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Acinetobacter baumannii is a Gram negative opportunistic pathogen that has demonstrated 
a significant insurgence in the prevalence of infections over recent decades. With only a 
limited number of “traditional” virulence factors, the mechanisms underlying the success 
of this pathogen remain of great interest. Major advances have been made in the tools, 
reagents, and models to study A. baumannii pathogenesis, and this has resulted in a 
substantial increase in knowledge. This article provides a comprehensive review of the 
bacterial virulence factors, the host immune responses, and animal models applicable for 
the study of this important human pathogen. Collating the most recent evidence 
characterizing bacterial virulence factors, their cellular targets and genetic regulation, 
we have encompassed numerous aspects important to the success of this pathogen, 
including membrane proteins and cell surface adaptations promoting immune evasion, 
mechanisms for nutrient acquisition and community interactions. The role of innate and 
adaptive immune responses is reviewed and areas of paucity in our understanding are 
highlighted. Finally, with the vast expansion of available animal models over recent years, 
we have evaluated those suitable for use in the study of Acinetobacter disease, discussing 
their advantages and limitations.
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INTRODUCTION

Acinetobacter baumannii is a Gram negative, obligate aerobe, coccobacillus, and one of the 
most prevalent causes of nosocomial infections (Martín-Aspas et  al., 2018). The burgeoning 
resistance of A. baumannii to primary antimicrobial therapies has created a deadly combination 
of pathogenicity and antimicrobial resistance that plagues hospitals (Roca et al., 2012). Classified 
as an ESKAPE pathogen (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), carbapenem-resistant 
A. baumannii is considered the World Health Organization’s number one critical priority 
pathogen for which new therapeutics are urgently required (Shlaes and Bradford, 2018). Concerns 
continue to grow that without a significant intervention, hospital-acquired A. baumannii infections 
will soon be  untreatable.

Acinetobacter phylogenetics has undergone significant changes, originally described as 
Micrococcus, with the designation of Acinetobacter only being proposed in the 1950’s (Peleg 
et  al., 2008a). Since then, Acinetobacter taxonomy has been reclassified and over 50 different 
species have been identified to date (Harding et al., 2017a). While A. baumannii, A. nosocomialis 
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and A. pittii are the most commonly isolated hospital species, 
A. baumannii international clonal types 1 and 2 are the most 
prominent, with lineage 3 largely restricted to Europe (Wallace 
et  al., 2016; Weber et  al., 2016). For more information on 
genomic diversity, the reader is directed to the following articles 
(Diancourt et al., 2010; Antunes et al., 2014; Touchon et al., 2014; 
Meumann et  al., 2019).

With only a limited number of “traditional” virulence factors, 
which are not always present or conserved across all strains, 
the mechanisms contributing to the success of A. baumannii 
are of increasing interest to researchers and clinicians alike. 
This article summarizes the knowledge of characterized virulence 
factors (depicted in Figure 1) and the host immune responses 
(depicted in Figure 2) that contribute to both its success and 
clearance in vivo, with a final overview of the available animal 
models, evaluating their advantages and limitations.

CLINICAL SIGNIFICANCE

A. baumannii causes a range of infections in both the hospital 
and community, including skin and soft tissue, urinary tract 
infections, meningitis, bacteremia, and pneumonia, with the 
latter being the most frequently reported infection in both 
settings (Dexter et  al., 2015). Hospital-acquired infections are 
most commonly seen in critically ill patients; specific risk 
factors for developing an A. baumannii infection include 
prolonged hospital stays, immune suppression, advanced age, 
presence of comorbid diseases, major trauma or burns, previous 

antibiotic use, invasive procedures, and presence of indwelling 
catheters or mechanical ventilation (García-Garmendia et  al., 
2001; Robenshtok et  al., 2006; Karageorgopoulos and Falagas, 
2008; Wong et  al., 2017). Due to the already poor prognosis 
of critically ill patients who acquire A. baumannii infections, 
it is difficult to attribute a definitive mortality rate (Freire 
et  al., 2016); however crude morality rates have ranged from 
23 to 68% (Eliopoulos et  al., 2008).

Community-acquired infections present as a distinct and 
severe clinical syndrome in countries with hot and humid 
climates. These infections typically occur in individuals with 
underlying health conditions, including diabetes mellitus and 
chronic obstructive pulmonary disease, or in those that are 
heavy smokers or drink alcohol in excess (Falagas et  al., 2007; 
Dexter et  al., 2015). Mortality rates for community-acquired 
A. baumannii infections have been reported as high as 64% 
(Anstey et  al., 1992; Patamatamkul et  al., 2017); however, it 
is currently unknown as to whether host or bacterial factors 
are responsible for the difference in disease presentation between 
community and hospital infections.

BACTERIAL PATHOGENESIS

Virulence Factors
Outer Membrane Components
Outer Membrane Proteins
Outer membrane protein A (OmpA, previously Omp38) is the 
most abundant A. baumannii outer membrane protein (OMP) 

FIGURE 1 | Bacterial virulence factors. Schematic of the bacterial cell envelope depicting some of the known virulence factors, including OmpA, the Type II, IV,  
and V secretion systems, phospholipase D (PLD), iron acquisition systems (Acinetobactin and FecA), the inner membrane two-component system, GacAS and 
extracellular factors, including lipid oligosaccharide, capsular polysaccharide, and outer membrane vesicles. For simplicity, peptidoglycan has been excluded and 
individual components are not to scale.
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(Hee et al., 2008) and one of the most well-characterized virulence 
factors. OmpA is highly conserved, with 83 of 103 clinical 
isolates showing greater than 99% sequence identity, with the 
most diverse having 85% sequence identity (Ahmad et al., 2016; 
Ansari et  al., 2018; Iyer et  al., 2018). As such, OmpA has often 
been promoted as an attractive target for vaccine development. 
OmpA forms an eight-stranded β barrel in the OM, with a 
2-nm pore diameter and C-terminal periplasmic globular 
extension, accommodating molecules up to 500  Da (Sugawara 
and Nikaido, 2012; Iyer et  al., 2018). In contrast to other major 
porins, such as OmpF/C from E. coli, A. baumannii OmpA 
has significantly reduced permeability, thought to contribute to 
the overall reduction in A. baumannii OM permeability (Sugawara 
and Nikaido, 2012). To date, only the C-terminal periplasmic 
domain has been crystalized (1.6  Å) and shown to directly 
interact with peptidoglycan through Asp271 and Arg286 binding 
to diaminopimelate (Park et al., 2012). This interaction is thought 
to influence the packing of OMPs into outer membrane vesicles 
(OMVs), though this has yet to be confirmed, and may be merely 
a consequence of altered membrane homeostasis in an ompA 
mutant (Moon et  al., 2012).

During normal growth and in vivo infection, OmpA is 
preferentially concentrated into OMVs (Moon et  al., 2012). 
The interaction of OmpA (on the bacterial cell surface or 
OMVs) with eukaryotic cells induces cytotoxicity, through 
binding and adhesion to eukaryotic cell surface death receptors 
(Ahmad et al., 2016). Upon internalization, OmpA translocates 
to either the mitochondria or the nucleus (Hee et  al., 2005, 
2008; Rumbo et al., 2014). In the mitochondria, OmpA induces 
proapoptotic signals, through the activation of Bcl-2 family 

proteins, the release of cytochrome C and apoptosis-inducing 
factor (Hee et  al., 2005). OmpA can also be  translocated to 
the nucleus courtesy of its self-encoded nuclear localization 
signal (KTKEGRAMNRR), which is absent from other 
A. baumannii OMPs, and causes host DNA degradation in a 
DNase I-like manner (Hee et  al., 2008; Choi et  al., 2008a; 
Rumbo et  al., 2014). In addition to its cytotoxic properties, 
OmpA modulates a range of other virulence attributes, including 
resistance to alternate complement-mediated killing through 
factor H binding and promoting adhesion to extracellular matrix 
proteins, including fibronectin, which is important for lung 
epithelial colonization (Kim et  al., 2009; Smani et  al., 2012).

Recent years have seen an expansion in our knowledge of 
other OMPs contributing to A. baumannii pathogenesis. Omp34 
(otherwise termed Omp33–36) is highly conserved in 
A. baumannii, present in >1,600 strains with ≥98% identity 
(Rumbo et al., 2014). Similar to OmpA, Omp34 induces apoptosis 
in eukaryotic cells through caspase-dependent mechanisms and 
inhibition of autophagy, promoting bacterial persistence in the 
autophagosome (Rumbo et  al., 2014; Jahangiri et  al., 2018). 
Omp34 has also been shown to bind fibronectin and is selectively 
concentrated into OMVs (Smani et  al., 2012). Shown to 
be  important for systemic virulence in murine models, Omp34 
is highly immunogenic, driving potent IgA/G/M antibody 
responses in sera from infected patients (Islam et  al., 2011; 
Jahangiri et  al., 2018). Additionally, OmpW also forms an 
eight-stranded OM β barrel protein, which is both highly 
immunogenic and concentrated in OMVs, though the functional 
role of this protein is thought to be  related to iron acquisition 
and antibiotic resistance (Huang et al., 2015; Manuella et al., 2016).

