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The Vaccinium angustifolium (wild blueberry) agricultural system involves transformation
of the environment surrounding the plant to intensify plant propagation and to improve
fruit yield, and therefore is an advantageous model to study the interaction between
soil microorganisms and plant–host interactions. We studied this system to address the
question of a trade-off between microbial adaptation to a plant-influenced environment
and its general metabolic capabilities. We found that many basic metabolic functions
were similarly represented in bulk soil and rhizosphere microbiomes overall. However,
we identified a niche-specific difference in functions potentially beneficial for microbial
survival in the rhizosphere but that might also reduce the ability of microbes to withstand
stresses in bulk soils. These functions could provide the microbiome with additional
capabilities to respond to environmental fluctuations in the rhizosphere triggered by
changes in the composition of root exudates. Based on our analysis we hypothesize that
the rhizosphere-specific pathways involved in xenobiotics biodegradation could provide
the microbiome with functional flexibility to respond to plant stress status.

Keywords: metagenome, functions, rhizosphere, tradeoff, network interaction

INTRODUCTION

The rhizosphere is a hotspot of plant–microbiome interactions within soil environments. It
is occupied by highly diverse microbial communities which are structurally and functionally
influenced by plant and soil type (Philippot et al., 2013). Many previous studies of the metabolic
capabilities of plant-associated microbiomes have identified specific functions linked to plant–
microbiomes interaction, such as cell motility and root adhesion, metabolism of nitrogen,
carbohydrates and vitamins, and xenobiotic degradation (Bulgarelli et al., 2015; Yan et al., 2017;
Kamutando et al., 2018). However, it is not clear how these rhizosphere-specific (RS) functions are
incorporated into the overall metabolic capabilities of soil microbiomes in general. In particular,
it remains unclear whether microbial adaptation to the rhizosphere environment is associated
with decreased general metabolic capabilities. The presence of this association would suggest
that rhizosphere-associated microbes have some level of plant dependency whereby they rely on
plant-produced compounds for their metabolism.

Herein, we conducted a co-occurrence analysis of the pathways found in bulk soil and
rhizosphere metagenomes to identify niche-specific sub-networks and their interactions. We
hypothesized that if there were a trade-off between rhizosphere and bulk soil metabolic capabilities
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then the pathway co-occurrence network would have a
modular structure with strong positive interactions between
niche-specific functions within each sub-network and
negative interactions between rhizosphere and bulk soil-
specific sub-networks. We were also interested in the
identification of rhizosphere specific (RS) functional sub-
networks that did not have strong negative interactions with
bulk soil-specific (BSS) functional sub-networks, therefore
representing an increment in functional repertoire of
plant-associated microbiome.

Vaccinium angustifolium (wild blueberry) management is
an attractive system to study plant–microbiome interaction
since, in contrast to most agricultural systems that involve
cultivation on plants in exogenous environments, this system
involves transformation of the environments surrounding the
plant to intensify plant propagation and to improve fruit
yield (Hall et al., 1979; Eaton, 1988; Bell et al., 2009;
Drummond et al., 2009). As a result the plant genotype and
its native location become the only factors that remaining
unchanged in wild blueberry managed habitats. In contrast,
the management of the land, plant and soil affects land cover,
wild blueberry fruit production and soil properties, which in
turn can affect the diversity and structure of the bulk soil
and plant-associated microbiome. Consequently, this system is
an advantageous model to study the effects of environmental
factors on soil and plant-associated microbiomes, the interaction
between soil microorganisms and plant–host, and the functional
differentiation of rhizosphere microbiomes.

In our previous studies (Yurgel et al., 2017, 2018) the
application of both 16S and 18S rRNA amplicon sequencing
provided us with some level of understanding of how
deterministic factors, such as soil and plant properties
shape the wild blueberry microbiome structure and define
plant–microbiome interaction. We detected a significant effect
of management on the structure of bacterial microbiome
in the wild blueberry rhizosphere (Yurgel et al., 2017).
Community correlation networks analysis identified
several potential hub taxa with important roles in soil
fertility and/or plant–microbe interaction and showed that
bacterial and eukaryotic interactions became more complex
along the soil-endosphere continuum, likely due to the
increasing influence of host–plant on microbiome function
(Yurgel et al., 2018).

