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Sulphate-reducing bacteria (SRB) are studied across a range of scientific fields due
to their characteristic ability to metabolise sulphate and produce hydrogen sulphide,
which can lead to significant consequences for human activities. Importantly, they
are members of the human gastrointestinal microbial population, contributing to the
metabolism of dietary and host secreted molecules found in this environment. The role
of the microbiota in host digestion is well studied, but the full role of SRB in this process
has not been established. Moreover, from a human health perspective, SRB have been
implicated in a number of functional gastrointestinal disorders such as Irritable Bowel
Syndrome and the development of colorectal cancer. To assist with the study of SRB,
we present a mathematical model for the growth and metabolism of the well-studied
SRB, Desulfovibrio vulgaris in a closed system. Previous attempts to model SRB have
resulted in complex or highly specific models that are not easily adapted to the study of
SRB in different environments, such as the gastrointestinal tract. We propose a simpler,
Monod-based model that allows for easy alteration of both key parameter values and the
governing equations to enable model adaptation. To prevent any incorrect assumptions
about the nature of SRB metabolic pathways, we structure the model to consider
only the concentrations of initial and final metabolites in a pathway, which circumvents
the current uncertainty around hydrogen cycling by SRB. We parameterise our model
using experiments with varied initial substrate conditions, obtaining parameter values
that compare well with experimental estimates in the literature. We then validate our
model against four independent experiments involving D. vulgaris with further variations
to substrate availability. Further use of the model will be possible in a number of settings,
notably as part of larger models studying the metabolic interactions between SRB and
other hydrogenotrophic microbes in the human gastrointestinal tract and how this relates
to functional disorders.
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INTRODUCTION

Sulphate-reducing bacteria (SRB) play an important role in a
variety of ecosystems, from marine sediments and oil fields
to the human gastrointestinal tract (Muyzer and Stams, 2008;
Carbonero et al., 2012a). The functional group of SRB has been
reported to comprise 60 genera (Barton and Fauque, 2009),
and is characterised by the ability to utilise sulphate as an
electron acceptor during metabolism. The presence of these
bacteria has both positive and negative implications on human
activities, depending on the context. Much research has been
performed on hydrogen sulphide (H2S) production in oil fields
by SRB, which can lead to reduced oil quality and machinery
corrosion (Magot et al., 2000), and in the treatment of industrial
wastewater, as the sulphides SRB produce facilitate the removal
of contaminating heavy metals (Kiran et al., 2017). Less clear
are the implications of SRB in the human gastrointestinal tract
(GIT). The SRB population size in the GIT has been measured
at approximately 107 cells per gram of faeces (Doré et al., 1995),
but varies between individuals (Nava et al., 2012) and between
studies (Smith et al., 2018). These bacteria are widely studied
due to their controversial role in a number of functional GIT
disorders. Increased levels of colonic SRB and increased H2S
concentrations have been linked to Irritable Bowel Syndrome,
Inflammatory Bowel Disease and colorectal cancer [for a review,
see Carbonero et al. (2012b)]. However, beneficial effects of H2S
have also been investigated, such as its capacity to stimulate
mucus production (Motta et al., 2015) and the potential influence
of this molecule on blood pressure regulation (Tomasova et al.,
2016). The important connexions between SRB, H2S and the host
justify further research into the metabolism of these bacteria.

Another key molecule in SRB metabolism is elemental
hydrogen. Alongside methanogens and reductive acetogens, SRB
can metabolise free hydrogen present in the GIT, utilising it
in the reduction of sulphate (Smith et al., 2018). The sulphate
metabolised by SRB can be dietary or host-derived; cross-feeding
by SRB on sulphate released during mucin metabolism by other
GIT microbes has been well studied (Willis et al., 1996; Rey
et al., 2013). High concentrations of hydrogen in the GIT are
known to inhibit the metabolism of saccharolytic members of
the microbiota (Wolin and Miller, 1983), therefore the presence
of hydrogen cross-feeders is thought to increase the rate of
carbohydrate breakdown by the wider microbial population. This
has been shown in rodent models and linked to increased energy
yield for the host (Samuel and Gordon, 2006; Rey et al., 2010).

Due to the importance of SRB in human health and
nutrition, a greater understanding of their metabolism and
growth dynamics is sought. To this end, we developed a
mathematical model for the metabolite flux and population
growth of the human SRB Desulfovibrio vulgaris, grown on
substrates found in the GIT (Scanlan et al., 2009). Ours is
not the first attempt to model SRB metabolism and growth
and we compare the predictions of our model with that of
the existing mathematical model of Noguera et al. (1998).
Many other mathematical models of SRB have been published,
but these are almost universally applied to address specific
characteristics of SRB or for the investigation of competitive

