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Manipulating cell cycle is one of the common strategies used by viruses to generate
favorable cellular environment to facilitate viral replication. Coxsackievirus B (CVB) is
one of the major viral pathogens of human myocarditis and cardiomyopathy. Because
of its small genome, CVB depends on cellular machineries for productive replication.
However, how the structural and non-structural components of CVB would manipulate
cell cycle is not clearly understood. In this study, we demonstrated that the capsid
protein VP1 of CVB type 3 (CVB3) induced cell cycle arrest at G1 phase. G1 arrest was
the result of the decrease level of cyclin E and the accumulation of p27Kip1. Study on
the gene expression profile of the cells expressing VP1 showed that the expression of
both heat shock protein 70-1 (Hsp70-1) and Hsp70-2 was significantly up-regulated.
Knockdown of Hsp70 resulted in the increased level of cyclin E and the reduction of
p27Kip1. We further demonstrated that the phosphorylation of the heat shock factor
1, which directly promotes the expression of Hsp70, was also increased in the cell
expressing VP1. Moreover, we show that CVB3 infection also induced G1 arrest, likely
due to dysregulating Hsp70, cyclin E, and p27, while knockdown of Hsp70 dramatically
inhibited viral replication. Cell cycle arrest at G1 phase facilitated CVB3 infection, since
viral replication in the cells synchronized at G1 phase dramatically increased. Taken
together, this study demonstrates that the VP1 of CVB3 induces cell cycle arrest at G1
phase through up-regulating Hsp70. Our findings suggest that the capsid protein VP1
of CVB is capable of manipulating cellular activities during viral infection.

Keywords: coxsackievirus B, capsid protein VP1, cell cycle, G1 arrest, heat shock protein 70, heat shock factor 1

INTRODUCTION

The progression of cell cycle is a dynamic process in which proliferating cells divide into two
daughter cells through the orderly events occurred at four stages, G1, S, G2, and mitosis (Maes
et al., 2017). The control of cell cycle ensures the faithful replication and segregation of the genome
(Fan et al., 2017). The unidirectional progression of cell cycle is controlled by the periodic activation
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of cyclin-dependent kinases (Cdks). The activity of Cdks largely
depends on their partnership with specific cyclins in the distinct
phase of cell cycle. In mammalian cells, cyclin D, cyclin A/E, and
cyclin A/B couple with Cdk4/6, Cdk2, and Cdk1, respectively,
to coordinate the transition between distinct cell cycle stages
(Sanchez and Dynlacht, 2005).

Viruses are cellular parasites that replicate and assemble either
in cytoplasm or in the nucleus. To sustain viral replication, the
cellular environment must be manipulated to provide adequate
raw materials for the biosynthesis of the virus (Schang, 2003;
Ning et al., 2017; Torshizi et al., 2017; Wang Z.Y. et al., 2017;
Wasson et al., 2017; Xu et al., 2017). A variety of DNA viruses
manipulate cell cycle to achieve a cellular condition which is
favorable to viral replication. Parvovirus induces cell cycle arrest
which contributes to the virus-induced cytopathic effect (Chen
and Qiu, 2010). Papillomaviruses encode proteins that are able to
promote cell proliferation through overcoming G1/S restriction
point (R point) (Wasson et al., 2017). Herpesviruses arrest cells
in the late G1 phase prior to DNA synthesis (Oster et al., 2005;
Paladino et al., 2014). RNA viruses also develop strategies to
influence cell cycle in order to create an environment which is
beneficial to viral replication (Dove et al., 2006; Kim et al., 2015;
Gluck et al., 2017; Ning et al., 2017; Wang Z.Y. et al., 2017).

Coxsackievirus B (CVB) are species of non-enveloped,
positive single-stranded RNA viruses that belong to the
Enterovirus genus in the family of Picornaviridae (Garmaroudi
et al., 2015; Leveque et al., 2017). The six serotypes of CVB can
cause a wide range of illnesses from mild gastrointestinal disorder
to severe meningitis or myocarditis, which, in some cases, may
progress to cardiomyopathy and heart failure (Alidjinou et al.,
2014; Garmaroudi et al., 2015). The genome of CVB encodes four
structural proteins (VP1, VP2, VP3, and VP4) (Garmaroudi et al.,
2015). These structural proteins are configured into the typical
icosahedral capsid. Beside the four structural proteins, CVB also
encodes non-structural proteins including RNA-dependent RNA
polymerase 3D (3Dpol) and viral proteases 2A (2Apro) and 3Cpro