FIGURE 2 | Immune responses to Acinetobacter. Immune cells involved in the clearance of Acinetobacter infections are denoted on the right-hand side, with an 
insert depicting the cellular components responsible. The toll-like receptor (TLR) 2 and 4 signaling leads to activation of NFĸB via MyD88, resulting in transcriptional 
activation and the synthesis of a range of cytokines and chemokines. Other cytoplasmic proteins shown to be involved in response to Acinetobacter infection are 
highlighted, with TLR9 localized to the endosome, in conjugation with reactive oxygen species (ROS) and nitric oxide (NO). Extracellular components, including 
cationic and anionic antimicrobial peptides, antibodies, and C3 complement are depicted left to right. For simplicity, not all proteins involved in the TLR signaling 
pathways are depicted and individual components are not to scale.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Morris et al. Mechanisms of Acinetobacter baumannii Disease

Frontiers in Microbiology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 1601

Surface Antigen 1 (SurA) is another OMP that was identified 
from the chicken isolate CCGGD201101 (Liu et  al., 2016). 
The relevance of this OMP to human clinical isolates is yet 
to be  determined. While numerous other OMPs have been 
identified and characterized, these are discussed later in the 
context of bacterial nutrient acquisition, as they do not encode 
conventional virulence factors.

Lipopolysaccharide, Lipoolgiosaccharide, and Capsule
Similar to all other OM components, the Lipopolysaccharide 
(LPS), Lipoolgiosaccharide (LOS), and capsule are all synthesized 
in the cytoplasm and translocated to the outer leaflet of the 
cell envelop by dedicated proteinaceous machinery.

LPS is comprised of three distinct components: the lipid 
A anchor, glycosylated with core oligosaccharides, to which 
the O-antigen repeat is attached. In contrast, LOS does not 
contain O-antigen and instead has extended core oligosaccharides 
(Whitfield and Trent, 2014; Weber et  al., 2016; Joseph and 
Stephen, 2018). Synthesized in the cytoplasm by the multistep 
Raetz pathway, both types are transported from the inner 
membrane to the cell surface by the Lpt pathway. Despite 
encoding two potential waaL O-antigen ligase homologs, 
A. baumannii does not produce O-antigen or LPS, and instead 
decorates the OM with LOS. Furthermore, subsequent analysis 
of these waaL genes has shown they are responsible for protein 
glycosylation (Iwashkiw et  al., 2012).

Lipid A is the immunostimulatory component of LPS and 
LOS and previously thought to be essential in all Gram negative 
bacteria. Within the last decade, Acinetobacter has become 
only the third Gram negative pathogen capable of survival in 
the absence of lipid A, where previously only Neisseria 
meningitidis and Moraxella catarrhalis were thought to have 
this capacity (Moffatt et al., 2010). Lipid A minus A. baumannii 
was first identified in response to in vitro colistin exposure, 
resulting in inactivation of lpxA, lpxC, or lpxD in ATCC 19606 
(Moffatt et  al., 2010). Interestingly, with the exception of lpxA, 
lpxC, lpxD, and lptD, all other LOS biosynthetic genes are 
essential due to the resultant accumulation of toxic intermediates 
(Joseph and Stephen, 2018). For several years, the loss of lipid 
A was thought to be restricted to specific A. baumannii strains; 
however, recent efforts have shown that the levels of penicillin-
binding protein PBP1a and, specifically, its glycosyltransferase 
activity are critical to the ability to lose lipid A (Boll et  al., 
2016). As lipid A is the major stimulus for toll like receptor 
(TLR) 4, it is unsurprising that lipid A minus strains reduce 
TLR4 signaling, but elevate TLR2 stimulation (Moffatt et  al., 
2013), thought to be as a result of the increased OM lipoprotein 
exposure. In contrast to LOS deficiency, A. baumannii more 
frequently modifies the lipid A moiety to promote antimicrobial 
resistance. Unlike other Gram negative pathogens, A. baumannii 
does not encode a PagP homolog; therefore, modification of 
the hexa-acylated lipid A occurs through the addition of one 
and two lauryl acyl chains during synthesis by the activity of 
LpxL and LpxM, respectively (Boll et  al., 2015; Lopalco et  al., 
2017). This modification results in hepta-acylated lipid A that 
is more resistant to cationic antimicrobial peptides, less 
stimulatory of TLR4 and implicated in desiccation survival 

(Boll et  al., 2015). By contrast to that of LOS minus strains, 
lipid A modification does not induce the same biological burden, 
and thus is readily detected in clinical isolates.

Capsule forms a protective layer on the extracellular surface, 
mediating resistance to cationic antimicrobial peptides and 
serum, subsequently enhancing in vivo survival (Geisinger and 
Isberg, 2015). Capsule loci in A. baumannii are highly variable, 
with conserved 5′ and 3′ genes capping the variable central 
cluster (Hu et  al., 2013; Geisinger and Isberg, 2015). The 5′ 
wza, wzb, and wzc encode the assembly and export machinery 
complex spanning the inner and outer membranes, promoting 
transport of capsular polysaccaride from the periplasm to the 
cell surface (Kenyon and Hall, 2013; Senchenkova et al., 2015). 
The 3′ genes encode UDP-linked sugar synthases and epimerases, 
responsible for the conversion of UDP-D-glucose, UDP-D-
galactose, and UDP-D-glucuronic acid to UDP-N acetyl-D-
glucosaminuronic acid or UDP-N acetyl-D-galactosaminuronic 
acid, respectively (Hu et  al., 2013; Kenyon and Hall, 2013). 
Other epimerases are encoded by central genes and/or at distinct 
sites around the chromosome, while glycosyltransferases and 
UndP lipid carriers responsible for the construction of the 
repeating unit, work in concert with wzx and wzy to translocate 
these components to the periplasm for polymerization and 
presentation to the Wzabc complex (Kenyon and Hall, 2013).

Capsule production is negatively regulated by the BfmRS 
two-component regulatory system (TCS) in response to 
environmental stimuli, including particular antibiotics 
(chloramphenicol and erythromycin), resulting in increased 
expression and antimicrobial resistance (Geisinger and Isberg, 
2015). Furthermore, the presence or absence of capsule has 
also been linked to Acinetobacter phenotypic switching, whereby 
the opaque virulent form is characterized by enhanced capsule 
production, in contrast with the translucent avirulent form, 
which displays two-fold less capsule production (Chin et al., 2018).

Phospholipase
Phospholipases are well-established virulence factors and 
Acinetobacter encodes both phospholipase C and D enzymes, 
differentiated by their cleavage position preference resulting in 
a phospho head group (phospholipase C) or phosphatidic acid 
and a separate head group (phospholipase D) (Schmiel and 
Miller, 1999). A. baumannii encodes two phospholipase C and 
three phospholipase D enzymes, all with substrate specificity 
toward the eukaryotic membrane component, phosphatidylcholine 
(Stahl et  al., 2015; Fiester et  al., 2016). Interestingly, both 
enzymes are transcriptionally regulated by the ferric uptake 
regulator (Fur) and display hemolytic activity against human 
erythrocytes, aiding in iron acquisition (Fiester et  al., 2016). 
Consistent with this important role, phospholipase C is conserved 
across numerous strains, including ATCC 19606, ATCC 17978, 
ACICU, AYE, and AB0057 (Fiester et  al., 2016).

Similarly, the three phospholipase D genes are associated 
with serum resistance, epithelial cell invasion, and in vivo 
pathogenesis (Jacobs et  al., 2010; Stahl et  al., 2015). Two 
phospholipase D enzymes appear to be  as a result of a gene 
duplication, identifiable by two catalytic domains containing 
the HxKx4Dx6GS/GGxN (HKD) motif, while phospholipase 
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D3 contains only one (Stahl et al., 2015). Despite the similarity, 
phospholipase D2 has been shown to be  more important for 
invasion than the other two, though the deletion of all three 
induces only marginal defects in virulence in a Galleria mellonella 
model (Stahl et  al., 2015).

Secretion Systems
Acinetobacter encodes a diverse range of secretion systems. 
The Type I  secretion system (T1SS) is a tripartite system, 
delivering proteins from the cytosol to the extracellular 
environment. In Acinetobacter, the T1SS is homologous to that 
of the prototypical HlyBD-TolC system from E. coli, consisting 
of an IM ATP-binding protein, periplasmic adaptor, and OM 
pore (Harding et  al., 2017b). A. nosocomialis strain M2 was 
the first Acinetobacter strain shown to encode an active T1SS, 
with two putative effector proteins, RTX (containing an RTX 
toxin domain) and Bap (homologous to the biofilm associated 
protein) (Harding et  al., 2017b). Interestingly, the activity of 
the T1SS in this strain was shown to have a direct impact 
on the Type VI secretion system (T6SS), suggestive of cross 
talk between these systems (Harding et  al., 2017b).

The Type IV secretion system (T4SS) is responsible for 
conjugative transfer of DNA, plasmids, and other mobile genetic 
elements. To date, only three reports address the T4SS in 
Acinetobacter (Smith et  al., 2007; Iacono et  al., 2008; Liu et  al., 
2014). A. baumannii strain ATCC 17978 encodes eight genes 
homologous to those of the Legionella/Coxiella T4SS, while 
strains ACICU and TYTH-1 harbor plasmids encoding complete 
tra loci on pACICU2 and pAB-CC, respectively (Smith et  al., 
2007; Iacono et al., 2008; Liu et al., 2014). While these features 
are of critical importance in the transfer of genetic material, 
particularly that of antibiotic resistance determinants, their role 
in host-pathogen interactions has yet to be  elucidated.