However, the role of environmental factors in the functional
assemblage of the wild blueberry microbiome has not been
explored. Additionally, the indication that the structure
of wild blueberry rhizosphere microbiome was affected by
management raised a question of whether the observed
taxonomic differences reflected niche-specific microbial
functioning. For example, differences in the taxonomic
composition of nematode-associated microbiomes did not
reflect differences in their functional capabilities (Cheng et al.,
2013), likely due to the substantial functional redundancy in
microbial communities. Moreover, past work investigating
the role of diversity in the selection of bacterial taxa and
functions in soil and rhizosphere, suggested that functional
traits were a key to the assembly of the rhizosphere microbiome

(Yan et al., 2017). To explore this subject further we compared
the functional profiles of rhizosphere microbiomes from
managed and forest grown plants, which differ significantly
in their taxonomic profiles (Yurgel et al., 2017). We
were especially interested whether or not the taxonomic
differences in rhizosphere microbiomes could be related to their
functional capabilities.

MATERIALS AND METHODS

Sample Collection and DNA Isolation
The wild blueberry root samples, rhizosphere and bulk soil
used in this study were collected in August 2015 (Yurgel et al.,
2017). The same DNA isolated from bulk and rhizosphere
soils from Collingwood (45◦36′53′′ N 63◦56′32′′ W) and Debert
(45◦25′36′′ N 63◦29′47′′ W) sampling sites (Supplementary
Table S1) used for 16S and 18S rRNA amplicon analysis
(Yurgel et al., 2017, 2018) was used for shotgun metagenome
sequencing. The samples collection, processing and DNA
isolation is described in Yurgel et al. (2017). In short bulk
field soil samples were taken from the top 20 cm of the
topsoil layer directly under blueberry plants in an X-shaped
pattern with at least 30 m of distance between each collection
point. The litter layer was removed and the samples were
transported into the laboratory on ice, and immediately stored
at −20◦C for chemical characterization. After transportation
to the lab, 5 g of each soil sample was sieved (2 mm)
and immediately stored at −86◦C until processing for DNA
isolation. DNA was isolated from 0.25 g of the frozen
filtered soil samples.

For the collection of rhizosphere samples wild blueberry
rhizomes and associated roots were extracted from soil,
vigorously shaken, placed in sterile bags, and transported to
the laboratory on ice. Root samples were processed immediately
after transportation to the laboratory. Blueberry roots were
placed in a Falcon tube (50 ml) with 10% glycerol (40 ml)
and vortexed until adhering soil had been visibly removed from
the root. The roots were removed and the soil suspension
was centrifuged at 3,000 × g for 15 min. The supernatant
was decanted, and the soil pellets were transferred into
1.5-ml Eppendorf tubes and stored at −86◦C. DNA was
isolated from 0.25 g (wet weight) of each frozen rhizosphere
soil sample.

Shotgun Library Construction and
Sequencing
One nanogram of DNA for each sample was subjected to
Nextera XT (Illumina) library preparation. This was done
as per the manufacturer’s instructions except the clean-up
and normalization stages, which were completed using Just-
a-Plate 96 PCR Purification and a Normalization Kit (Charm
Biotech). Equal amounts of all barcoded samples were then
pooled and sequenced in a shared 150+150 bp paired-end
NextSeq run (Illumina High-Output v2 kit). The data generated
for this study is available at the short read archive under
BioProject PRJNA484230.
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Shotgun Metagenomics Pre-processing
The Microbiome Helper (Comeau et al., 2017) metagenomics
workflow v2 was followed to process the shotgun metagenomics
data with modifications to normalize functional abundance
by average genome size within a sample. Briefly, raw paired-
end reads were filtered using the KneadData v0.6.1 pipeline
parallelized with GNU Parallel v20170322 (Tange, 2011). The
filtering step included first trimming reads with Trimmomatic
v0.36 (Bolger et al., 2014) in sliding windows of four nucleotides
(nt) with a minimum quality score of 30. Trimmed sequences
below 50 nt were removed. The next filtering step involved
running Bowtie2 v 2.3.4.2 (Langmead and Salzberg, 2012)
to remove contaminant reads that mapped human (hg38),
PhiX, or Vaccinium corymbosum W8520 (Gupta et al., 2015)
genomes with the options “—very-sensitive” and “–dovetail.”
HUMAnN2 0.11.2 (Franzosa et al., 2018) was run on these
filtered reads to identify the number of reads per kilobase
(RPK) of UniRef50 gene families (Suzek et al., 2015) in each
sample. UniRef50 gene families were then converted into KEGG
orthologs using HUMAnN2’s built in mapping files. KEGG
ortholog abundances were then normalized by the number of
genome equivalents (average genome size/library size) found
in each sample using Microbe Census (Nayfach and Pollard,
2015) to get reads per kilobase per genome equivalent (RPKG).
Normalized KEGG orthologs were then mapped to KEGG
pathways and KEGG modules using MinPath (Ye and Doak,
2009) and the PICRUSt2 script pathway_pipeline.py (Douglas
et al., 2019) using the “–no_regroup” option and mapping files
included with PICRUSt2 v2.1.4-b. MetaPhlAn2 v2.7.62 (Truong
et al., 2015) was run with default options within HUMAnN2
to identify the relative abundances of taxa within each sample.
A custom Python script was used to determine the GC-
content of the microbiome overall and for the V. corymbosum
reference genome.