(Yajima and Knowlton, 2009). To synthesize viral proteins, the
genome of CVB is first translated into a single polypeptide that
is cleaved by the viral proteases to generate viral structural and
non-structural proteins (Garmaroudi et al., 2015). It is believed
that the interaction between viral proteins and cellular machinery
plays a key role for the pathogenesis of CVB infection. Extensive
studies have been focusing on viral non-structural proteins
such as 2Apro and 3Cpro, since these proteases not only cleave
viral polyproteins, but also cleave important cellular proteins
such as eukaryotic translation initiation factor 4G (eIF4G) and
mitochondrial antiviral-signaling protein (MAVS) (Chau et al.,
2007; Feng et al., 2014; Hanson et al., 2016). Thus, CVB infection
leads to the disturbance of various cellular machineries including
the increased assembly of autophagosomes (Wong et al., 2008;
Xin et al., 2015; Wu et al., 2016), up-regulated ubiquitin-
proteasome system (UPS) (Luo et al., 2003a), and ER stress (Luo
et al., 2018). However, it is not clearly defined how CVB infection
would modulate the cell cycle.

A previous study has shown that cell cycle arrest at G1/S
phase is favorable for CVB3 replication, while quiescent cells
hinder the synthesis of viral proteins (Feuer et al., 2002).

The mechanism by which CVB3 blocks cell cycle at G1/S
is associated with the reduction of G1 cyclins, cyclin D and
E, due to the up-regulated ubiquitin-proteasome proteolysis
induced by viral infection (Luo et al., 2003b). While a direct
implication of CVB3 in the manipulation of cell cycle has
already been demonstrated, whether viral capsid protein VP1
exerts impact on the progression of cell cycle is unknown. In
our previous study, we identified that the capsid protein VP1
of CVB3 (hereafter VP1) contains nuclear localization signal
and is imported into the nucleus (Wang et al., 2012). In this
work, the impact of VP1 on cell cycle was analyzed. Our
results show that VP1 arrests cell cycle at G1 phase through
up-regulating the expression of heat shock protein 70 (Hsp70).
This finding reveals a new role of VP1 in facilitating the
replication of CVB3.

MATERIALS AND METHODS

Ethics Statement
All animals were housed in biosafety level 2 containment facilities
and cared for in compliance with the regulation on animal care
and use of the Harbin Medical University. All the experimental
procedures applied to animals were approved by the Ethics
Committee of the Harbin Medical University.

Mice
Balb/c mice were provided by the Laboratory Animal Center,
Harbin Medical University. Newborn mice at the age of 1–
3 day after birth were used in this study. Mice were euthanized
and cardiomyocytes were prepared as described previously
(Ehler et al., 2013; Sherry, 2015). Cardiomyocytes were cultured
overnight in growth medium containing 10% fetal bovine
serum (FBS). Cells were then transfected with pEGFP-VP1 or
control vector pEGFP-C1 for 24 h. Cell cycle was analyzed
by flow cytometry.

Cell Culture
HeLa cells were cultured in Dulbecco’s modified Eagle medium
(DMEM) (Life Technologies, Carlsbad, CA) supplemented with
10% heat-inactivated FBS (Biological Industries, Israel), penicillin
(100 U/ml), and streptomycin (0.1 mg/ml). Cells were incubated
in 5% CO2 at 37◦C and passaged every 24–48 h.

Virus
Coxsackievirus B3 Woodruff strain was recovered from plasmid
pMKS1, which contains the full-length genomic cDNA of CVB3
(Tong et al., 2011). Viruses were propagated in HeLa cells.
Virus titer was determined by TCID50 as described previously
(Zhong et al., 2008). To determine the interaction between CVB3
replication and cell cycle, sub-confluent cells were infected with 1
multiplicity of infection (MOI) of CVB3. After 1 h of absorption,
the medium was removed and fresh medium containing 10%
FBS was added. Cells were collected at various time points of
post-infection (p.i.) for cell cycle analysis.
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Transfection
pcDNA3.1-EGFP-VP1 (designated as pEGFP-VP1) was
constructed from pcDNA3.1-EGFP (designated as pEGFP-
C1) as described previously (Wu et al., 2014). HeLa cells were
transfected with pEGFP-VP1 or pEGFP-C1 using Lipofectamine
2000 (Invitrogen, Carlsbad, CA), according to the manufacturer’s
instructions. Briefly, cells were cultured to 70% of confluence
in 6-well plates and transfected with transfection mix (8 µg of
the plasmid mixed with 10 µl of liposome in DMEM). After 4 h
of incubation at 37◦C, the transfection mix was removed and
fresh medium with 10% FBS and antibiotics were added. Cells
were harvested 24 h after transfection for further analysis. Each
transfection was performed in triplicate.