T6SSs are capable of targeting both eukaryotic and prokaryotic 
cells, though in Acinetobacter the T6SS exclusively targets other 
bacteria, secreting a range of toxins, including peptidoglycan 
hydrolases, nucleases, or those targeting cell membranes 
(Elhosseiny and Attia, 2018; Fitzsimons et al., 2018). Interestingly, 
despite its role in bacterial competition, clinical isolates with 
active T6SS are isolated from immunocompromised patients 
at higher frequencies (Repizo, 2017), suggestive of a competitive 
advantage, although this may be due to their bactericidal activity 
against competing pathogens.

Type II Secretion System
The Type II secretion system (T2SS) is a two step secretion 
mechanism, dependent on Sec or Tat for substrate translocation 
to the periplasm prior to secretion. The T2SS was first described 
in ATCC 17978, with the apparatus encoded by genes designated, 
general secretory pathway (GspA-O), distributed across discrete 
clusters and not a single operon (Eijkelkamp et  al., 2014). 
Effector proteins include enzymes such as lipase, elastase, 
alkaline phosphatase, and phospholipases, critical for 
A. baumannii virulence (Elhosseiny and Attia, 2018).

In A. baumannii, specific T2SS effectors include the lipases, 
LipA and LipH, hydrolyzing long-chain fatty acids as carbon 
sources for growth, the metallo-endopeptidase, CpaA, responsible 

for fibrinogen and factor V degradation, while the PilD peptidase 
is shared between the T2SS and T4SS (Harding et  al., 2016; 
Johnson et  al., 2016; Weber et  al., 2017). The importance of 
this system is delineated by the observed attenuation of various 
mutants (gspD and lipA) in both G. mellonella and murine 
models (Harding et  al., 2016; Johnson et  al., 2016).

Type V Secretion System
The Type V secretion system (T5SS) (autotransporters) is 
the simplest and most widespread secretion system in Gram 
negative bacteria (Henderson et al., 2000). They are identifiable 
by their distinct domain architecture, including a N-terminal 
Sec-dependent signal peptide, a central passenger domain 
and C-terminal β barrel (Henderson et  al., 2004). To date, 
five subdivisions of this family have been identified  
termed Type Va-Ve (Leo et al., 2012); however, Acinetobacter 
encodes only two, Type Vb (AbFhaB/C and CdiA/B) and 
one Type Vc (Ata) (Bentancor et al., 2012a,b; Pérez et al., 2017; 
Elhosseiny and Attia, 2018).

In the Type Vb subclass, the passenger and β domains are 
encoded as two distinct proteins from an operon termed TspA 
(AbFhaB) and TspB (AbFhaC), respectively (Jacob-Dubuisson 
et al., 2001; Pérez et al., 2017). AbFhaC encodes the 16-stranded 
β barrel, with two periplasmic polypeptide transport-associated 
domains for the recognition and translocation of AbFhaB to 
the cell surface, where the arginine-glycine-aspartate (RGD) 
motif binds eukaryotic integrin and fibronectin molecules 
(Jacob-Dubuisson et  al., 2009; Pérez et  al., 2017). Interestingly, 
while disruption of AbFhaC and subsequent loss of AbFhaB 
result in increased fertility of Caenorhabditis elegans and increased 
murine survival, it does not completely attenuate virulence 
(Pérez et  al., 2017).

Contact-dependent inhibition (CDI) was first identified in 
2005 as a T6SS-independent mechanism of bacterial cell killing. 
CdiA/B are considered to be Type Vb autotransporters, whereby 
CdiB forms the OM pore for the secretion of the CdiA toxin 
(containing numerous filamentous hemagglutinin domains) 
(Harding et  al., 2017b). In contrast to traditional Type Vb 
autotransporters, a third component termed CdiI encodes an 
immunity protein (Harding et  al., 2017b). Initially identified 
in A. nosocomialis, this operon has since been identified in 
the A. baumannii strains ATCC 19606 and 1225 (Harding 
et  al., 2017b), although the mechanism of killing has yet to 
be  determined.

Type Vc, Ata forms a trimeric autotransporter, with an 
extended signal peptide, and a smaller C-terminal β domain. 
Each monomer encodes 101 amino acids, contributing four β 
strands to the final homotrimer (Bentancor et  al., 2012a). The 
passenger domain of each monomer consists of three subdomains, 
head, neck, and stalk, which trimerise to form the functional 
moiety (Koiwai et  al., 2016). Ata contains four pentameric 
collagen-binding consensus sequences (SVAIG) and an RGD 
motif important for binding to extracellular matrix and basal 
proteins, including collagen I, III, IV, and V and laminin 
(Bentancor et  al., 2012a). Deletion of this protein significantly 
reduces the ability of ATCC 17978 to form biofilms and 
completely attenuates in vivo virulence (Bentancor et al., 2012a). 
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Interestingly, Ata is produced in concert with TpgA, an OM 
lipoprotein anchor for Ata and although similar chaperones 
have been observed for other trimeric autotransporters, TpgA 
is unique in its OM localization (Ishikawa et  al., 2016).

Efflux Systems
Bacterial efflux systems are membrane spanning, tripartite 
systems exhibiting broad substrate specificity, extruding 
potentially toxic compounds from the periplasm to the 
extracellular environment. To date, six bacterial efflux pump 
families have been identified, including the major facilitator 
superfamily (MFS), the multidrug and toxin extrusion family 
(MATE), the small multidrug resistance family (SMR), the 
resistance-nodulation-cell division superfamily (RND), and the 
proteobacterial antimicrobial compound efflux family (Du et al., 
2018). In other Gram negative pathogens, efflux pumps play 
critical roles in the extrusion of bile salts and antimicrobial 
fatty acids and peptides or actively secrete virulence factors 
such as siderophores (Du et  al., 2018). In Acinetobacter, AceI 
and the AdeABC efflux pumps promote resistance to biocides 
and aminoglycosides, respectively (Marchand et al., 2004; Hassan 
et al., 2013; Liu et al., 2018). While the majority of characterized 
efflux pumps have only been linked to the exclusion of toxic 
molecules, the AdeABC pump has been shown to impact 
bacterial fitness in vivo (Yoon et  al., 2016). Overexpression of 
this particular pump in the drug susceptible strain BM4587 
was shown to reduce bacterial burdens in the lungs and spleen 
at 8 h post infection when administered via the intraperitoneal 
route (Yoon et  al., 2016). Conversely, transposon insertion 
mutants in AdeIJK and the toluene tolerance efflux transporter 
in AB5075 and ATCC17978, respectively, result in reduced 
bacterial persistence in Galleria larvae and a murine pneumonia 
model (Wang et  al., 2014; Gebhardt et  al., 2015). Although 
the mechanisms by which these efflux pumps contribute to 
virulence have yet to be  elucidated, their complex genetic 
regulation implies a more significant role in bacterial homeostasis 
that has yet to be  determined.

Outer Membrane Vesicles
OMVs are small, spherical vesicles, ranging in size between 
10 and 300 nm, produced by all Gram negative species examined 
to date under varying growth conditions, indicative of an 
evolutionary conserved mechanism (Roier et  al., 2016). In 
contrast to the name, these vesicles are an encapsulation of 
cytoplasmic components, IM, periplasmic proteins, and OM 
(Kulkarni and Jagannadham, 2014; Roier et  al., 2016). Despite 
previously being considered a consequence of cell envelope 
stress, vesicle formation has recently been shown to be a natural 
process, though the exact mechanism of their biogenesis and 
differential packaging regarding the enrichment or depletion 
of particular OMPs or lipid species has yet to be  determined 
(McBroom and Kuehn, 2005, 2007; Roier et  al., 2016). It is 
unclear whether a dedicated mechanism exists or whether this 
is just a general secretory pathway responsive to different 
environmental conditions (Kato et  al., 2002; Kuehn and Kesty, 
2005; McMahon et  al., 2012; Cahill et  al., 2015). Currently, 
three hypotheses exist for their biogenesis: firstly, the loss of 

OM lipoprotein-peptidoglycan interactions leads to membrane 
protrusion and vesicle formation; second, the accumulation of 
misfolded proteins and peptidoglycan fragments in the periplasm 
lead to membrane bulging; third, the enrichment of molecules 
driving membrane curvature induces vesicle formation (Roier 
et  al., 2016). Roiser et  al. have shown that the OM lipoprotein 
VacJ in Haemophilus influenzae and Vibrio cholerae influences 
OMV phospholipid content, while in A. baumannii OmpA 
influences the OMP composition and abundance in OMVs, 
though further investigation is required to elucidate the 
mechanism (Moon et  al., 2012; Roier et  al., 2016).