and syntrophic relationships between SRB and methanogens
[for example, Robinson and Tiedje (1984), Okabe et al. (1995),
Stolyar et al. (2007)]. The model of Noguera et al. (1998) is not
targeted to a specific characteristic or environment, therefore is
a good benchmark against which to compare our model. The
existing model is more complex than that proposed here: it
consists of ten ordinary differential equations for aqueous and
gaseous metabolite concentrations and microbial growth and is
dependent on 20 parameter values that are estimated either from
separate experimental work or from model fitting. While the
model considers many aspects of the metabolism of D. vulgaris,
it is computationally intensive and requires greater knowledge of
kinetic parameters than is often available in environments such
as the GIT. Therefore, its structure is less readily compared or
combined with other existing models for the GIT microbiota. We
also found that this model shows sensitivity to the initial values
for dissolved hydrogen and carbonate concentrations; values that
are difficult to determine experimentally and physiologically. As
we wish to study SRB in the GIT, we construct a simpler model
requiring less inputs to later integrate into a larger microbiota
model. Our SRB model considers solely the concentrations of
the initial and final metabolites in a metabolic pathway, treating
the intermediate metabolites and reactions as a “black box.” We
calibrate our model using existing experimental data for the
monoculture growth of a D. vulgaris strain and use it to predict
the dynamics of separate independent experiments with both the
same bacterium and a different D. vulgaris strain.

MATERIALS AND METHODS

Assumptions
For this model it was assumed that the only metabolites involved
in the metabolism of D. vulgaris are lactate, acetate, hydrogen,
sulphate and hydrogen sulphide (H2S), as these metabolites
represent important initial and final metabolites in the major
metabolic pathways of D. vulgaris (Keller and Wall, 2011).
Other metabolic pathways involving fermentation of alternative
organic molecules, such as monosaccharides and fatty acids,
and reduction of nitrogenous compounds have been studied
in Desulfovibrio and other SRB genera, but appear to be of
lesser importance and not widespread within the functional
group (Barton and Fauque, 2009). While formate has been
implicated in the metabolism of Desulfovibrio species elsewhere
(da Silva et al., 2013; Junicke et al., 2015; Martins et al.,
2015), here we have assumed that formate may be represented
as hydrogen equivalents. This is supported by the similar
reduction potentials of formate and hydrogen, allowing for
interconversion of the two molecules at low energetic cost
to the bacterium (Stams and Plugge, 2009; da Silva et al.,
2013; Rabus et al., 2013). Formate concentrations also remained
very low (<0.5 mM) in previous experiments with D. vulgaris
Hildenborough grown on either lactate and sulphate or lactate
and hydrogen (da Silva et al., 2013).

We assume that the medium in which D. vulgaris is
grown contains in abundance all other molecules necessary for
growth and that these are not significantly depleted during the
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experiment. We further assume that D. vulgaris is able to oxidise
lactate incompletely to acetate, with concurrent production of
hydrogen (Keller and Wall, 2011). This hydrogen may then be
utilised in the reduction of sulphate to H2S. We assume that all
metabolites remain in the aqueous phase, with the exception of
hydrogen, which may transfer between the aqueous and gaseous
phases. We assume that all metabolites in the aqueous phase
are available to the bacteria in a well-mixed solution. No spatial
component is considered in the model.

The assumed stoichiometries for the two reactions, expressing
all protons as hydrogen molecule equivalents, are as follows
(Thauer et al., 1977; Noguera et al., 1998; da Silva et al., 2013):

CH3CHOHCOO− (Lactate)+ 2 H2O

→ CH3COO− (Acetate)+ 2.5 H2 +HCO3
−

SO4
2− (Sulphate)+ 5H2 → H2S+ 4 H2O

Note that the bicarbonate molecule (HCO3
−) produced in

the oxidation of lactate and the water molecules produced in
the reduction of sulphate are not included in the model, as
they play no further role in the metabolism of D. vulgaris.
Moreover, we assume that the culture remains well buffered
throughout the experiment, therefore pH is not altered by
changing concentrations of bicarbonate or other metabolites.
There have been reports of bicarbonate as a growth-limiting
molecule for other bacterial strains (Dobay et al., 2018), but there
is currently no evidence of this for SRB. We explain this further
in the Discussion.

Mathematical Model
The model is based on Monod kinetics for bacterial growth in
a batch culture environment (Monod, 1949). Monod kinetics
was chosen due to the biological meaning associated with the
parameters, as well as the ability to determine these values
experimentally if required. The model considers the molar
concentration of lactate, acetate, sulphate and H2S, as well as
the molar concentration of hydrogen in the aqueous phase
and the partial pressure of hydrogen in the gaseous phase,
measured in atmospheres. It also considers the concentration
of the bacterial population in the aqueous phase (mg L−1).
These units were chosen to align with data sources for both
the calibration and validation of the model. Figure 1 shows the
general structure of the model.

Following Monod kinetics, we model the rate of change in
lactate concentration (L; mM) by

dL
dt
= −

µmax,LX
YL

(
L

KL + L

)
(1)

where µmax,L denotes the maximum growth rate (h−1) and YL
denotes the biomass yield (mg L−1 mM−1) of D. vulgaris when
grown on lactate. KL is the Monod constant (mM) for this
bacterium and substrate, also referred to as the half-saturation
constant. This value is the concentration of substrate required for
the bacterium to attain half of its maximum growth rate. X is the
concentration of bacterial cells in the medium (mg L−1).

FIGURE 1 | Structure of the mathematical model. Solid arrows denote
modelled dynamics. Dotted arrows denote dynamics that are not explicitly
modelled. H2S: hydrogen sulphide.