Reverse Transcription and Real-Time
Quantitative PCR (RT-qPCR)
Total RNA was extracted by TRIzol (Invitrogen) according
to the instructions of the manufacturer. RNA was dissolved
in nuclease-free water and was quantified by Nanodrop 2000
spectrophotometer (Thermo Fisher, Waltham, MA). About 1 µg
of each total RNA preparation and 4 µl of 5× TransScript All-
in-One SuperMix (TransGen, Beijing, China) were used in a total
of 20 µl reverse transcription system. Quantitative PCR (qPCR)
was carried out on a LightCycler 96 (Roche, Basel, Switzerland)
using TransStart Top Green qPCR SuperMix (TransGen, Beijing,
China). Amplification of the cDNA was performed in triplicate,
using 10 µl 2× TransStrat Top Green qPCR SuperMix, 0.4 µl of
each specific primer (10 µM), and 1 µl of cDNA. PCR program
consisted of 5 min activation at 94◦C, followed by 40 cycles of
94◦C for 5 s, 55◦C for 10 s, and 72◦C for 10 s. Expression of the
glyceraldehyde phosphate dehydrogenase (GAPDH) was used for
the normalization of all target RNAs. The relative changes of gene
expression were determined by the 2−11Ct methods (Livak and
Schmittgen, 2001). The PCR primers used in this study are listed
in Table 1.

RNA Sequencing
HeLa cells were transfected with pEGFP-VP1 for 24 h. Control
cells were transfected with pEGFP-C1. Total RNA was extracted
by RNeasy mini kit (Qiagen, Hilden, Germany). The extracted
RNA was qualified and RNA integrity was measured by
electrophoresis in 1.4% agarose to ensure that there was no
RNA degradation. One microgram of the total RNA from each
sample was used to create sequencing libraries using TruSeq
RNA Library Prep Kit (Illumina, San Diego, CA). The quality

TABLE 1 | Sequence of primers.

Primer name Sequence 5′→3′

CVB3 forward GCACACACCCTCAAACCAGA

CVB3 reverse ATGAAACACGGACACCCAAAG

VP1 forward TGGGTAATAACACCACGACAAGC

VP1 reverse CACTGGGATTCGTAGATGTTTGC

GAPDH forward TGCACCACCAACTGCTTAGC

GAPDH reverse GGCATGGACTGTGGTCATGAG

of the cDNA libraries was assessed by Agilent 2100 Bioanalyzer
(Agilent, Santa Clara, CA). Finally, the prepared libraries were
sequenced by GeneX Health (Beijing, China) using Illumina
HiSeq 2500 (Illumina).

The raw data of RNA-sequencing (RNA-seq) were filtered
using FastQC to exclude low quality reads and the reads in which
unknown bases were more than 10%. Clean reads were aligned
and mapped to human reference genome using TopHat (Trapnell
et al., 2009) and assembled by Bowtie 1 (Langmead, 2010).
Differentially expressed genes between the VP1-transfected and
control cells were identified using Cufflink (Trapnell et al., 2013).
Genes with a fold change of larger than 1.3 (|log2 (fold change)|
> 1.3) and with adjusted P-value less than 0.001 were considered
as differentially expressed. The primary data were provided in the
Supplementary Materials.

Synchronization of Cells
Cell cycle synchronization was performed by blocking the cell
cycle with thymidine (Nghiem et al., 2001; Banfalvi, 2017). HeLa
cells were cultured in 6-well plate to 50% confluence. Cells were
washed with PBS twice and cultured in the medium containing
2 mM of thymidine for 19 h. Then cells were washed twice with
PBS and grown in normal DMEM containing 10% FBS for 9 h
to allow cells to re-enter cell cycle. Then another round of cell
cycle blocking was carried out by the addition of thymidine for
18 h. Cells were infected with CVB3 1 h before the termination
of second round of synchronization. Then cells were cultured in
normal medium for another 9 h.

Flow Cytometry
HeLa cells were seeded in 6-well plate until 1–5 × 106 cells
were obtained. Cells were washed with cold PBS twice and
fixed with cold 75% ethanol for 1 h or overnight at 4◦C.
Cells were suspended with 500 µl of cold PBS, followed by
the addition of 20 µl RNase A solution (BestBio, Shanghai,
China) and incubation at 37◦C for 30 min. Cells were stained
with 70 µM propidium iodide (BestBio) in the PBS containing
0.01% Nonidet P-40 at dark for 1 h. Cellular DNA content was
quantified by a flow cytometer LSR Fortessa (BD Biosciences, San
Jose, CA). Data were obtained based on 30,000 events collected
by flow cytometry.