OMVs have long been hypothesized to function as a bacterial 
defense mechanism against the host innate immune system 
(Beceiro et  al., 2013) due to their association with bacterial 
signaling, modulation of host-pathogen interactions and immune 
evasion. A. baumannii OMVs provide an important mechanism 
for the secretion of OmpA and other putative virulence factors 
to host cells, through interactions with eukaryotic cholesterol 
micro-domains (Kwon et  al., 2009; Jin et  al., 2011). In vivo 
OMVs can stimulate immune responses through the activation 
of TLR signaling or modulate immune evasion through 
sequestration of innate immune factors (Kaparakis-Liaskos and 
Ferrero, 2015). For example in E. coli, OMVs have been shown 
to be  produced in response to treatment with antimicrobial 
peptides, while in H. influenzae and Moraxella catarrhalis, 
OMVs promote serum resistance through the depletion of 
complement factors (Thuan Tong et  al., 2007; Manning and 
Kuehn, 2011; Roier et  al., 2016). Furthermore, OMVs provide 
a unique opportunity for bacterial dissemination of encapsulated 
genetic material within communities or across species. 
Pseudomonas aeruginosa OMVs have been shown to contain 
DNA and RNA capable of modulating host immune responses 
(Koeppen et  al., 2016; Bitto et  al., 2017). Similarly, multiple 
groups have shown A. baumannii clinical isolates utilize OMVs 
as a mechanism for dissemination of plasmids containing 
carbapenem resistance genes, including blaOXA-24 and blaNDM-1 
(Rumbo et  al., 2011; Chatterjee et  al., 2017), highlighting the 
versatility of this system and the requirement for more 
in-depth analysis.

Nutrient Acquisition
Metal Acquisition
Iron
Iron is the most restricted nutrient in the human body. Bacteria 
have developed two scavenging mechanisms: direct uptake 
through receptors and transporters and high-affinity secreted 
iron chelator proteins (siderophores) (Eijkelkamp et  al., 2011; 
De Léséleuc et  al., 2014). A. baumannii strains encode up to 
five different siderophores. Cluster 1 comprises eight genes 
and a MFS family efflux pump, cluster 2 (only present in 
ATCC 17978) includes 15 genes with a separate MFS and 
MATE efflux pumps, cluster 3 is the well-characterized 
acinetobactin and ABC efflux pump, while cluster 4 is only 
found in strain 8399, and cluster 5 is present in most strains 
with the exception of ATCC 17978 (Eijkelkamp et  al., 2011). 
Despite cluster variability, those described to date are all 
transcriptionally regulated by Fur, identifiable by the presence 
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of a Fur box sequence (a palindromic 25-nucleotide sequence) 
in their respective promoters (Eijkelkamp et  al., 2011). In 
isolates, such as LAC-4 and SDF, the iron transporters and 
receptors FecI, FecR, and FecA are reported to enhance 
pathogenesis and growth capabilities of these strains through 
the utilization of heme (De Léséleuc et  al., 2014).

Given the importance of iron-scavenging systems, it is 
unsurprising that disruption of these mechanisms causes 
dysregulation of other systems and virulence attenuation. In 
ATCC 17978, iron limitation results in a downregulation of 
Type 1 and Type IV pili (Eijkelkamp et  al., 2011), while in 
ATCC 19606, disruption of the acinetobactin OM receptor, 
BauA, or the biosynthetic component, BasD, impairs intracellular 
persistence and killing of lung epithelial cells in vitro, though 
only varying degrees of attenuation are observed in G. mellonella 
and murine models (Gaddy et  al., 2012). Similarly, disruption 
of Fur, iron-sulfur cluster assembly system (Isc), and/or other 
putative iron transporters (FeoA), leads to reduced bacterial 
biofilm formation, oxidative stress resistance, and in vivo 
pathogenesis (Ajiboye et  al, 2018; Álvarez-Fraga et  al., 2018). 
The phenotypes reported for fur mutants should be  judged 
with caution due to the cross regulation with OxyR and SoxRS 
systems, which are associated with reactive oxygen detoxification 
and superoxide dismutase activation, and result in increased 
intracellular iron interacting with free radicals (Ajiboye et  al., 
2018). In contrast to that observed in the G. mellonella model, 
Fleming et  al. reported that A. baumannii pathogenesis can 
be  alleviated by the supply of excess iron to the surrounding 
environment when using a murine wound infection model, 
preventing the activation of iron-scavenging systems and virulence 
(Fleming et  al., 2017).

Zinc and Manganese
Similar to iron, zinc is biologically important, acting as both 
a natural catalyst and cofactor for numerous proteins, with as 
many as 8% of E. coli-encoded proteins containing zinc-binding 
domains (Hood and Skaar, 2012). During the course of infection, 
the host can sequester metals by the action of the chelator 
protein calprotectin in a tactic termed “nutritional immunity” 
(Hood and Skaar, 2012; Nairn et  al., 2016). A. baumannii 
regulates intracellular zinc concentrations by the activity of 
the ZnuABC transporter and ZigA GTPase, transcriptionally 
controlled by Zur (Mortensen et  al., 2014; Nairn et  al., 2016). 
While ZnuABC imports zinc into the cell, ZigA promotes its 
release through HutH activation and histidine catabolism 
(Mortensen et al., 2014; Nairn et al., 2016). This delicate balance 
between availability and toxicity results in a mild attenuation 
of zigA mutants in a murine pneumonia model, with less 
systemic dissemination from the lungs after infection 
(Nairn et  al., 2016).

Although not characterized to the same degree, manganese 
starvation is of equal importance, whereby the NRAMP family 
transporter MumT and urea carboxylase, MumC, facilitate 
manganese accumulation in response to calprotectin (Juttukonda 
et al., 2016). Disruption of mumT significantly impacts bacterial 
colonization and dissemination from the lungs during pneumonia, 
a phenotype that is abolished in calprotectin-deficient mice 

(Juttukonda et  al., 2016), further emphasizing the interplay of 
host and bacterial proteins in pathogenesis.

Community Interactions
Quorum Sensing
The ability of bacteria to sense, respond to, and communicate 
with neighboring cells is critical to the success of the population. 
Quorum sensing is the process by which bacteria detect and 
respond to hormone like molecules, such as acyl homoserine 
lactone, regulating numerous phenotypes, including motility 
and biofilm formation (Bhargava et  al., 2010; Rutherford and 
Bassler, 2012). In the LuxRI family of proteins, LuxI synthesizes 
the acyl homoserine lactone, which interacts with the LuxR 
protein mediating the transcriptional response (Bhargava et al., 
2010). In A. baumannii, abaI is responsible for the synthesis 
of N-(3-hydroxydodecanoyl)-L-HSL (3-hydroxy-C12-HSL), 
functioning in conjugation with the abaR LuxR homolog, to 
regulate biofilm maturation (Niu et  al., 2008). Furthermore, 
the importance of this system in virulence has been demonstrated 
by the significant increase in murine survival rates during 
infection with abaI mutants (Bhuiyan et  al., 2016).

Biofilm Formation
Biofilms are a bacterial lifestyle, constituting dynamic community 
environments, comprised of a heterogeneous protein matrix, 
nucleic acids, polysaccharides, and bacterial microcolonies, 
dispersed with water channels (Hall-Stoodley et  al., 2004). 
A. baumannii forms biofilms on both biotic and abiotic surfaces, 
promoting survival on indwelling medical devices, hospital 
surfaces, or in otherwise unfavorable conditions. Biofilm 
formation is a multistage process, commencing with the initial 
attachment, proceeding to strong adhesion and aggregation of 
cells into microcolonies, followed by biofilm growth and 
maturation, prior to cell dispersal into the environment 
(Hall-Stoodley et  al., 2004).

Biofilm formation on abiotic surfaces has contributed to the 
success of this pathogen in hospital environments, with their 
ability to adhere to medically relevant surfaces, such as titanium 
and polystyrene (Loehfelm et al., 2008; Brossard and Campagnari, 
2011). Numerous strains encode for the Csu Type 1 chaperone-
usher pili, associated with cell-to-cell attachment and biofilm 
initiation (Tomaras et al., 2008; Brossard and Campagnari, 2011). 
The operon contains six genes csuA/B, A, B, C, D, and E, 
encoding for pili and minor subunits, the chaperone, the usher 
and adhesive tip, respectively (Moon et al., 2017). Despite being 
predominantly regulated by BfmRS TCS, the GacAS TCS also 
modulates its expression, in addition to a putative folate-responsive 
riboswitch identified in the csu and bfmR promoters (Cerqueira 
et  al., 2014; Moon et  al., 2017), emphasizing the interplay 
between environmental signals and population dynamics. Despite 
BfmRS being predominantly associated with abiotic biofilms, 
this system is also linked to eukaryotic cell adhesion and 
antimicrobial resistance (Liou et  al., 2014).

A. baumannii also produce the T1SS effector biofilm-associated 
protein, Bap, associated with abiotic and biotic biofilms. 
Homologous to that previously identified in Staphylococcus, it 
is defined by its immense size (over 800  kDa) and 
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immunoglobulin-like fold (Loehfelm et  al., 2008; Brossard and 
Campagnari, 2011). In contrast to Staphylococcus, A. baumannii 
Bap contains four modules, A–D, with numerous internal 
repeats, promoting cell-to-cell adhesion and eukaryotic cell 
adhesion, through modulation of cell surface hydrophobicity 
(Loehfelm et  al., 2008; Brossard and Campagnari, 2011). 
Interestingly, despite their clearly defined roles in biofilm 
formation, numerous strains contain mutations which disrupt 
the csu operon or bap gene abolishing their production, though 
the significance of these findings has yet to be  determined 
(Goh et  al., 2013; Wright et  al., 2016).