It is known that high concentrations of hydrogen in the
medium inhibit the metabolism of lactate by certain SRB,
including D. vulgaris, although the mechanism is not clear
(Pankhania et al., 1988; Junicke et al., 2015). As such, we add
an inhibition term to our model that reduces the rate of lactate
metabolism as the aqueous hydrogen concentration, Haq (mM),
increases. Equation 1 then becomes

dL
dt
= −

µmax,LX
YL

(
L

KL + L

) (
1−

Haq

Hmax

)
(2)

where Hmax (mM) is the aqueous hydrogen concentration
above which lactate degradation is completely inhibited. This
formulation also ensures that the rate of lactate degradation
reduces proportionally to the aqueous hydrogen concentration.
To ensure that the model is robust to hydrogen concentrations
above Hmax, we add the following condition:

dL
dt
= 0 when Haq > Hmax.

The sulphate concentration (S; mM) is given by

dS
dt
= −

µmax,SX
YS

(
S

KS + S

) (
Haq

KH +Haq

)
. (3)

Sulphate and hydrogen are both required for the formation of
H2S, hence the inclusion of the aqueous hydrogen concentration
in Eq. 3. The equation is adapted from the model equations of
Kettle et al. (2015) for multiple essential resources. µmax,S denotes
the maximum growth rate (h−1) and YS is the biomass yield
(mg L−1 mM−1) of D. vulgaris during sulphate reduction. KS
and KH denote the Monod constants (mM) for sulphate and
hydrogen, respectively.

We assume that the aqueous hydrogen concentration is
influenced by hydrogen production during the oxidation of
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lactate, hydrogen consumption in the reduction of sulphate,
and liquid-gas transfer of hydrogen. The rate of change in the
concentration of aqueous hydrogen is

dHaq

dt
= −bLH

dL
dt
+ bHP

dS
dt
−

1
ρH

dHg

dt
Vg

Vaq
(4)

where bLH is the stoichiometric constant for moles of hydrogen
produced per mole lactate metabolised and bHP is the
stoichiometric constant for moles of hydrogen required to reduce
one mole of sulphate. Hg is the gaseous hydrogen concentration,
measured in atmospheres, and mass transfer between the aqueous
and gaseous phases is assumed to be linear, with

dHg

dt
= kLa

(
ρHHaq −Hg

) Vaq

Vg
(5)

Equation 5 represents a simple mass transfer model as explained
in Kadic and Heindel (2014). Briefly, net transfer between the
two phases is determined by the concentration gradient, with
the rate of transfer determined by the mass transfer coefficient,
kL (calculated from the thickness of the film through which
molecules must travel and the diffusivity of the molecule in
question) and the surface area, a, across which mass transfer
may occur. Although other, more complex models do exist for
mass transfer between two phases, as only the gaseous hydrogen
concentration data is available here, we are limited in our ability
to parameterise a more complex model. Although the simplicity
of this representation may result in sub-optimal representation
of the hydrogen dynamics, we also seek to minimise the number
of fitted parameter values in our model, and thus the film
model described here is sufficient for our purposes. kLa has the
unit h−1 and Vg and Vaq (mL) are the fixed volumes of the
gaseous and aqueous phases, respectively. ρH (atm mM−1) is
the Henry conversion constant for hydrogen. Hg is measured
in atmospheres, whereas Haq is given in mM concentration,
therefore we adapt the gas transfer equation used in Muñoz-
Tamayo et al. (2016) for our model, giving a ρH value of 1.364
atm mM−1.

The rates of change in acetate (A) and H2S (P) concentrations
are proportional to the rates of change in the concentrations of
lactate and sulphate, respectively.

dA
dt
= −bLA

dL
dt

(6)

dP
dt
= −bSP

dS
dt

(7)

where bLA and bSP are constants determined by the
stoichiometries of each reaction stated in Section 2.1. Note
that we take these stoichiometries directly from the literature and
do not include in the model some fraction of substrate being used
in the production of cell biomass. This assumption is made as,
for the batch culture cases considered here, the experimentally
observed stoichiometries of the metabolites closely matched
those given in Section 2.1.

Finally, the concentration of bacterial cells in the medium, X
(mg L−1), is proportional to the change in lactate and sulphate
concentrations, with consideration of the biomass yield terms

(assuming the energy requirements for cell maintenance are
negligible relative to the growth requirements).

dX
dt
= −YL

dL
dt
− YS

dS
dt

(8)

The system consisting of Eq. 2–8 fully describes the metabolism
of D. vulgaris under our set of assumptions. A summary of model
notation is given in Table 5.

Data Capture
Time-course data was captured from the literature using image
capturing and graphical input software in MATLAB (The
MathWorks1). The mathematical model of Noguera et al.
(1998) was reconstructed using the information in the original
publication. This information was near complete, the only
exception being the absence of initial conditions for some of
the model variables. We have therefore made some assumptions
based on other information given in the paper, which has allowed
us to reproduce good representations of the published model fits.

Model Fitting
In order to determine the values of several of the parameters
used in the model, model fitting to existing experimental data
was performed. Time-course data from Noguera et al. (1998)
was collected and used to calibrate the model and estimate
parameter values.