Western Blot
Cells were collected and washed twice with cold PBS. Cells
were lysed with lysis buffer [120 mM Tris–HCl (pH 6.8), 5%
SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.01% bromophenol
blue] and stored at −80◦C until analyzed. 10% polyacrylamide
gel electrophoresis was performed. Proteins were blotted to
PVDF membrane and detected with corresponding primary
and HRP-conjugated secondary antibodies. The blots were
imaged with FluorChem R system (ProteinSimple, Santa Clara,
CA). Primary antibodies against cyclin E, p27, Hsp70, heat
shock factor 1 (HSF1), β-actin, GAPDH, and β-tubulin were
obtained from Proteintech (Rosemont, IL). A monoclonal mouse
anti-enteroviral VP1 antibody (clone 5-D8/1) (Dako, Glostrup,
Denmark) was used to detect CVB3 VP1. Polyclonal antibody
against 3Dpol of CVB3 was prepared in our laboratory. Antibody
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against pS326-HSF1 was obtained from Abcam (Cambridge,
United Kingdom).

Fluorescence Microscopy
HeLa cells were plated on glass coverslips and transfected with
pEGFP-VP1 or pEGFP-C1 for 24 h. Cells were fixed with 4%
formaldehyde in dark. Cells were washed twice and stained
with 1 µg/ml DAPI in 0.1% PBS-T for 5 min at 37◦C in dark.
Then, the stained cells were mounted on slides for confocal
observation. Fluorescence images were captured by a CV1000
confocal microscope (Yokogawa, Tokyo, Japan).

Statistical Analysis
All of the experiments are repeated three times. Data were
presented as mean ± SD. Statistical analysis was performed by
Graphpad prism7.0. Student t test was performed. P < 0.05 was
set as statistical significance.

RESULTS

VP1 of CVB3 Arrests Cell Cycle at G1
Phase
Our previous study showed that VP1, one of the capsid proteins
of CVB3, contains nuclear localization signal, which allows
it to be imported into the nucleus (Wang et al., 2012). To
further investigate whether VP1 disturbs cell cycle, HeLa cells
were transfected with pEGFP-VP1 for 24 h, and cell cycle was
measured by flow cytometry. Control cells were transfected
with pEGFP-C1. As shown in Figure 1, EGFP was evenly
distributed in both cytoplasm and nucleus in the control cells
transfected with pEGFP-C1 (Figure 1A, upper panel). VP1
was localized in both cytoplasm and the nucleus, while the
accumulation of VP1 in the nucleus was obvious (lower panel
of Figures 1A,B). Cell population at G1 phase was significantly
increased in the cells expressing VP1 (Figures 1D–F), indicating
that VP1, the structural component of CVB3, disturbs the
progression of cell cycle.

VP1 of CVB3 Induces Cell Cycle Arrest in
Primary Cardiomyocytes
Coxsackievirus B3 preferentially infects children and young
adults with the consequence of myocarditis and cardiomyopathy
(Garmaroudi et al., 2015). Since HeLa cells are highly
proliferating cancer cells with features different from the
cardiomyocytes, which have limited proliferation ability after
birth (Zebrowski et al., 2017). Thus, we asked the question
whether VP1 of CVB3 disturb the cell cycle of cardiomyocytes.
To this end, primary cardiomyocytes extracted from the hearts
of newborn Balb/c mice were transfected with pEGFP-C1 or
pEGFP-VP1, and cell cycle was determined. As shown in
Figure 2, EGFP was localized evenly in the entire cell, while VP1
was accumulated in the nucleus (Figure 2A). Cell population
in G1 phase was significantly increased in the cardiomyocytes
expressing EGFP-VP1, compared with that of the cells expressing

EGFP (Figures 2B–E). These data show that VP1 indeed hinders
the progression of cell cycle of the cardiomyocytes.

VP1 Dysregulates the Expression of
Cyclin E and p27Kip1

To elucidate the mechanism through which VP1 arrests cell
cycle progression, HeLa cells were transfected with the plasmid
expressing EGFP-VP1 for 24 h, and the expression of cell cycle
regulatory proteins was determined by Western blotting. We
found that in the cells expressing VP1 (shown in Supplementary
Figure S1), the level of cyclin D1 remained unchanged, while
and phosphorylated (at serine 780) retinoblastoma protein (p-
Rb), which promotes the progression of G1 (Hassan et al.,
2004), was increased (Supplementary Figure S1A). p21 and p53,
the Cdk inhibitors (Scully et al., 2018), were down-regulated
(Supplementary Figure S1B). Other Cdk inhibitors such as p15,
p16, and p57 remained unchanged (Supplementary Figure S1B).
However, cyclin E level was decreased, while p27Kip1, one of the
inhibitors of Cdks, was increased (Figures 3A,B). These results
suggest that cyclin E and p27Kip1 play a key role for G1 arrest in
the cells expressing VP1.