HUMAnN2 tables with RPKG of metabolic pathways were
transformed to BIOM tables and used for the generation
of beta-diversity (weighted Bray–Curtis dissimilarity) (Bray
and Curtis, 1957) metrics and analysis of variations in
sample groupings explained by weighted Bray–Curtis beta-
diversity dissimilarity (Adonis tests, 999 permutations)
using QIIME wrapper scripts (Caporaso et al., 2010). An
important assumption of this approach is that the read depth
per sample is sufficiently high to accurately estimate the
abundance of the gene families underlying these metabolic
pathways. Analysis of taxonomic and functional profiles was
performed using the STAMP software package (Parks et al.,
2014). Corrected p-values (q-values) were calculated based on
Benjamini–Hochberg FDR multiple-test correction. Features
with (Welch’s t-test) q-value < 0.05 were considered significant
and were thus retained.

Co-occurrence Network Construction
and Analysis
The co-occurrence analysis was performed using the
CCREPE (Compositionality Corrected by REnormalization
and PErmutation) R package (Schwager and Huttenhower,

2016, Unpublished) with 1000 bootstrap iterations and
default setting. This package has previously been used to
construct co-occurrence networks from microbial sequencing
data (Vazquez-Baeza et al., 2016; Yurgel et al., 2018). This
network uses a novel similarity measure, the N-dimensional
checkerboard score (NC-score) (Stone and Roberts, 1990),
which is particularly appropriate to compositions derived from
microbial community sequencing data. First, the co-occurrence
and co-exclusion patterns in the samples were scored. The
results were filtered to remove non-statistically significant
relationships. We generated the network based on strong
correlations with p-values < 0.001. The networks were visualized
with Cytoscape (Shannon et al., 2003) and were represented as
graphs with microbial functions as vertices/nodes and the edges
as interaction types.

RESULTS

Sequencing and Data Processing
A total of 44,641,544, 70,129,920, 19,394,324, and 29,124,986 raw
reads were obtained from 8 field bulk, 8 field rhizosphere, 4
forest bulk, and 3 forest rhizosphere soil samples, respectively.
After assembly, quality control filtering and removal of
artificial sequences produced by sequencing artifacts and
plant sequences 9,412,563, 9,245,366, 2,864,804, and 3,756,327
high-quality reads were retained in field bulk soil, field
rhizosphere, forest bulk, and forest rhizosphere metagenomes
respectively (Supplementary Table S2). Interestingly, forest
rhizosphere metagenomes exhibited distinct genome properties.
It had a significantly lower (Tukey’s test p < 0.05) mean
guanine and cytosine (GC) value (∼52%) compared to field
rhizosphere (∼57%) and both field (∼59%) and forest (59%)
bulk metagenomes.

Taxonomic Composition of Bulk Soil and
Rhizosphere Metagenomes
Using a unique clade-specific marker gene approach (Truong
et al., 2015) we identified a total of 22 bacterial taxa across
all samples. Proteobacteria, Acidobacteria, and Actinobacteria
were the predominant bacterial phyla in both bulk soil and
rhizosphere samples. A similar taxonomic profile of soil
microbiomes obtained by shotgun metagenome analysis was
previously reported (Fonseca et al., 2018; Kamutando et al.,
2018). A versatile soil bacteria capable of carbon and nitrogen
fixation, Rhodopseudomonas palustris, was the most abundant
bacterial species represented by >14% of all high-quality
reads (Supplementary Table S3) and Rhodococcus erythropolis
capable of degrading, toluene, naphthalene, herbicides, and other
environmental pollutants (Curragh et al., 1994), was represented
by∼1% of all high-quality reads. We also identified Pseudomonas
stutzeri (Parte and Kharat, 2019) a bacterial species capable of
denitrifying and potentially degrading insecticides, as well as
the nitrogen fixer Bradyrhizobium japonicum, and Granulicella
mallensis (Rawat et al., 2012) a versatile heterotroph capable
of degrading plant-based carbon polymers (Supplementary
Table S3). Interestingly, the human pathogen Mycobacterium
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intracellulare was also identified, which corroborates confirming
previous reports suggesting soil as its potential environmental
reservoir (Wallace et al., 2013; Honda et al., 2016).