The parameter values in Table 1 were generated by minimising
the normalised sum of squared errors between the model
prediction and the data. The optimisation was performed using
the fminsearch routine in MATLAB (The MathWorks; see
text footnote 1).

Statistical Analysis
All statistics were calculated in MATLAB using the captured
data and corresponding model prediction. A Markov Chain
Monte Carlo (MCMC) technique was implemented over 200,000
MCMC iterations. A non-parametric distribution was then fitted
to the MCMC sample for each of the nine parameters estimated.
The cumulative density function of this distribution was used to
obtain a 95% confidence interval.

To compare the proposed model with the existing model of
Noguera et al. (1998), we used the corrected Akaike Information
Criterion (AICc) (Akaike, 1974; Hurvich and Tsai, 1989):

AICc = 2K − 2(log(L(θ)))+
2K(K + 1)

n− K − 1

where n is the number of data points (63), K is the number
of parameters of the model and log(L(θ)) is the log likelihood
function for the model. Following Burnham and Anderson
(2002), we make the substitution

log(L(θ)) = −
1
2

n log
(

RSS
n

)2

where RSS is the normalised residual sum of squares of the model
fit to the data. Normalisation, i.e., division by the sample mean in

1www.mathworks.com
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TABLE 1 | Model parameter values.

Parameter Notation Value Source Existing estimates∗

(Best fit value with 95%
confidence interval)

Maximum growth rates Lactate oxidation µmax,L 0.116 h−1 (0.088–1.155) Model fitting td = 3.7 h (≈0.21 h−1) (Pankhania et al., 1986)

Sulphate reduction µmax,S 0.03 h−1 (0.023–0.212) Model fitting 0.057 h−1 (Robinson and Tiedje, 1984)
0.15 h−1 (strain Marburg) (Badziong and
Thauer, 1978)
0.15 h−1 (Reis et al., 1992)

Monod constants Lactate KL 4.5 mM (7.3–136.8) Model fitting 1.4 mM (Pankhania et al., 1988)
29 mM (Noguera et al., 1998)

Sulphate KS 0.05 mM (0.02–0.268) Model fitting 0.032 mM (Ingvorsen and Jørgensen, 1984)
0.21 mM (Noguera et al., 1998)

Hydrogen KH 1.69 × 10−5 mM
(2.5 × 10−4–3.96 × 10−3)

Model fitting 0.001 mM (Kristjansson et al., 1982)
0.0019 mM (Robinson and Tiedje, 1984)
0.0014 mM (Noguera et al., 1998)

Yield parameters Lactate YL 5.65 mg L−1 mM−1

(0.99–9.57)
Model fitting 5.3 mg L−1 mM−1 (Noguera et al., 1998)

5 mg L−1 mM−1 (Walker et al., 2009)

Sulphate YS 4.45 mg L−1 mM−1

(2.2–19.35)
Model fitting 2.8 mg L−1 mM−1 (Noguera et al., 1998)

8.3 g mol−1 (strain Marburg) (Badziong and
Thauer, 1978)
14.3 g cell mol−1 (Reis et al., 1992)

Mass transfer parameter kLa 0.302 h−1 (0.182–0.914) Model fitting 0.29 h−1 (Noguera et al., 1998)

Inhibitory hydrogen
concentration

Hmax 0.0216 mM
(0.0341–0.0821)

Model fitting 0.001 atm (≈0.0007 mM) (Junicke et al., 2015)

Stoichiometric constants Moles of hydrogen (H2)
produced per mole lactate
oxidised

bLH 2.5 Assumed
stoichiometries

2.5 (Thauer et al., 1977; Noguera et al., 1998)
3.5 (Keller and Wall, 2011)

Moles of hydrogen (H2)
consumed per mole H2S
produced

bHP 5 Assumed
stoichiometries

5 (Thauer et al., 1977; Noguera et al., 1998)
4.25 (Keller and Wall, 2011)

Moles of acetate produced
per mole lactate oxidised

bLA 1 Assumed
stoichiometries

1 (Thauer et al., 1977; Noguera et al., 1998;
Keller and Wall, 2011)

Moles of H2S produced per
mole sulphate reduced

bSP 1 Assumed
stoichiometries

1 (Thauer et al., 1977; Noguera et al., 1998;
Keller and Wall, 2011)

Henry constant ρH 1.364 Obtained from
literature
(Sander, 2015)

∗These estimates are obtained from different models and therefore a direct comparison cannot be made with the parameters estimated in the paper. They are listed
here for reference.

the calculation of the RSS for each data set, was included to ensure
the RSS value was not biassed by the scale on which each variable
was measured. Finally, we also calculate the Akaike weight, wi, for
each model as follows (Burnham and Anderson, 2002):

wi =
li

l1 + l2

where li = exp
(
−

1
2 (AICci − AICcmin)

)
. Here, i is the model

index (1 for the existing model of Noguera et al. (1998), 2 for
the model presented here) and AICcmin represents the minimum
AICc value of the two models.

RESULTS

Model Calibration
Data from two separate experiments were used simultaneously
to obtain parameter values for the model (Noguera et al., 1998).