VP1 Arrests Cell Cycle Through
Up-Regulating the Expression of Heat
Shock Protein 70
To reveal the mechanism by which VP1 manipulates cell cycle,
we investigated the gene expression profile of the cells transfected
with pEGFP-VP1 by RNA-seq. The results show that there was
almost no change in the gene expression profile in the cells
expressing VP1, except five genes which were dysregulated. (The
results of RNA-seq were provided as Supplementary Material.)
Among the genes with altered expression levels are HSPA1A
(GenBank: KY500386.1) and HSPA1B (GenBank: KY500397.1),
which encode the chaperone protein heat shock protein 70-1
(Hsp70-1) and Hsp70-2, respectively. The expression of Hsp70
was confirmed by RT-qPCR (Figure 4A) and Western blotting
(Figures 4B,C).

The concomitantly increased expression of Hsp70-1 and
Hsp70-2 in the cells expressing VP1 suggests that Hsp70 may
play a critical role in cell cycle control. To reveal the role of
Hsp70 in G1 arrest, Hsp70 was knocked down by siRNA, and the
expression of cyclin E and p27Kip1 was determined. Knockdown
of Hsp70 resulted in the significant accumulation of cyclin E,
while p27Kip1 was reduced (Figures 4D,E). These data suggest
that the increased expression of Hsp70 in the cells expressing
VP1 at least contributes to the reduced level of cyclin E and the
accumulation of p27Kip1, which lead to G1 arrest.

To answer this question how the expression of Hsp70 is
regulated, we determined the phosphorylation status of HSF1,
the transcription factor that directly controls the transcription
of heat shock proteins (Zheng et al., 2016). The activation of
HSF1 is controlled by phosphorylation. Studies have shown that
CVB3 activates calcium/calmodulin-dependent protein kinase II
(CaMKII), which phosphorylates HSF1 at serine 230 (Qiu et al.,
2016; Wang F. et al., 2017). In this study, we determined the
phosphorylation of HSF1 at serine 326, which also promotes
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FIGURE 1 | VP1 of CVB3 induces cell cycle arrest at G1 phase. (A,B) HeLa cells were transfected with pEGFP-VP1 or pEGFP-C1 for 24 h. The expression of VP1
was determined by fluorescence microscopy (A, lower panel; arrow heads indicate the nuclei). The relative fluorescence intensity of EGFP was quantified (B). The
RNA level of VP1 was determined by RT-PCR (C). (D–F) HeLa cells were transfected with pEGFP-VP1 for 24 h. Control cells were transfected with pEGFP-C1. Cell
cycle was analyzed by flow cytometry (D). Cell population distributed in each phase of the cell cycle was compared between the cells expressing VP1 and control
cells (E,F). n = 3. ∗P < 0.05, ∗∗∗P < 0.01.

the activation of HSF1 (Chou et al., 2012). As shown in
Figure 4F, the phosphorylation level of HSF1 at serine 326 was
significantly elevated in the cells overexpressing VP1, indicating
that the increased expression of Hsp70 is induced by the
activation of HSF1.

CVB3 Replication Induces Cell Cycle
Arrest at G1 Phase
We further studied if the infection of CVB3 also dysregulates cell
cycle progression. HeLa Cells were infected with CVB3 (MOI = 1)
for 24 h. Cell cycle was analyzed by flow cytometry. As shown
in Figure 5, cells infected with CVB3 also showed significantly
increased population of cells at G1 phase.

CVB3 Infection Dysregulates Cyclin E
and p27Kip1

To investigate the mechanism by which CVB3 induces G1 arrest,
cells were infected with CVB3 (MOI = 1) for 24 h, the protein
levels of Hsp70, cyclin E, and p27kip1 were determined by
Western blotting. In the cells infected with CVB3, Hsp70, and
p27Kip1 were markedly increased, while cyclin E was decreased

(Figures 6A,B). These data show that the dysregulated Hsp70,
cyclin E, and p27Kip1 contribute to G1 arrest induced by CVB3
infection. These data also imply that VP1 at least contributes to
G1 arrest during CVB3 infection.

It has been demonstrated that Hsp70, which is up-regulated
in CVB3-infected cells, shows beneficial impact on the stability
of viral genome (Qiu et al., 2016). To confirm the role of
Hsp70 in CVB3 infection, viral replication was determined in
the cells with the knockdown of Hsp70. As shown in Figure 6C,
knockdown of Hsp70 dramatically reduced the level of viral
3Dpol, indicating that Hsp70, which is up-regulated in CVB3-
infected cells, facilitates viral replication.