In addition to the Csu pilus, A. baumannii encodes a second 
shorter (29 nm in length) chaperone usher Pap pilus, homologous 
to that of E. coli P pilin that is associated with eukaryotic cell 
adhesion (De Breij et  al., 2009; Marti et  al., 2011; Cerqueira 
et  al., 2014). In addition to pilus complexes, proteins such as 
the autotransporter Ata and the extracellular poly-β-1,6-N-
acetylglucosamine (PNAG) encoded for by pgaABCD locus have 
also been shown to mediate attachment and adhesion of cells 
in the biofilm (Choi et al., 2009; Brossard and Campagnari, 2011).

Genetic Regulation of Virulence 
Phenotypes
Transcriptional Regulation
In addition to TCS, a recent study identified a Tet-R family 
transcription factor (encoded by ABUW_1645 in strain AB5075) 
involved in the regulation of phenotypic switching between 
two colony types, termed opaque and translucent (Tipton et al., 
2015; Chin et  al., 2018). These morphological differences were 
not due to genetic mutations, and instead were driven by 
changes in the expression of ABUW_1645, which regulates 
~70% of the differentially expressed genes including capsule 
biosynthesis (Chin et  al., 2018). Interestingly, it is this phase 
variation and morphological difference that causes striking 
differences in in vivo pathogenesis, with the translucent form 
being avirulent, and frequent reversion to the opaque form is 
observed in cultures recovered from murine lungs post infection 
(Tipton et  al., 2015; Chin et  al., 2018). Consistent with this 
virulence phenotype, the opaque form shows resistance to 
cathelicidin-related antimicrobial peptides, reactive oxygen species 
(ROS), lysozyme, disinfectant, and desiccation. Thus, 
unsurprisingly, the opaque form is routinely isolated from 
clinical samples (Chin et  al., 2018). The translucent form is 
thought to be  associated with environmental settings and 
bacteriophage resistance, with its increased biofilm formation 
at lower temperatures, reduced capsule and upregulated nutrient 
acquisition and catabolism-related genes (Chin et  al., 2018).

H-NS
The H-NS transcription factor is associated with silencing 
horizontally acquired and/or AT-rich genes, limiting their 
potentially detrimental effects (Eijkelkamp et al., 2013). Previous 
studies have shown disruption of hns in either ATCC 17978 
or clinical isolates results in a myriad of phenotypes including 
hypermotility, increased colistin resistance, adhesion to epithelial 
cells, and in vivo virulence in Caenorhabditis elegans (Eijkelkamp 
et al., 2013; Deveson Lucas et al., 2018). Transcriptomic analysis 

of hns disruption mutants reveals a vast number of dysregulated 
genes, including the significant overexpression of those associated 
with quorum sensing, OMPs, T5SS, T6SS, and fatty acid 
biosynthesis (Eijkelkamp et  al., 2013).

Two-Component Regulatory Systems
Two-component regulatory systems (TCSs) impact a diverse 
range of phenotypes by modulating transcriptional regulation. 
They are usually found as a pair of regulatory proteins, including 
a membrane-bound sensor kinase and a separate DNA-binding 
transcriptional regulator, which respond to environmental 
conditions and/or cell stress (Stock et  al., 2000; Zschiedrich 
et  al., 2016). To our knowledge, six TCSs have been described 
in A. baumannii, including BfmSR associated with morphology, 
biofilm formation and adhesion to eukaryotic cells (Tomaras 
et  al., 2008; Liou et  al., 2014), PmrAB, modulating lipid A 
modifications in response to antimicrobial peptides and polymyxin 
(Adams et  al., 2009; Arroyo et  al., 2011), BaeSR and AdeRS, 
which modulate the expression of the AdeABC efflux pump 
(Marchand et  al., 2004; Lin et  al., 2014), CheAY regulating the 
chaperone/usher pili and AbaI quorum sensing (Chen et  al., 
2017) and GacAS, associated with pathogenesis and host immune 
evasion (Cerqueira et  al., 2014; Bhuiyan et  al., 2016).

While all the TCSs play important roles in bacterial 
homeostasis and physiology, the GacAS system plays a critical 
role in bacterial pathogenesis and host-pathogen interactions. 
GacAS is a global regulator, whereby disruption of either gacA 
or gacS abolishes the ability of ATCC 17978 to cause lethality 
in either Candida albicans or murine models (Cerqueira et  al., 
2014). GacS forms the inner membrane sensor kinase, with 
conserved histidine and aspartic acid residues at H299 and 
D719/771, respectively, responsible for the phosphorylation of 
the transcriptional response regulator GacA (Cerqueira et  al., 
2014). Although GacAS regulates a variety of genes, including 
ompA, csu operon, and motB to name but a few, its role in 
the regulation of the phenylacetate catabolite pathway (paa 
operon) is a significant factor contributing to pathogenesis 
(Cerqueira et  al., 2014). Inhibition of this pathway resulted 
in increased neutrophil migration to the site of infection and 
bacterial clearance (Cerqueira et al., 2014; Bhuiyan et al., 2016). 
It should be  noted though, consistent with other previously 
described TCSs, GacAS does display some degree of cross 
regulation with others; however, paa transcriptional regulation 
is specific to GacAS.

Post-transcriptional Regulation by Hfq
The global RNA chaperone Hfq is an important regulator of 
bacterial virulence in a range of pathogens. In Salmonella and 
E. coli, hfq mutations result in pleotropic effects, including 
reduced growth rates, changes in motility, biofilm formation, 
OMP levels, and attenuated in vivo virulence (Tsui et al., 1994; 
Bossi et  al., 2008; Kulesus et  al., 2008). Hfq can positively or 
negatively regulate messenger and/or small RNAs (sRNA) 
(Jousselin et al., 2009). Interestingly, Acinetobacter Hfq is almost 
double the size of that found in other gamma Proteobacteria, 
with an elongated C terminal, though the functional significance 
of this remains unknown (Kuo et  al., 2017). Similar to other 
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species, A. baylyi and A. baumannii hfq mutants display pleotropic 
phenotypes, including reduced growth rates, elevated sensitivity 
to environmental stress, reductions in OMV production, fimbriae, 
biofilm formation and adhesion, invasion and survival in 
eukaryotic cells (Schilling and Gerischer, 2009; Kuo et  al., 
2017). Furthermore, changes in cytokine stimulation have been 
reported with these mutants, though these effects are cell line 
specific (Kuo et  al., 2017). Despite hfq not being essential in 
ATCC 17978, this does not appear to be  the case for all 
strains, as no hfq transposon insertion mutant is available in 
the AB5075 library generated by Gallagher et  al. (2015). These 
datasets highlight the critical need for further investigations 
into the role of these important and dynamic proteins in 
different strains in order to elucidate their roles and association 
with other accessory factors.

IMMUNE RESPONSES

Innate Immune Response
Cellular Immunity
Neutrophils
The importance of neutrophils in response to A. baumannii 
was first noted regarding the increased prevalence of this 
pathogen in neutropenic patients. However, it was a further 
10 years until Faassen and colleagues confirmed their importance 
in resistance to Acinetobacter respiratory infections (Van Faassen 
et  al., 2007). Numerous in vivo studies show neutrophil 
recruitment to the site of infection occurs as early as 4  h, 
peaking at 24  h, and while their depletion results in enhanced 
lethality, this effect can be  strain specific (Bruhn et  al., 2015; 
Bhuiyan et al., 2016; García-Patiño et al., 2017). The recruitment 
and activation of neutrophils can be  stimulated by a range of 
host factors, including cytokines and chemokines, though only 
the bacterial metabolic by-product phenylacetate has been shown 
to act as a bacterial-derived chemoattractant in the case of 
A. baumannii (Bhuiyan et  al., 2016).

Neutrophils elicit antibacterial effects through phagocytosis, 
degranulation, and neutrophil extracellular trap (NETs) formation 
(Konstantinidis et  al., 2016). Phagocytosis is mediated by TLR 
activation, IgG opsonization or complement-mediated receptor 
binding (Nordenfelt and Tapper, 2011). The process is extremely 
rapid, occurring in as little as 20  s, through pseudopod and 
filopodia generation, with phagocytic arms capable of retaining 
and engulfing the bacteria (Nordenfelt and Tapper, 2011; Lázaro-
Díez et al., 2017). Once phagocytosed, rapid killing is dependent 
on ROS and granular fusion, releasing a plethora of antimicrobial 
molecules, including human defensins and lysosome into the 
phagosome (Greenwald and Ganz, 1987; Borregaard and 
Cowland, 1997; Qiu et  al., 2009; Nordenfelt and Tapper, 2011; 
Harding et al., 2017a). However, it is the capacity of neutrophils 
to kill A. baumannii that is contentious, with some in vitro 
studies reporting their co-culture does not affect the viability 
of either (Kamoshida et al., 2015, 2016). Instead, A. baumannii 
preferentially adhere to the neutrophil surface, in an IL-8-
dependent manner, promoting their dissemination (Kamoshida 
et  al., 2016). While others have shown in vitro neutrophil 
phagocytosis kills A. baumannii, a finding consistent with 

in vivo studies (Lázaro-Díez et al., 2017). The reasoning behind 
such conflicting reports is most likely due to the experimental 
details, in that Kamoshida et al. tested only a single A. baumannii 
strain, ATCC 19606, at 1  h post infection, while Lázaro-Díez 
et  al. performed an extensive assessment, testing 11 strains, 
including 5 A. baumannii and 6 A. pittii over a time course, 
emphasizing the importance of testing multiple strains.