The first experiment involved the growth of D. vulgaris in
medium supplemented with lactate and sulphate (Figure 2),
while the second experiment took place in the absence of sulphate
(Figure 3). Our mathematical model was able to describe the
trends in growth and metabolite flux dynamics for both these
experiments, giving comparable goodness of fit to the more
complex model of Noguera et al. (1998; Table 2). The parameter
values used are shown in Table 1.

The model of Noguera et al. (1998) uses seven model
fitted parameters and a total of 20 parameters either fitted or
estimated from previous experimentation, whereas our model
uses nine fitted parameters and one estimated from previous
experimentation, giving a total of 10. This discrepancy is due to
the increased complexity of the former model, which additionally
models the concentrations and gaseous partial pressures of CO2,
H2S and bicarbonate, as well as the mass transfer of these
molecules between the two phases, and the thermodynamics
of each reaction modelled. Table 3 details the values used for
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FIGURE 2 | Model fits to data from Noguera et al. (1998): continuous lines display the fit of the current model; dotted lines display the fit of the model described in
Noguera et al. (1998). Analysis of model fit is presented in Table 2.

the AICc calculation. The AICc value for our model was 263.2
compared to an AICc of 282.8 for the model of Noguera et al.
(1998). This indicates the aptness of our model to the data
considered, although more complex models may be better suited
for larger and more complex data sets.

Some of the parameters shown in Table 1 were fixed to
values taken from the literature. The stoichiometric constants

FIGURE 3 | Dynamics of gaseous hydrogen in medium supplemented with
17.3 mM lactate in the absence of sulphate (Noguera et al., 1998): continuous
lines display the fit of the current model; dotted lines display the fit of the
model described in Noguera et al. (1998). Analysis of model fit is presented in
Table 2.

were fixed to correspond with the assumed stoichiometries of the
reactions considered and the Henry constant for hydrogen was
also obtained from the literature.

It is notable that the best fit parameter values for KL,
KH and Hmax lie outside their respective MCMC generated
95% confidence interval. This is likely due to the difficulties
in estimating half-saturation constants and maximum growth
rates simultaneously, as we observed high correlation between
these values. This has been observed in Monod model fitting
elsewhere [for example, Muñoz-Tamayo et al. (2016)]. We
therefore performed a second MCMC run in which the half-
saturation constants were fixed at values obtained from the
experimental literature. A comparison of the newly generated
confidence intervals for the remaining fitted parameters with the
original values is shown in Table 4, but the intervals are similar.
We therefore analysed the sensitivity of the model prediction to
variations in each parameter value (Supplementary Table S1).
The model prediction for growth in medium with no sulphate,
shown in Figure 3, was not notably sensitive to small changes
in any fitted parameter value except for Hmax, which determines
the final partial pressure of gaseous hydrogen. Contrastingly,
the model fit to gaseous hydrogen shown in Figure 2 showed
sensitivity to a number of parameters. Small variations in the
maximum growth rates, half-saturation constant for lactate, yield
values and the stoichiometric constants bLH and bHP, all resulted
in relatively large changes in the quality of fit of the model to
the gaseous hydrogen data. The change in the goodness of fit
to the other data types was minimal. We also found that the
model fit was only slightly sensitive to small changes in the initial
conditions for lactate, sulphate and bacterial concentration and
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TABLE 2 | Analysis of model fits to the calibration data.

Variable Noguera
et al. (1998)

model

Current model

R2 R2 Pearson’s
correlation

coefficient (95%
confidence

interval)

CCC† Mean bias

Figure 2

Cell
concentration

0.83 0.80 0.93 (−0.28, 0.99) 0.84 −10.58 mg L−1

Lactate 0.95 0.96 0.98 (0.95–0.99) 0.96 −0.06 mM

Acetate 0.92 0.97 0.99 (0.94–0.99) 0.97 −0.23 mM

Sulphate 0.94 0.93 0.99 (0.94–0.99) 0.95 −0.26 mM

Gaseous
hydrogen

<0 <0 0.93 (0.77–0.98) 0.57 −4.95 ×
10−4 atm

Figure 3

Gaseous
hydrogen

0.83 0.96 0.98 (0.89–0.99) 0.96 −4.75 ×
10−4 atm

†CCC: Concordance correlation coefficient (Lin, 1989).

TABLE 3 | AIC calculation values.

Model n K RSS log(L(θ)) AICc Akaike
weight

Noguera et al. (1998) 63 20 9.6095 −111.4 282.8 0.0001

This model 63 10 8.9861 −119.5 263.2 0.9999

insensitive to such changes in the initial conditions for other
metabolites. This was in contrast to the model of Noguera et al.
(1998), which we found to be disproportionately sensitive to
small changes in the initial conditions for dissolved hydrogen and
carbonates: variables less likely to have a strong effect on culture
dynamics than lactate, sulphate and bacterial concentrations.