Cell Cycle Arrest Promotes CVB3
Replication
It has been reported that CVB3 replication is promoted by cell
cycle inhibitors which induce cell cycle arrest at G1/S phase
(Feuer et al., 2002). To confirm that the arrest of G1 phase
facilitates CVB3 replication, HeLa cells were synchronized at
G1 phase through the addition of thymidine and infected with
CVB3 (MOI = 1) (Figure 7A). Compared with non-synchronized
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FIGURE 2 | VP1 of CVB3 induces G1 arrest in cadrdiomyocytes. (A) Cardiomyocytes were isolated from the hearts of neonatal Balb/c mice. Cells were transfected
with pEGFP-C1 or pEGFP-VP1 for 24 h and viewed by fluorescence microscope. (B,C) Cell cycle was determined by flow cytometry. (D,E) Cell population
distributed in each phase of the cell cycle was compared between the cells expressing VP1 and control cells. n = 3. ∗P < 0.05.

FIGURE 3 | VP1 dysregulates the expression of cyclin E and p27kip1. (A,B) HeLa cells were transfected with pEGFP-C1 or pEGFP-VP1 for 24 h. Cyclin E and
p27kip1 were determined by Western blotting. n = 3. ∗P < 0.05, ∗∗P < 0.01.

cells, cells synchronized at G1 phase (Figures 7B–D) showed
significantly increased level of CVB3 genome (Figure 7E). These
data indicate that G1 arrest facilitates CVB3 replication.

DISCUSSION

To create a favorable cellular environment is the common
strategy used by viruses. In the present study, we demonstrate
that VP1, one of the capsid proteins of CVB3, induces cell cycle
arrest at G1 phase through up-regulating Hsp70.

G1/S transition is crucial for cell cycle control (Fisher, 2016).
In mammalian cells, the presence of growth factors promotes
the expression of cyclin D, which binds and activates Cdk4/6.
The activated Cdk4/6 initiates the phosphorylation of Rb, the cell
cycle repressor (Moser et al., 2018). The p-Rb releases a fraction
of the transcription factor E2F, which promotes the transcription

of the genes including cyclin E and A. These cyclins couple
with Cdk2 which functions as a positive feedback to trigger
the switch from hypo- to hyper-phosphorylation of Rb. At this
point, cell commits to complete the current division cycle even
without the presence of growth factors (Bracken et al., 2004).
Fully released E2F induces the production of proteins required
for S-phase entry. In mammalian cells, the critical point between
late G1 and the entry of S phase is defined as the R point
(Moser et al., 2018).

We previously showed that the VP1 of CVB3 contains nuclear
localization signal, and the nuclear translocation of VP1 disturbs
cell cycle (Wang et al., 2012). This study further evaluated the
influence of VP1 on cell cycle and revealed the underlying
mechanism. To study the mechanism of the disturbed cell
cycle, we determined the regulatory proteins associated with
the control of G1 phase. We found that cells expressing VP1
showed up-regulated p-Rb, decreased levels of p21Cip and p53.
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FIGURE 4 | Up-regulated Hsp70 in the cells expressing VP1 results in the dysregulation of cyclin E and p27kip1. HeLa cells were transfected with pEGFP-C1 or
pEGFP-VP1 for 24 h. (A) The expression of Hsp70 was determined by RNA-sequencing. (B,C) The expression of Hsp70 was verified by Western blotting. (D,E)
HeLa cells were transfected with si-Hsp70 for 24 h. Cell lysate was prepared and cyclin E, p27kip1, and Hsp70 were determined by Western blotting. (F) HeLa cells
were transfected with pEGFP-C1 or pEGFP-VP1 for 24 h, HSF1 and p(S326)-HSF1 were determined by Western blotting. n = 3. ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001.

These data seem to suggest that the expression of VP1 could
promote G1/S transition rather than arrest cell cycle at G1 phase.
The hyper-phosphorylation of Rb is critical for G/S transition
(Johnson and Skotheim, 2013; Fisher, 2016). However, we have
no evidence concerning the phosphorylation status of Rb through
determining a single phosphorylation site (serine 780) of this
protein. Thus, data from the present study are not sufficient for
us to reach the conclusion whether or not R point passage is
achieved in the cells expressing VP1. Evidence has shown that at
early G1 phase, Rb is mono-phosphorylated by cyclin D-Cdk4/6.
At the later stage of G1 phase, cyclin E-Cdk2 complex inactivates
Rb by hyper-phosphorylation (Narasimha et al., 2014; Fisher,
2016). These observations suggest that cyclin E, in combination
with Cdk2, plays a crucial role for the hyper-phosphorylation of
Rb and the entry of S phase. Moreover, studies in recent years
support the concept that the mechanism, which controls S-phase
entry when cells are under stress, might be very distinct from that
of the normal cycling cells (Johnson and Skotheim, 2013).