Functional Characteristics of Bulk and
Rhizosphere Microbiomes
In total, 5321 KEGG orthologs (KOs) comprising 200 KEGG
pathways, 304 KEGG modules and 40 KEGG categories were
identified in the study. Among them amino acid metabolism,
carbohydrate metabolism, metabolism of cofactors and vitamins,
metabolism of terpenoids and polyketides, lipid metabolism, and
xenobiotics biodegradation and metabolism were the top KEGG
functional categories identified representing 21, 14, 10, 9, 8 and
7% of all high-quality reads, respectively. The top 18 functional
categories are shown in Supplementary Figure S1.

An analysis of the strength and statistical significance of
sample groupings (Adonis test) indicated that niche (bulk soil
and rhizosphere) environments were associated with differences
in their microbiome’s functional composition. We found
differences in the functional characteristics of each microbiome
at the KEGG modules, pathways and KO levels (Table 1).
When the microbiomes from managed and natural habitats were
analyzed together by variations in sample groupings (Adonis test)
explained by weighted Bray–Curtis beta-diversity dissimilarities,
∼20% (R2 = 0.201, p < 0.001), 17% (R2 = 0.174, p < 0.001), and
17% (R2 = 0.17460, p < 0.05) of functional variations between
bulk soil and rhizosphere communities were detected for the
modules, pathways and KO levels respectively. More specifically
51 modules were in differential relative abundance between bulk
soil and rhizosphere samples. A number of sugar biosynthetic
modules as well as fatty acid and amino acid biosynthetic modules
were enriched in bulk soils compared to rhizosphere samples. On
the other hand the rhizosphere samples were enriched for amino
acid and sugar transport system modules. The 10 most relatively
abundant modules overrepresented in bulk soil or in rhizosphere
are shown in Supplementary Figure S2.

To further refine the functional potential of the bulk
soil and rhizosphere microbiomes, the relative abandances of
pathways were compared. In total 35 pathways were differentially
represented between bulk soil and rhizosphere (Supplementary
Table S4). In particular, the pathways constituting carbohydrate,
glycan, nucleotide, and vitamin metabolism, as well as folding,
sorting and degradation, and replication and repair were

TABLE 1 | Variation in sample groupings as explained by Bray–Curtis dissimilarity.

KEGG hierarchy/sample grouping Modules Pathways KOs

Bulk soil vs. rhizosphere 0.201∗∗∗ 0.174∗∗∗ 0.160∗

Field bulk soil vs. field rhizosphere 0.230∗∗ 0.196∗∗ 0.185∗∗

Forest bulk soil vs. forest rhizosphere 0.310∗ 0.283 0.275∗

Field rhizosphere vs. forest rhizosphere 0.161 0.131 0.137

Field bulk soil vs. forest bulk soil 0.083 0.072 0.100

HUMAnN2 module, pathway and KO RPKG tables were used with the QIIME
pipeline for Adonis tests to assess whether their Bray–Curtis dissimilarity were
related to sample groupings by niche, 999 permutations, R2, ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

overrepresented in the bulk soil compared to rhizosphere
samples. In contrast, the pathways involved in degradation
of lysine, xenobiotics and plant-derived terpenoids, as well as
tyrosine and phenylalanine metabolism and bacterial chemotaxis
and flagellar assembly were overrepresented within the field
rhizosphere samples (Figure 1).