NETs are an important mechanism by which neutrophils 
control pathogens, though their induction in response to A. 
baumannii is equally controversial (Brinkmann et  al., 2004; 
Brinkmann and Zychlinsky, 2012; Kamoshida et al., 2015, 2018; 
Konstantinidis et al., 2016). NETs constitute a mesh of chromatin, 
impregnated with antimicrobial proteins and peptides, including 
myeloperoxidase, neutrophil elastase, and LL-37, respectively 
(Konstantinidis et  al., 2016). NETs have been linked to the 
control of bacterial infections, while A. baumannii has been 
reported to inhibit their formation (Kamoshida et  al., 2018). 
This mechanism of inhibition has yet to be  fully elucidated 
and confirmed in vivo, though the neutrophil cell surface 
receptors CD11a and CD11b have been implicated in the 
observed reduced adhesion of A. baumannii to neutrophils 
(Kamoshida et  al., 2018).

While cytokines such as IL-8 and tumor necrosis factor 
(TNF)-α have stimulatory and chemoattractive effects on 
neutrophils, it should be  noted that TNF-α induces 
concentration-dependent effects, including cytokine release 
and MAP kinase activation or cell apoptosis (March et  al., 
2010; Kikuchi-Ueda et  al., 2017). Other host factors such as 
neutrophil phosphatase, Wip1, and serum amyloid A and P 
can also regulate neutrophil migration and pro-inflammatory 
cytokine secretion (Renckens et  al., 2006; Sun et  al., 2014).

Macrophages
Similar to neutrophils, the role of macrophages in A. baumannii 
infection is equally controversial. While their depletion in 
zebrafish has no effect, in murine models, macrophage depletion 
reduces pro-inflammatory cytokines and elevates bacterial 
burdens when depleted in conjunction with complement (Qiu 
et  al., 2012; Bruhn et  al., 2015; Bhuiyan et  al., 2016). However, 
macrophages are important early defenders, promoting neutrophil 
recruitment and phagocytosis (Qiu et al., 2009, 2012). Alveolar 
macrophages provide the first line of defense against A. baumannii 
in the lungs, capable of microfilament and microtubule-dependent 
phagocytosis of the bacteria, stimulating high levels of IL-6, 
TNF-α, and macrophage inflammatory protein-2, potent 
chemoattractants for neutrophils, with additional IL-1β and 
IL-10 produced at latter time points (Qiu et al., 2012). Though 
macrophages kill phagocytosed A. baumannii, they do so at 
a significantly slower rate than that of neutrophils; however, 
they can phagocytose bacteria in as little as 10  min 
(Qiu et  al., 2012; Lázaro-Díez et  al., 2017).

Natural Killer Cells, Dendritic Cells, and Mast Cells
Natural killer (NK) cells are an important defense against viral 
infections, intra- and extracellular bacteria; however, their role 
in A. baumannii infection remains largely unexplored 
(Small et al., 2008; Waggoner et al., 2016; Paidipally et al., 2018). 
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In a murine pneumonia model, depletion of NK cells led to 
reduced survival and impaired bacterial clearance, though the 
impact of the NK cells was indirect, and mediated via the 
production of the neutrophil chemoattractant, keratinocyte 
chemoattractant (Tsuchiya et al., 2012). A. baumannii attachment 
to the natural cytotoxicity receptors on the surface of NK 
cells, has very low or no affinity, indicative that the interaction 
is indirect (Esin et al., 2008). Furthermore, NK cell cytotoxicity 
is significantly reduced in mice with A. baumannii septicaemia 
compared to uninfected controls; however, the mechanism 
defining this impact has not been explored (Cirioni et al., 2016).

Dendritic cells (DCs) are unique antigen-presenting cells 
linking the innate and adaptive immune systems. A. baumannii 
OmpA activates DCs in a dose-dependent manner, resulting 
in maturation, MAP kinase and NF-ĸB signaling, leading to 
the induction of a CD4+ Th1 T cell responses or early onset 
apoptosis and delayed necrosis (Lee et  al., 2007). DC death 
is via mitochondrial targeting and production of ROS, consistent 
with OmpAs mechanism of action, suggestive that A. baumannii 
may modulate T cell response via this cell type (Lee et  al., 
2010). Furthermore, despite the identification of neutrophil-DC 
hybrids several years ago (Geng et al., 2013; Matsushima et al., 
2013), it remains to be  determined whether they contribute 
to the control of Acinetobacter infections.

Mast cells are considered sentinels of mucosal layers, sensing 
and responding to pathogen invasion. Lung mast cells have 
been shown to secrete IL-8 and TNF-α in response to 
A. baumannii, enhancing neutrophil recruitment to the site 
(Kikuchi-Ueda et  al., 2017).

Cell Signaling in Response to Acinetobacter
Toll-Like Receptor Signaling
Toll-like receptor (TLR) signaling is an important mechanism 
by which hosts recognize and respond to pathogens. Of the 
11 reported TLRs, TLR2, 4, and 9 are critical for the recognition 
and response to A. baumannii, through the detection of 
lipoproteins, peptidoglycan, porins, lipoteichoic acid (TLR2), 
LOS (TLR4), and unmethylated CpG DNA motifs (TLR9)
(Knapp et  al., 2006; Lin et  al., 2012; Moffatt et  al., 2013; 
Noto et  al., 2015).

Host signaling via TLR2 and 4 has been extensively 
documented, whereby activation of either receptor, in the 
presence or absence of the soluble GPI-linked glycoprotein, 
CD14, leads to NF-ĸB activation in a MyD88-dependent fashion, 
resulting in the secretion of pro-inflammatory cytokines including 
TNF-α; IFN-γ; IL-1, 6, 8, 10, and 12 (Lin et  al., 2012; Moffatt 
et  al., 2013; García-Patiño et  al., 2017). TLR2 is important for 
DC recognition of A. baumannii OmpA; however, there are 
conflicting reports regarding the impact of TLR2 knockout, 
whereby Kim et  al. reported increased bacterial burdens in 
the first 24  h of infection in TLR2 −/− mice, while Knapp 
et al. observed significantly lower bacterial burdens at the same 
time point (Knapp et  al., 2006; Kim et  al., 2014; García-Patiño 
et  al., 2017). These differences may be  attributed to the use 
of different A. baumannii isolates, though further investigation 
is clearly warranted. By contrast, TLR4 −/− and/or CD14 −/− 
both result in increased bacterial burdens in pneumonia models, 

as a result of reduced pro-inflammatory cytokine responses 
and neutrophil recruitment. Interestingly though, TLR4 knockout 
has also been shown to reduce the lethality of A. baumannii 
septicaemia, by limiting septic shock caused by LOS (Lin et al., 
2012). Consistent with this finding, A. baumannii virulence 
has also been linked to the levels of LOS shedding and TLR4 
signaling (Lin et  al., 2012). Similarly, the treatment of 
A. baumannii-infected animals with LpxC inhibitors protects 
against lethality, by enhancing TLR2 stimulation and reducing 
NF-ĸB signaling and TNF-α secretion by four- and two-fold 
respectively, promoting opsonophagocytic killing in response 
to increased surface PNAG (Lin et  al., 2012; Moffatt et  al., 
2013). By contrast, A. baumannii isolates with 
phosphoethalomine-modified lipid A induce significantly higher 
levels of TLR4 signaling compared to unmodified LOS 
(Lin et  al., 2012).

In contrast to TLR2 and TLR4, TLR9 signaling in response 
to A. baumannii is the least well characterized. TLR9 is an 
internal receptor of the endolysosome, responsible for the 
detection of bacterial and viral DNA (Noto et al., 2015; Harding 
et al., 2017a). Similarly, its stimulation promotes NF-ĸB activation 
and pro-inflammatory cytokine responses, whereby TLR9 −/− 
mice have reduced TNF-α and IFN-ϒ in response to A. baumannii 
lung infections, causing elevated bacterial burdens, systemic 
dissemination, and increased tissue damage (Noto et al., 2015).

Soluble Secreted Factors
The production of pro-inflammatory cytokines in response to 
A. baumannii is primarily via NF-ĸB activation, with each 
cytokine driving a different response. For example, NLRP3- 
caspase 1- caspase 11 activation leads to the release of IL-1β 
and IL-18 from infected lung epithelia resulting in tissue damage 
(Dikshit et al., 2017). IL-17, however, promotes granulocytopoiesis 
and drives secretion of GM-CSF and IL-8, stimulating the 
antimicrobial peptide LL-37 (García-Patiño et  al., 2017). With 
the release of IL-8 and TNF-α, neutrophils are recruited and 
activated (March et  al., 2010; Bist et  al., 2014). However, while 
IL-33 represses IL-8 secretion, it is known to also promote 
neutrophil migration and stimulation (Peng et  al., 2018).