Our data demonstrate that the level of cyclin E was reduced in
the cells expressing VP1, while p27kip1 was accumulated. These
results suggest that lack of cyclin E and/or the accumulation
of p27kip1 are sufficient to induce G1 arrest. In consistent with
our findings, previous study has shown that the accumulation of
cyclin E occurs after the passage of R point and before the entry
of S phase (Ekholm et al., 2001), indicating that adequate level

of cyclin E is critical for S phase entry. Evidence also shows that
E2F is not sufficient to induce G1/S transition without cyclin E
(Duronio and O’Farrell, 1995). Therefore, declined cyclin E level
in the cells expressing VP1 would at least contribute to G1 arrest.

We further explored the mechanism leading to the
dysregulated cyclin E and p27kip1 in the cells expressing
VP1. The results of RNA-seq demonstrate that the expression of
Hsp70 was up-regulated in the cells overexpressing VP1. Since
Hsp70, which is translated in 5′-cap independent mechanism,
is also up-regulated in the cells infected with CVB3 (Qiu et al.,
2016), we presumed that the increased expression of Hsp70 could
be responsible for the dysregulated cell cycle control proteins in
the cells expressing VP1. And indeed, the dysregulated cyclin
E and p27Kip1 were related with the up-regulation of Hsp70
in the cells expressing VP1. Knockdown of Hsp70 with siRNA
resulted in the accumulation of cyclin E and the reduction
of p27Kip1. These data indicate that the up-regulated Hsp70
causes the decrease of cyclin E and the accumulation of p27Kip1,
leading to G1 arrest.

Hsp70-1 and Hsp70-2 belong to the Hsp70 family with
only one amino acid difference (Leppa et al., 2001). As
important molecular chaperone, Hsp70 plays critical role in
protein folding, membrane translocation of proteins, and protein
degradation via proteasome pathway (Nitika, and Truman,
2017). The expression of Hsp70 is often induced by cellular
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FIGURE 5 | Coxsackievirus B3 infection induces G1 arrest. HeLa cells were cultured in 6-well plate to 60% confluence and infected with CVB3 at 1 MOI for 24 h.
Mock-infected cells were set as control. (A) Cell cycle was determined by flow cytometry at 24 h of post-infection. (B) Cell population distributed in each phase of
the cell cycle was calculated. (C) Cell population was compared between mock-infected and CVB3-infected cells. (D) The 3Dpol of CVB3 was determined by
Western blotting. n = 3. ∗∗P < 0.01.

FIGURE 6 | Coxsackievirus B3 infection dysregulates the expression of Hsp70, cyclin E, and p27kip1. (A,B) HeLa cells were cultured in 6-well plate to 60%
confluence and infected or mock-infected with CVB3 at 1 MOI for 24 h. Cell lysates were prepared and subjected to the analysis of Western blotting. (C) HeLa cells
were transfected with si-Hsp70 for 24 h and infected with CVB3 at MOI of 1 for 12 h. Cell lysates were prepared and subjected to the analysis of Western blotting.
n = 3. ∗P < 0.05. si-Control: Control si-RNA.

stress such as infection, ischemia, inflammation, and exposure
to oxidants (Shamovsky and Nudler, 2008; Radons, 2016).
Previous studies have demonstrated that up-regulated Hsp70

during CVB3 infection promotes viral replication (Helmbrecht
et al., 2000; Qiu et al., 2016; Wang F. et al., 2017). CVB3
hijacks the host cell to produce viral RNA and proteins
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FIGURE 7 | G1 arrest facilitates the replication of CVB3. (A) HeLa cells were synchronized at G1 by theaddition of thymidine and cells were infected with CVB3.
(B) Cell cycle was analyzed by flow cytometry. (C) Cell population distributed in the various phases of cell cycle was calculated. (D) Cell population in G1 phase was
compared between CVB3-infected cells with and without treatment of thymidine. (E) Viral RNA of CVB3 was determined by RT-qPCR. n = 3. ∗P < 0.05,
∗∗∗P < 0.001. n.s.: no significant.

by shutting down the cap-dependent translation of cellular
proteins, while the translation of viral proteins relies on the
internal ribosome entry site (IRES) in the 5′ untranslated
region (UTR) of viral genome (Bonderoff and Lloyd, 2008;
Ullmer and Semler, 2018). However, the translation of Hsp70
depends on IRES rather than cap-dependent (Qiu et al.,
2016). This ensures that its synthesis is not interfered
by CVB3 infection.

