is desirable to retain the
original sequence reads (usually files with >200 MB for each
Salmonella isolate) for potential future analysis using alternative
data analysis methods or for a retrospective investigation.
Commercial clouds can provide a storage solution, provided
that special attention is paid to data security. A robust Internet
connection and high band-width is needed to transfer WGS
data if data storage is outsourced. Subtyping analysis needs
to be supported by complete metadata providing the relevant
epidemiological context to identify the root cause of the
contamination. Thus, the capability for metadata collection,
organization, and storage is needed together with building the
capability for WGS. The metadata should include information
such as the geographic and temporal background of the isolates,
the sample type, and sample source (e.g., raw ingredients,
finished products, environment), etc. The Consortium for
Sequencing the Food Supply Chain, founded by IBM and Mars
Incorporated, represents industrial groups putting effort into
collecting genomic information on pathogenic bacteria across the
food supply chain®. This consortium represents one part of the
broader goal to increase knowledge of foodborne pathogens at
the genomic level.

Chttps://researcher.watson.ibm.com/researcher/view_group.php?id=9635
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CONCLUSION

The application of DNA-based methods for characterization of
pathogens such as Salmonella has become common practice. Our
literature-based assessment supports the superior discriminatory
power of WGS and its advantages compared with other methods
for Salmonella subtyping and source tracking for the food
industry. We also identified circumstances under which use of
other subtyping methods may be warranted. Implementation of
molecular-based Salmonella characterization methods, including
WGS, provides improvement of source tracking and root cause
elimination; however, these methods require investment in
bioinformatics capability. Routine use of WGS or complete
replacement of current subtyping methods by WGS will require
attention to key issues including standardization, robustness, and
validation of the analytical methodology. High resolution WGS
subtyping of Salmonella promises to vastly improve the ability of
the food industry to track and control Salmonella and is poised to
become standard methodology in food safety for characterization
of foodborne pathogens by public health authorities and food
regulators. Nevertheless, standardization of WGS operation and
data analysis, in particularly source tracking analysis, is required
at a global level. A common agreement of understanding and the
application of WGS between the food industry, public health, and
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