In total 427 KOs were differentially enriched in field bulk soils
and rhizosphere. The 15 most abundant KOs overrepresented
within each soil-types are shown in Supplementary Figure S3.
The rhizosphere-specific (RS) KOs included K01075, which is
found in pathways involved in the biosynthesis of secondary
metabolites and benzoate degradation, and K04073, which is
found in the pathways involved in the degradation of butanoate,
benzoate, xylene, dioxin, and other aromatic compounds. The
putrescine transport system permease protein, K11074, and
arginine decarboxylase K01584, which is involved in arginine
and proline metabolism were also overrepresented in rhizosphere
samples. The putative ABC transport system ATP-binding
protein, K02003, and the cold shock protein (beta-ribbon,
CspA family), K03704 were the most abundant bulk-soil-
specific (BSS) KOs.

Managed vs. Natural Habitats
The analysis of strength and statistical significance of sample
groupings by management indicated that this parameter
did not significantly influence the functional characteristics
of rhizosphere and bulk soil microbiomes at the modules,
pathways, or KO levels (Table 1). We also did not identify
any microbiome functions at any functional level that were
differently represented between the rhizosphere of managed and
unmanaged plants or between the bulk soils from managed and
unmanaged plant habitats.

Functional Network Interaction
We generated a co-occurrence network by correlating the relative
abundances between pathways identified in samples from the
bulk field and forest soil and the rhizosphere of managed
and unmanaged plants. The final co-occurrence network
contained 92 pathways forming 49 negative and 180 positive
correlations (Supplementary Table S5). This co-occurrence
network incorporated the pathways represented by ∼73% of
all high-quality reads obtained in the study (Supplementary
Table S6). We used the “edge-weighted spring embedded” layout
to visualize this interaction. This layout allowed us to visually
identify functional clusters by pulling positive correlations
(blue) together and pushing negative correlations (red) apart
(Figure 2). The functional co-occurrence network was modular
and contained four well-defined sub-networks. Two of these sub-
networks, Sub-networks 1 and 2, had strong negative correlation
with each other, while two others, Sub-networks 3 and 4, were
loosely interconnected within the network.

Sub-Network 1
It contained 28 pathways with 13 pathways overrepresented
in bulk soil (Supplementary Table S6). It had 39 negative
interactions with outside nodes and 55 positive interactions
within the sub-network with average positive and negative
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FIGURE 1 | KEGG pathways that were at differential relative abanances between bulk soil and rhizosphere samples. Only pathways with mean relative
frequencies > 0.5% are shown. Corrected p-values (q-values) were calculated based on Benjamini–Hochberg FDR multiple test correction. Features with (Welch’s
t-test) q-value < 0.05 were considered significant and were thus retained. ∗Pathways overrepresented in rhizosphere.

interaction scores of 0.62 and −0.63, respectively. This sub-
network was the largest sub-network in the co-occurrence
network and it encompassed ∼32% of total high-quality reads
identified in the entire microbiome. It contained major functional
categories essential for microbiome metabolism and function.
The most relatively abundant functional categories found in
this sub-network included the metabolism of terpenoids and
polyketides (biosynthesis of antimicrobials vancomycin and
ansamycins), carbohydrate metabolism, genetic information
processing, metabolism of cofactors and vitamins, environmental
information processing and amino acid metabolism (Table 2).
Since nearly half of the pathways in Sub-network 1 were
significantly overrepresented in bulk soil, this sub-network was
considered BSS. Many pathways from this sub-network formed
strong negative correlations with pathways from Sub-network 2
producing 32 negative interactions.

Sub-Network 2
It had 33 negative and 66 positive interactions with average
positive and negative interaction scores of 0.62 and −0.62,
respectively. It was represented by 17 pathways containing

∼13% of total high-quality reads and was considered as RS
since 11 pathways found in this sub-network were significantly
overrepresented in rhizosphere (Supplementary Table S6). Sub-
network 2 contained a smaller subset of functional categories,
some of which might be involved in microbiome responses
to environmental factors. For example, the functional category
xenobiotics biodegradation was one of the most relatively
abundant functional categories in Sub-network 2 and was
overrepresented in the sub-network compared to all other sub-
networks (Table 2). Additionally, the functional category amino
acid metabolism, comprising amino acid degradation and the
metabolism of phenolic amino acids, was the most relatively
abundant functional category in Sub-network 2. Geraniol
degradation was also a part of this sub-network.