In agreement with the previous report (Qiu et al., 2016), we
also show that the phosphorylation of HSF1 is likely responsible
for the elevated expression of Hsp70 in the cells expressing
VP1. HSF1, which is the key transcription regulator that binds
the heat shock response element upstream of the promoter
of HSPA (the gene coding Hsp70) (Chou et al., 2012). In

addition, it is implicated that the activation of HSF1 is also
regulated by Hsp70. HSF1 basally interacts with Hsp70, and this
interaction was interrupted by stress when misfolded proteins
compete with HSF1 for the binding of Hsp70 (Zheng et al.,
2016). Phosphorylation, while as a positive factor that facilitates
the activation of HSF1, seems not play a critical role (Zheng
et al., 2016). It has been shown that Hsp70 interacts with
P1, the capsid precursor of poliovirus and CVB1 (Macejak
and Sarnow, 1992). Based on the reported studies and our
results, we postulate that, in addition to the up-regulated
phosphorylation of HSF1, VP1 of CVB3 might interfere with
the interaction between HSF1 and Hsp70 through binding
to either one of these proteins, leading to the release and
activation of HSF1.
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Cyclins and Cdk inhibitors are degraded through UPS (Cao
et al., 2011; Ning et al., 2017), while Hsp70 plays an important role
in UPS-mediated protein degradation (Fernandez-Fernandez
et al., 2017). UPS is also promoted and utilized by CVB3
infection (Luo et al., 2003b; Gao et al., 2008). Therefore,
similar to the finding that CVB3 promotes the degradation of
cyclin D (Luo et al., 2003b), it is possible that the reduced
abundance of cyclin E is the result of its up-regulated degradation
through UPS in the cells expressing VP1 or infected with CVB3.
However, this mechanism cannot explain the accumulation of
Cdk inhibitor p27Kip1. A recent study demonstrated that the
ubiquitination of p27Kip1 by the ubiquitin-conjugating enzyme
UBCH7/UBE2L3 stabilizes p27Kip1 while other Cdk inhibitors
are not affected (Whitcomb et al., 2019), suggesting that there
is an intricate mechanism which controls p27Kip1. In consistent
with our finding, the up-regulation of Hsp70 and p27Kip1 has
been reported in the cells with G1 arrest induced by radiation
(Seo et al., 2006).

During the infection of CVB3, viral proteases cleave various
cellular proteins that are vital for the normal function of the host
cell (Chau et al., 2007; Feng et al., 2014; Hanson et al., 2016).
Thus, the increased expression of Hsp70 could be one of the
protective responses of the host cells to maintain proteostasis
under the stress of viral infection (Xu et al., 2019). Although the
gene expression profile remains almost undisturbed in the cells
expressing VP1, as a viral component, VP1 is very likely identified
as a foreign protein by the host cell, which triggers the stress
response including the increased expression of Hsp70. Moreover,
the nuclear localization of VP1 might directly or indirectly
influence the expression of limited genes including HSPA1A and
HSPA1B. Although we show that the increased level of Hsp70
is likely due to the elevated phosphorylation level of HSF1,
which directly promotes the transcription of Hsp70, it remains
unknown how VP1 could impact the phosphorylation of HSF1.

Unlike our previous findings (Wang et al., 2012), here, we
show that the cells expressing VP1 induced cell cycle arrest at G1
phase rather than S phase. The inconsistence is due to different
experimental settings. Our previous study primarily focused on
the nuclear localization character of VP1. We emphasized the
difference between the outcomes yielded by VP1 and VP1H220T ,
a mutated VP1 which loses the nuclear localization capability, in
order to confirm that the nuclear translocation of VP1 disturbs
cellular functions. Therefore, the cell cycle test was controlled
by the cells expressing VP1H220T and normal cells, which had
not been treated with the control plasmid pEGFP-C1. Later we
realized that VP1H220T may not be a proper control for the cell
cycle evaluation, because it may disturb the nuclear function.
Our microscopic observation showed that VP1H220T binds to the
nuclear membrane and blocks the nuclear pores (Wang et al.,
2012). In this study, with an optimized experimental setting, we
demonstrate that VP1 of CVB3 actually caused G1 arrest.

CONCLUSION

We demonstrate that the capsid protein VP1 of CVB3 induces
cell cycle arrests at G1 phase through the increased expression

of Hsp70, which is up-regulated by the elevated phosphorylation
of HSF1. The increased Hsp70 results in the reduced level of
cyclin E and the accumulation of p27Kip1. Furthermore, G1 arrest
facilitates the replication of CVB3.
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