Model Validation
The model was validated against a number of different
experimental data sources (Noguera et al., 1998; da Silva et al.,
2013). Figure 4 shows the model simulation for gaseous hydrogen

FIGURE 4 | Dynamics of gaseous hydrogen in medium supplemented with
9.3 mM sulphate in the absence of lactate, with an initial hydrogen partial
pressure in the gaseous phase of approximately 0.025 atm. 12 mM acetate
was added as a carbon source (Noguera et al., 1998). The solid line shows
the prediction of the current model. R2 = 0.91, ρ = 0.96 (0.83, 0.99),
CCC = 0.92, mean bias = –0.0003 atm.

dynamics in medium lacking lactate, where D. vulgaris may
only perform sulphate reduction, until the available hydrogen is
depleted [data from Noguera et al. (1998)].

Figures 5, 6 show the comparison between the model
prediction and experimental data from further validation
experiments, with altered initial conditions [data from Noguera
et al. (1998)]. Unfortunately, for these and the experiments from
which Figures 3, 4 were generated, data for aqueous metabolite
concentrations and bacterial growth are unavailable, so we cannot
verify the model predictions for these variables. We also have
no information regarding the concentration of bacteria at the
beginning of the experiment, therefore 9.4 mg L−1, the initial
bacterial concentration in previous experiments, was assumed.

The model predicts the full utilisation of lactate and only
partial consumption of sulphate in Figure 5, but is not able to
capture the delay in hydrogen accumulation in the headspace
observed in the first few hours of the experiment. The same

TABLE 4 | Confidence interval comparisons.

Parameter Notation MCMC generated 95% confidence interval

Fitted half-saturation parameters Fixed half-saturation parameters

Maximum growth rates Lactate oxidation µmax,L 0.088–1.155 0.02–0.145

Sulphate reduction µmax,S 0.023–0.212 0.021–0.171

Monod constants Lactate KL 7.3–136.8 –

Sulphate KS 0.02–0.268 –

Hydrogen KH 2.5 × 10−4–3.96 × 10−3 –

Yield parameters Lactate YL 0.99–9.57 1.18–9.4

Sulphate YS 2.2–19.35 1.99–17.2

Mass transfer parameter kLa 0.182–0.914 0.313–3.724

Inhibitory hydrogen concentration Hmax 0.0341–0.0821 0.0335–0.0797
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FIGURE 5 | Dynamic changes in gaseous hydrogen with initial metabolite concentrations: 13 mM lactate; 9.3 mM sulphate (Noguera et al., 1998). Solid lines show
the prediction of the current model. R2 = 0.70, ρ = 0.93 (0.76, 0.98), CCC = 0.77, mean bias = 0.0004 atm.

is true of Figure 6. Here, the model accurately predicts the
final concentration of lactate remaining in the medium at the
end of the experiment as 2.98 mM, compared to the observed
value of 2.58 mM. However, the model overpredicts the gaseous
hydrogen accumulation. Under our model assumptions we
expect hydrogen to accumulate to the inhibitory level, whereas
in the experiment hydrogen production was far lower. Given that
the model accurately predicted the lactate degradation, this would
imply that less hydrogen is produced under the conditions shown
in Figure 6 than under the assumed stoichiometry. Hydrogen
accumulation was not measured after 48 h in the experiment,
therefore it is not possible to know whether and at what point
hydrogen accumulation peaks.

Figure 7 shows the validation of the both our model and that
of Noguera et al. (1998) against separate experimental data for
D. vulgaris Hildenborough, taken from da Silva et al. (2013). The
experimental starting concentration of bacteria was not stated
for this data set, so we fitted this value to the data with all
other parameters fixed at their previously determined values.
This gave an initial bacterial concentration of 6.75 mg L−1

for our model and 0.038 mg L−1 for the model of Noguera
et al. (1998). As shown in Figure 7, the models performed
similarly with their respective initial bacterial concentrations,
with the exception of the gaseous hydrogen prediction, and both
accurately captured the rate of lactate degradation and acetate

production with no alteration to the parameter values obtained
during model calibration. The large discrepancy between the
obtained initial bacterial concentrations for the two models
prompted further investigation. The initial optical density (OD)
recorded for this experiment was approximately 0.025 (da Silva
et al., 2013). No calibration to other units was performed by
these authors and few exist in the literature for Desulfovibrio
strains, but Bernardez and de Andrade Lima (2015) suggested a
conversion of: dry weight (mg) = exp (5.12 OD–4.987), which
gives an approximate initial bacterial concentration for this
experiment of 7.76 mg L−1. Although the conditions under
which this conversion was derived differ from the experiment
of da Silva et al. (2013), this estimate compares well to
that of our model.

The final acetate measurement in Figure 7 was not predicted
by either model, and it is not clear to where the remaining
carbon from lactate degradation was directed in this experiment.
D. vulgaris has the potential to use acetyl-CoA, an intermediate
on the lactate oxidation pathway, in the biosynthesis of certain
branched-chain amino acids and fatty acids, as well as in an
incomplete citric acid cycle (Heidelberg et al., 2004), but only
the metabolites shown in Figure 7 were measured. However,
separate experiments by these authors with concentrated cell
suspensions found the expected 1:1 ratio of lactate degraded to
acetate produced (da Silva et al., 2013).
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FIGURE 6 | Dynamic changes in gaseous hydrogen with initial metabolite concentrations: 13 mM lactate; 5 mM sulphate (Noguera et al., 1998). Solid lines show the
prediction of the current model. R2 = 0.22, ρ = 0.91 (0.72, 0.97), CCC = 0.22, mean bias = 0.0062 atm.