Epithelial cells and neutrophils also secrete an array of 
antimicrobial peptides, including human β-defensin 2 and 3, 
the cathelicidin LL-37 and CD14 enhancing TLR4 ligand 
interactions through myeloid differentiation factor 2 binding 
(March et  al., 2010; García-Patiño et  al., 2017; Harding et  al., 
2017a). A. baumannii is highly susceptible to human β-defensin 
2, which causes membrane disruption and increased permeability, 
although the potential for cell death via non-membrane lytic 
methods (i.e., inhibition of nucleic acid synthesis) or synergy 
with other antimicrobial peptides cannot be  excluded (Cobo 
and Chadee, 2013). Interestingly, only LOS-deficient A. baumannii 
demonstrates elevated sensitivity to the antimicrobial peptide 
LL-37, despite the target considered to be LOS (Moffatt et al., 2013).

Intracellular Responses
Despite A. baumannii being considered an extracellular pathogen, 
in vitro evidence exists for their ability to invade lung epithelial 
cells and macrophages (Choi et  al., 2008b; Qiu et  al., 2012), 
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though this observation is controversial, and the evidence 
should be  viewed with caution, given the limitations of the 
studies. In both instances, only a single A. baumannii strain 
was tested, with extracellular bacteria eliminated using 
gentamicin; however, the authors neglect to provide either the 
minimum inhibitory concentration for their respective strains 
or suitable microscopy to support their observations. In contrast 
to these reports, other studies testing a range of A. baumannii 
strains have been unable to visualize a direct interaction or 
invasion of the lung epithelial cell line A549, irrespective of 
MOI or incubation duration (Lázaro-Díez et  al., 2016). 
Furthermore, Qiu et  al. observed a reduction in bacterial 
viability during co-culture with macrophages (Qiu et al., 2012), 
suggesting that these observations are purely phagocytosis as 
opposed to active invasion and their significance in the context 
of in vivo infection has yet to be  confirmed.

In addition to TLR9, the cytosolic family of NOD-like 
receptors, including Nod1 and Nod2 associated with pathogen-
associated molecular pattern recognition, induce NF-ĸB, but 
not MAP kinase through interactions with Rip2 (Bist et  al., 
2014). This NF-ĸB activation induces IL-8, TNF-α and  
β-defensin, although it should be  noted these responses are 
cell type specific (Bist et  al., 2014). ROS and nitric oxide play 
critical and moderate roles in the control of intracellular 
A. baumannii, respectively (Qiu et  al., 2009, 2012). Evident 
by the fact that gp91phox−/− mice, deficient in the NADPH 
phagosomal oxidase (and thus ROS), are more susceptible to 
A. baumannii infection than neutropenic mice, while those 
defective for nitric oxide production demonstrate only moderate 
increases in bacterial burdens (Qiu et  al., 2009).

Complement-Mediated Killing
Complement-mediated killing is an important non-cellular innate 
immune component, consisting of multiple soluble factors, acting 
in a cascade promoting either bacterial cell lysis or 
opsonophagocytosis. Three pathways exist for the deposition of 
complement factors on to bacterial surfaces, although in human 
serum, the alternative complement pathway is required for 
A. baumannii killing (Garcia et  al., 2000; Kim et al., 2009; King 
et al., 2009; Bruhn et al., 2015). Resistance is frequently reported 
in clinical A. baumannii isolates and in vitro serum resistance 
may correlate with more severe disease (Bruhn et  al., 2015).

The alternative complement pathway is regulated by factor 
H, a soluble component important for the recognition of host 
cell markers (Ferreira et  al., 2010). Activation of the alternative 
complement pathway leads to the deposition of C3 on the surface 
of serum-sensitive isolates, though discrepancies exist surrounding 
the binding of factor H to bacterial cells and subsequent inhibition 
of C3 deposition, promoting serum resistance in A. baumannii 
(Dave et  al., 2001; King et  al., 2009; Laarman et  al., 2011). 
Previously, Kim et  al. reported that factor H bound to A. 
baumannii OMPs, promoting serum resistance (Kim et al., 2009). 
While King et  al. were unable to identify bound factor H on 
their serum-resistant isolates (King et  al., 2009), suggesting that 
factor H acquisition is not solely responsible.

Furthermore, the A. baumannii plasminogen-binding protein, 
CipA, was also shown to inhibit the alternative complement 

pathway via C3b cleavage and degradation of fibrin networks, 
by mechanisms that have yet to be  fully elucidated (Koenigs 
et  al., 2016). Consistent with the role of CipA in complement 
resistance, cipA deletion mutants are also more susceptible to 
killing by human serum (King et  al., 2013).

Genes involved in A. baumannii cell envelope homeostasis 
also contribute to serum resistance. For example, disruption 
of the TCS bfmS, which regulates pilus and capsule biosynthesis, 
leads to serum resistance (Geisinger et al., 2018). A. baumannii 
genes associated with capsule biosynthesis and glycosylation, 
including ptk, epsA, mltB, and pglC, encoding a putative tyrosine 
kinase, OM polysaccharide exporter, lytic transglycosylase and 
glycosyltransferase, respectively, are required for resistance to 
killing in human ascites fluid and serum, highlighting the 
importance of capsule in resisting complement (Russo et al., 2010; 
Lees-Miller et  al., 2013; Crépin et  al., 2018).

Adaptive Immune Response
While numerous studies have examined the ability of different 
bacterial components to induce a range of adaptive immune 
responses (McConnell and Pachón, 2010; McConnell et  al., 
2011a,b; García-Quintanilla et  al., 2014; Badmasti et  al., 2015; 
Kuolee et  al., 2015; Garg et  al., 2016; Ainsworth et  al., 2017; 
Bazmara et  al., 2017; Pulido et  al., 2018; Song et  al., 2018), 
very little work has been done to examine these during the 
course of infection, due to several confounding factors, including 
the available animal models, rate of disease progression and severity.

To our knowledge, the importance of Th1 vs. Th2 or Th17 
responses has yet to be  fully elucidated with regard to 
A. baumannii infection. Despite IL-17 being important for 
neutrophil recruitment and secretion of β-defensin, deletion 
of IL-17A in mice has no impact on bacterial burdens (Breslow 
et al., 2011; Yan et al., 2016). Furthermore, Qui et al. demonstrated 
that mice which recover from sub-lethal infections do not 
have increased survival compared to naïve mice when infected 
with a lethal dose of A. baumannii 6 weeks later, despite having 
significantly higher levels of CD4+ and CD8α+  T cells and 
CD19+ B lymphocytes (Qiu et  al., 2016). This suggests that 
adaptive immune responses play only a minor role in the 
resolution of A. baumannii infections. By contrast, some studies 
have shown the induction of antibody subtypes, IgM and IgG 
(isotypes IgG1 and 2c), and cytokines, IFN-ϒ, IL-4, and IL-17, 
can promote bacterial killing and improve host survival 
(McConnell et  al., 2011b; Luo et  al., 2012; García-Quintanilla 
et  al., 2014). Further work is needed to clarify the significance 
of different adaptive immune components in the clearance of 
and resistance to A. baumannii infections.

IN VIVO MODELS FOR THE STUDY  
OF A. BAUMANNII HOST-PATHOGEN 
INTERACTIONS

Mammalian Models
Murine models have been the predominant mammalian model 
used to study Acinetobacter infections over the last 30  years, 
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with a small number of studies also utilizing rabbits (Rodríguez-
Hernández et al., 2004; Pachón-Ibáñez et al., 2010) and guinea 
pigs (Bernabeu-Wittel et al., 2005). While initial studies focused 
on assessing antibiotic efficacy, more recent studies have 
investigated bacterial pathogenesis, host interactions, immunity 
and alternative therapeutic treatments (Obana et  al., 1985; 
Joly-Guillou et  al., 1997; Ko et  al., 2004; Knapp et  al., 2006; 
Jacobs et  al., 2010; Cerqueira et  al., 2014; Lood et  al., 2015; 
Noto et al., 2015; Sebe et al., 2016; Dikshit et al., 2017; Murray 
et  al., 2017; Peng et  al., 2017). A number of models have 
been developed for skin and soft tissue infection, endocarditis, 
osteomyelitis, bloodstream infection, and pneumonia, with the 
latter two being the most commonly used given the frequency 
and severity of these infections in hospital and community 
settings (Peleg et  al., 2008a; McConnell et  al., 2013).

Bloodstream Infection
Several bacterial virulence factors have been confirmed using 
bloodstream infection models, including the acinetobactin iron 
acquisition system, the universal stress protein A (UspA), and 
the TCS GacAS (Gaddy et  al., 2012; Cerqueira et  al., 2014; 
Elhosseiny et  al., 2015). A recent investigation utilized a 
bacteremia model to determine the global gene expression 
profile of A. baumannii ATCC 17978 during a life-threatening 
infection, and compared expression profiles between in vitro 
and in vivo growth, revealing 886 differentially expressed genes 
(Murray et  al., 2017).

Recently, bloodstream infection models have been expanded 
to test the efficacy of bacteriophage therapy to treat lethal 
infections. Lood et  al. used purified, recombinant autolysin 
from a bacteriophage to treat mice infected with a lethal dose 
of A. baumannii, resulting in increased survival in lysin-treated 
mice (up to 50%) and reduced A. baumannii burdens (Lood 
et  al., 2015). Similar results were observed with a more recent 
study using another bacteriophage lysin (Peng et  al., 2017).

Pneumonia
Lung infection models were first used in 1997 to evaluate the 
efficacy of imipenem in vivo against acute A. baumannii 
pneumonia (Joly-Guillou et  al., 1997). Two lung infection 
methods are most commonly used to induce pneumonia in 
mice: intra-tracheal, where the trachea of an anesthetized mouse 
is cannulated with a blunt-ended needle and the inoculum 
instilled; or intranasal, where the inoculum is pipetted over 
the nares of anesthetized mice (Joly-Guillou et al., 1997; Eveillard 
et al., 2010). Both methods induce inflammatory and histological 
responses consistent with acute pneumonia and a number of 
virulence factors have been assessed using these models, 
including phospholipase D, OmpA, and a heme oxygenase 
(Choi et  al., 2008b; Jacobs et  al., 2010; De Léséleuc et  al., 
2014). Assessment of essential A. baumannii genes in the 
context of pneumonia has also been performed using a 
transposon mutant library of A. baumannii ATCC 17978 and 
comparing input and output mutant pools after lung infection 
(Wang et al., 2014). This approach identified 157 genes, including 
OmpA and several novel virulence factors that are required 
for a pneumonia infection.

Over the last 15 years, mouse pneumonia models have been 
increasingly used to understand the host immune response to 
A. baumannii as described above. Furthermore, vaccine efficacy 
studies have now also been performed using mouse infection 
models. (McConnell and Pachón, 2010; McConnell et al., 2011a; 
Luo et  al., 2012; Russo et  al., 2013; Qiu et  al., 2016).

With the rise in studies, it is also now recognized that 
different strains of A. baumannii elicit different immune 
responses in mice (De Breij et  al., 2012; Dikshit et  al., 2017). 
This is an important finding considering that for many years, 
strains such as ATCC 17978 and 19606 have been used to 
study A. baumannii pathogenesis; however, they are not 
representative of the dominant clinical strains found in hospitals 
today. When compared to international clonal Type I  and II 
strains, they have reduced virulence and elicit different  
immune responses (Eveillard et al., 2010; De Breij et al., 2012; 
Dikshit et  al., 2017).

Other Infection Models
As previously described, a number of other infection models 
exist for studying A. baumannii infections. Skin and soft tissue 
models have been developed in both mice and rats for treatment 
studies and as a screening tool for determining gene essentiality 
(Shankar et  al., 2007; Russo et  al., 2008; Dai et  al., 2009). 
Several groups have tried to develop an osteomyelitis model 
in mice and rats with varying levels of success (Crane et  al., 
2009; Collinet-Adler et  al., 2011). Crane et  al. were able to 
establish a non-lethal infection in mice by implanting stainless 
steel pins into their tibias, while Collinet-Adler et  al. were 
unable to establish chronic bone infections in rats (Crane 
et  al., 2009; Collinet-Adler et  al., 2011). Rabbits have been 
used for studying meningitis and endocarditis, and guinea 
pigs used to study pneumonia (Rodríguez-Hernández et  al., 
2004; Bernabeu-Wittel et al., 2005; Pachón-Ibáñez et al., 2010). 
While larger animals allow researchers to sample the same 
animal at multiple time points, the increased costs and ethical 
concerns associated with larger animals have limited their 
use thus far.

The increasing costs and growing ethical concerns regarding 
mammalian models have spurred the development of 
non-mammalian models such as C. elegans, G. mellonella, and 
zebrafish for studying A. baumannii host-pathogen interactions. 
Despite their clear differences from mice and humans, 
non-mammalian models have proved useful for the assessment 
of mutants, screening compounds, and enabling visualization 
of host-pathogen interactions.

Caenorhabditis elegans
C. elegans, a small soil-dwelling nematode was the first 
non-mammalian model to be  used to study A. baumannii 
pathogenesis (Smith et  al., 2004). The small size (1  mm), 
transparency, short replication cycle (2–3  days), and well-
characterized genome make it an ideal model to study bacterial-
host interactions. It was first used by Smith et  al. to study 
A. baumannii pathogenesis in the presence of ethanol, with a later 
method developed using proliferation and brood size as the 
outcome measure rather than worm death (Smith et al., 2004, 2007). 
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Polymicrobial interactions between A. baumannii and Candida 
albicans have also been assessed in C. elegans, where A. baumannii 
reduced C. albicans filament production and virulence within 
the worm (Peleg et  al., 2008b). C. elegans has most recently 
been used to screen potential antimicrobial agents (Jayamani 
et  al., 2015; Mohamed et  al., 2017). Jayamani et  al. used a 
liquid infection assay in a 384-well format to concurrently 
assess the antimicrobial activity of peptides in parallel to 
evaluating host toxicity, revealing 15 molecules that prolonged 
worm survival (Jayamani et  al., 2015). A disadvantage of 
C. elegans though is their requirement to be  maintained at 
25°C, with 37°C causing worm death. This may impact the 
virulence of pathogens including A. baumannii (Peleg et al., 2009; 
De Silva et  al., 2017).

Galleria mellonella
G. mellonella (caterpillars of the greater wax moth) have a 
considerable advantage over C. elegans in that they can 
be  maintained at 37°C and a precise inoculum or therapeutic 
dose can be administered into the body of the caterpillar (Peleg 
et  al., 2009; Hornsey et  al., 2013). G. mellonella also have a 
more advanced immune system with both humoral and 
phagocytic cells (Peleg et  al., 2009). A. baumannii kills 
G. mellonella in a dose-dependent manner and survival can 
be  prolonged by the administration of antibiotics (Peleg et  al., 
2009). G. mellonella has since been used to test the efficacy 
of antibiotic combinations, assess the virulence of mutants, or 
compare pathogenicity between strains (Peleg et  al., 2009; 
Antunes et  al., 2011; Hornsey and Wareham, 2011; Gaddy 
et  al., 2012; Iwashkiw et  al., 2012; Wand et  al., 2012; Hornsey 
et  al., 2013; O’Hara et  al., 2013; Yang et  al., 2015; Betts et  al., 
2017). A disadvantage of note is that G. mellonella sourced 
from different suppliers can show significant variance in results 
(Betts et  al., 2017). However, with their increasing use, more 
standardized models have been developed that control for age, 
size, and food supply.

Dictyostelium discoideum
D. discoideum is a unicellular amoeba that feeds on bacteria, 
with previous work having highlighted similarities between 
amoeba phagocytosis and mammalian immune cell 
phagocytosis (Hasselbring et  al., 2011). It has therefore been 
proposed that when used in conjunction with other 
non-mammalian models, such as C. elegans, which kill via 
extracellular methods, the two can represent multiple areas 
of a mammalian infection (Smith et  al., 2007). In order to 
determine whether bacteria are killed by D. discoideum,  
liquid cultures of the two are mixed and plated, allowing 
the faster growing bacteria to form a lawn, with formation 
of plaques if amoeba are able to phagocytose bacteria (Smith 
et  al., 2007; Iwashkiw et  al., 2012; Weber et  al., 2013). 
D. discoideum and C. elegans have been jointly used to screen 
transposon mutant libraries for attenuated mutants (Smith 
et  al., 2007). Two other studies were performed using 
D. discoideum and C. elegans and showed that the T6SS is 
not required for virulence, while a glycosylation pathway 
was (Iwashkiw et  al., 2012; Weber et  al., 2013).

Zebrafish
Zebrafish (Danio rerio) are the most recent non-mammalian 
model to be  utilized for host-pathogen interaction studies. 
Zebrafish are a small (3–4  cm) freshwater fish native to India, 
Pakistan, and Bhutan and are susceptible to a range of bacteria, 
including Vibrio cholera, S. aureus, and Shigella flexneri (Prajsnar 
et  al., 2008; Mostowy et  al., 2013; Runft et  al., 2014). A 
considerable advantage of zebrafish to other non-mammalian 
models is their advanced immune system development with 
innate immune cells present at 25  h post fertilization and a 
fully functional adaptive immune system developed by adulthood 
(Van Der Sar et  al., 2004). Transparency can be  maintained 
to allow for real-time visualization, numerous transgenic fish 
lines are available, including fluorescently tagged neutrophils 
and macrophages and immune cell-depleted fish (Hall et  al., 
2007; White et  al., 2008; Ellett et  al., 2010; Li et  al., 2010). 
The establishment of zebrafish to study A. baumannii pathogenesis 
has recently been published, and showed that A. baumannii 
is lethal toward zebrafish in a dose-dependent manner, with 
interactions between A. baumannii and neutrophils easily imaged 
(Bhuiyan et  al., 2016). The unique advantages of real-time 
imaging during infection allowed the authors to elucidate novel 
findings related to neutrophil migration in the context of an 
A. baumannii infection.

CONCLUSIONS

Taken together, this review highlights the real advances that 
have been made in our understanding of A. baumannii 
pathogenesis, but further highlights areas in need of more 
in-depth analysis. Consistency and transparency in the field 
and subsequent publications will optimize the success of future 
studies. The selection of multiple and appropriate A. baumannii 
strains, encompassing those that are representative of modern-day 
clinical isolates and human infections, combined with the 
standardization of cell lines, animal models, and procedures 
will provide a level of uniformity across all studies. Such 
consistency will not only enable direct comparison between 
studies, but also advance our overall understanding of this 
important pathogen.

However, the future does hold promise with more innovative 
techniques and the rapid advancement of technology, new 
approaches are providing greater insight into the intricacies 
of regulatory networks not only in the bacterial cell but also 
in the host. As cross-disciplinary research continues to grow, 
so too does our understanding of this important pathogen 
and its hosts.
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