DISCUSSION

This model provides a simpler mathematical representation of
SRB metabolism than is currently available in the literature
(Noguera et al., 1998), with similar predictive capability. As
such, it can be more easily adapted to specific strains and
culture conditions, not limited to SRB of the human GIT.
The inclusion of further characteristics of specific SRB strains
could be realised with the addition of further terms to existing
equations, or the inclusion of further equations if additional
metabolites were considered. For example, complete growth
inhibition of a SRB strain due to sulphide concentrations
above 16.1 mM has been shown previously (Reis et al., 1992).
Acetate inhibition has also been investigated for SRB, with
approximately 54 mg L−1 undissociated acetic acid (≈45.9 mM
acetate) resulting in 50% growth inhibition (Reis et al., 1990).
Both these concentrations are greater than those measured in
the experiments used here, and the H2S concentration is greater
than that reported in faeces (Magee et al., 2000). However,
the model could be adjusted to include inhibition terms for
acetate and H2S for application of the model to more extreme
environments. These terms could take the form used here
for hydrogen inhibition, but alternative inhibition terms could
be more appropriate and should be assessed by model fitting

(see Han and Levenspiel (1988) for a list of inhibition terms and
a generalised form). At present, we are not aware of any time-
course data involving such concentrations of these metabolites
with which to parameterise the model.

It would also be useful to investigate experimentally the
influence of bicarbonate on the growth rate of SRB. Several
human-associated bacterial strains have shown reduced growth
rates when exposed to 100 mM of bicarbonate in monoculture
(Dobay et al., 2018). This molecule was also shown to disrupt
biofilm formation in selected strains. D. vulgaris is a biofilm
forming organism (Clark et al., 2007), but no SRB were studied in
the bicarbonate inhibition experiments, so we cannot make any
inference about the influence of this molecule on growth rates
in our model. However, following the expected stoichiometry
of the D. vulgaris metabolic pathways, we would anticipate
less than 20 mM of bicarbonate could be produced in the
experiments of Noguera et al. (1998), and up to 40 mM in
the experiments of da Silva et al. (2013), considerably lower
than those found to be growth limiting in Dobay et al.
(2018). Bicarbonate is secreted into the gastrointestinal lumen in
humans, reaching comparable concentrations to those expected
in these experiments: bicarbonate concentration at the start of
the colon is estimated at around 30 mM (Gennari and Weise,
2008). Further experimental investigation is needed to determine
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FIGURE 7 | Model prediction for the consumption of lactate and production of acetate in the experimental work of da Silva et al. (2013): continuous lines display the
fit of the current model; dotted lines display the fit of the model described in Noguera et al. (1998). See text for full explanation. Continuous line fit: Lactate:
R2 = 0.98, ρ = 0.99 (0.95, 0.99), CCC = 0.98, mean bias = 1.2 mM; Acetate: R2 = 0.82, ρ = 0.99 (0.93, 0.99), CCC = 0.88, mean bias = 4.12 mM. Dotted line fit:
Lactate: R2 = 0.98, ρ = 0.99 (0.96, 0.99), CCC = 0.98, mean bias = 1.32 mM; Acetate: R2 = 0.90, ρ = 0.99 (0.97, 0.99), CCC = 0.93, mean bias = 2.08 mM.

whether, and to what extent, bicarbonate may be growth limiting
to SRB before it can be included in a model.

Time-course data is also unavailable for the use of acetate as
a carbon source by SRB, which has been shown in the absence
of lactate [for example, Pankhania et al. (1986)]. We expect that
acetate uptake is occurring in the data shown in Figure 4, as it is
the sole available carbon source in the medium, but this was not
measured. Experiments measuring acetate concentrations over
time when this is the sole carbon source are required to determine
the parameter values of acetate utilisation via model fitting.

Modelling mass transfer in experiments such as those
described here is challenging. Due to limited available
experimental data, we chose to use a simple mass transfer
model to minimise the number of fitting parameters required.
Mass transfer is modelled under the assumption of linear
dynamics, but without knowledge of the concentration of
dissolved hydrogen it is unclear how much this assumption
biases the model. The model may be more limited in its ability
to accurately capture hydrogen transfer between phases than
other, more complex model structures (Kadic and Heindel,
2014). This simple structure may be partially responsible for the
sensitivity of the gaseous hydrogen model fit to small changes
in some of the parameter values of the model. However, we
believe that the model fit to the lactate, acetate and sulphate
data are of greater importance than those of gaseous hydrogen
and bacterial growth for several reasons. The apparent initial
lag phase in the gaseous hydrogen data from the experiments
considered here was not captured by our model, despite the good

fit to the data for other metabolites. While the inclusion of a lag
phase in the model could rectify this aspect, such an addition
would complicate a model that we wish to keep parsimonious
and we also do not have a probable physiological cause for such
a lag. The experimental data shows large variation in gaseous
hydrogen pressure between replicates in both the calibration and
validation datasets. The data for the concentration of bacterial
cells in the medium is similarly limited. Only two measurements
were taken during the exponential growth phase in Figure 2, and
the error on both of these measurements is greater than 25% of
the mean value. It is also unclear how reliable the initial value for
cell concentration is, since this was assumed from the inoculum
rather than measured. Although our model proved only slightly
sensitive to certain initial condition values, measuring the initial
concentrations of both cells and metabolites would be of great
value. The data for lactate, acetate and sulphate concentrations
are more complete and more repeatable, encouraging emphasis
on the model fit to these data.

Uncertainty remains in the field around the nature of
hydrogen production and use by SRB. Previously, there
have been arguments both for and against its status as a
mandatory intermediate in the simultaneous oxidation of organic
compounds and reduction of sulphate, as well as the role of
various hydrogenase enzymes (Keller and Wall, 2011; Rabus et al.,
2013). The importance of hydrogen in the reduction of sulphate
has also been shown differ between SRB species [see review by
Rabus et al. (2015)]. We believe that one of the strengths of
the model is its avoidance of any biassing assumption about
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TABLE 5 | Model notation.

Notation Description Unit

µmax,L Maximum growth rate for lactate h−1

µmax,S Maximum growth rate for sulphate h−1

KL Half-saturation constant for lactate mM

KS Half-saturation constant for sulphate mM

KH Half-saturation constant for hydrogen mM

YL Yield term for lactate oxidation mg L−1 mM−1

YS Yield term for sulphate reduction mg L−1 mM−1

Hmax Inhibitory aqueous hydrogen concentration mM

kLa Mass transfer coefficient h−1

bLH Moles of hydrogen produced per mole lactate
oxidised

–

bHP Moles of hydrogen utilised per mole H2S produced –

bLA Moles of acetate produced per mole lactate
oxidised

–

bSP Moles of H2S produced per mole sulphate reduced –

L Lactate concentration mM

S Sulphate concentration mM

Haq Aqueous hydrogen concentration mM

Hg Gaseous hydrogen concentration atm

A Acetate concentration mM

P H2S concentration mM

X Bacterial cell concentration mg L−1

t Time h

ρH Henry conversion constant for hydrogen atm mM−1

Vaq Volume of the aqueous phase [50 mL for the
experiments of Noguera et al. (1998), 250 mL for
the experiments of da Silva et al. (2013)]

mL

Vg Volume of the gaseous phase [110 mL for the
experiments of Noguera et al. (1998), 250 mL for
the experiments of da Silva et al. (2013)]

mL

the nature of these relationships by using our two hydrogen
compartments, aqueous and gaseous, as a method to represent
hydrogen equivalents that are immediately available for use in
sulphate reduction or not, respectively.

The mathematical model presented here is simpler in its
construction than previous attempts to capture SRB dynamics.
Our model uses nine fitted parameters (10 parameters in total),
compared to seven fitted and three experimentally estimated
parameters (20 parameters in total) in Noguera et al. (1998),
and seven differential equations compared with ten in Noguera
et al. (1998). Our model also shows good fits to experimental
data as assessed by common measures for model analysis for
two D. vulgaris strains from several independent experiments
under varied conditions. While the model of Noguera et al. (1998)
considers more factors, including the thermodynamics of the
conversions performed by the bacteria and the concentrations of
a greater number of metabolites, these inclusions can be limiting
when investigating the metabolism of SRB in environments
where knowledge of these factors is not available. For example,
application of the model of Noguera et al. (1998) to the human
GIT would be challenged by host influences on variables. The
applied model would need to consider appropriate representation
of bicarbonate and CO2 when including secretion and absorption

by the host, as well as the implications of host metabolite
absorption on the modelled thermodynamic inhibition of the
metabolic reactions. By contrast, the relative simplicity of our
model means it can more easily be adapted to the specific
environmental conditions of the GIT and has greater flexibility
for the inclusion of additional influences upon the metabolism
of these bacteria. In this way the model could be adapted
to provide a representative model for the SRB functional
group in the GIT.

Regarding dynamics in the GIT, current existing data from
rodent models support the increased efficiency of carbohydrate
breakdown by saccharolytic bacteria in the presence of either
a methanogen or acetogen due to hydrogen metabolism by
these microbes (Samuel and Gordon, 2006; Rey et al., 2010).
However, there is no such evidence for the SRB, although in
theory the same role could be filled by these bacteria (Smith
et al., 2018). This may be due to competition for other substrates,
which could be investigated using the model presented here in
combination with existing models for saccharolytic bacteria [such
as Kettle et al. (2015)].

It is our intention to use the SRB model presented here as
part of a larger model including other hydrogenotrophic and
hydrogenogenic microbes of the human GIT, to examine the role
of hydrogen in this environment. Mathematical models for the
GIT microbiota are available (Muñoz-Tamayo et al., 2010; Kettle
et al., 2015, 2017), but as yet do not consider the action of SRB.
The inclusion of this functional group may further enhance their
predictive capabilities and could eventually be used to address the
role of the SRB in human nutrition and health. Such community
modelling should not be limited to the GIT, as the combination
of models such as that presented here with similar structures for
methanogens and reductive acetogens may reveal information
about the cross-feeding and competitive relationships between
these hydrogenotrophs in other environments.
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