The pathways involved in the degradation of aminobenzoate,
caprolactam, benzoate, xylene, polycyclic aromatic hydrocarbon
(PAH) were significantly overrepresented in the rhizosphere
microbiome and were a part of RS Sub-network 2 identified in
the co-occurrence network (Figure 3). Bisphenol degradation
and the metabolism of xenobiotics by cytochrome P450 were
also part of the Sub-network 2 but they could not be
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FIGURE 2 | Co-occurrence network generated based on pathway relatively abundances in term of reads per kilobase per genome equivalent (RPKG) within bulk soil
and rhizosphere samples. The size of the node is proportional to each pathway’s relative abundance across all samples. The lines (i.e., edges) connecting nodes
represent a co-occurrence relationship that can be either positive (blue) or negative (red). The intensity of the color and the length of the edges represent the strength
of relationship. The positions of the nodes within modules were manually adjusted for better visualization.

attributed to RS pathways by statistical analysis (Supplementary
Table S4). However these pathways might be considered as a
part of RS functions considering their significant association
with several niche-specific pathways. For example, bisphenol
degradation (ko00363) was positively correlated with RS
metabolism of phenylalanine (ko00360) and aminobenzoate
degradation (ko00627), and the metabolism of xenobiotics by
cytochrome P450 (ko00980) was positively correlated with RS
PAH degradation (ko00624) (Figure 3 and Supplementary Table
S3). With the exception of the metabolism of xenobiotics by
cytochrome P450 and degradation of bisphenol and PAH, which

were represented with 36, 42, and 35% of KOs, respectively,
the other pathways involved in xenobiotics, terpenoids, and
polyketides metabolism found in Sub-network 2 and were
represented with at least 68% of KOs (Supplementary Table S7).

Sub-Network 3
It had 9 negative and 27 positive interactions with average
positive and negative interaction scores of 0.61 and −0.62,
respectively. It was represented by ∼7.8% of total high-
quality reads obtained in the study and contained 15
pathways from KEGG functional categories. Five pathways
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TABLE 2 | Distribution of KEGG functional categories in the pathway co-occurrence network.

KEGG functional categories Mean relative frequency (%)

Sub-network 1 Sub-network 2 Sub-network 3 Sub-network 4 N/M∗

Carbohydrate metabolism 5.2 0 2.4 0 2.4

Energy metabolism 3.5 0 0.3 0.7 0.3

Lipid metabolism 2 3.3 0.7 0 0.2

Nucleotide metabolism 0 0 0 1.4 0

Amino acid metabolism 3.3 4.9 1 0 1.7

Glycan biosynthesis and metabolism 0.1 0 0.5 0 0.90

Metabolism of cofactors and vitamins 4.2 0 0 1 0.5

Metabolism of terpenoids and polyketides 5.9 1 0 0.1 0

Biosynthesis of other secondary metabolites 1.2 0 0.9 0 0.1

Xenobiotics biodegradation and metabolism 0 3.6 0 0 2.0

Genetic information processing 4.5 0 0 3.5 1

Environmental information processing 3.6 0 0 0.1 0.6

Cellular processes 1.3 0 1.9 0 0.1

∗Not associated with sub-networks.

FIGURE 3 | Selected KEGG pathways of xenobiotics, terpenoids, and polyketides metabolism in microbial metagenomes from bulk and rhizosphere soils from
natural and managed habitats. ∗Pathways overrepresented in rhizosphere.
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belonging to this Sub-network, phenylpropanoid biosynthesis,
glycerophospholipid, phosphonate and phosphinate metabolism,
bacterial samples (Table 2 and Supplementary Table S6).
However, the rest of the pathways found in the Sub-network 3
were similarly represented in bulk soil and the rhizosphere
suggesting a boarder role of this sub-networks in both
plant-associate and free-living soil microbiome function.

Sub-Network 4
It had 3 negative and 23 positive interactions with average
positive and negative interaction scores of 0.64 and −0.81,
respectively and contained 11 pathways comprised by ∼7.8%
of total high-quality reads (Supplementary Table S6). Genetic
information processing and nucleotide metabolism were the most
relatively abundant categories in the sub-network (Figure 2).
With the exception of pyrimidine metabolism all other pathways
comprising Sub-network 4 were similarly represented in bulk and
rhizosphere soils suggesting important role of these functional
capabilities in both bulk soil and rhizosphere microbiomes.

DISCUSSION

In our previous work we used amplicon-based approaches to
study microbial communities associated with wild blueberry
production system (Yurgel et al., 2017, 2018). This enabled
the investigation of how environmental and plant factors affect
microbial community structure, provided an integrative view
on inter-kingdom interactions in soil and plant associated
microbiomes, and identified microbial taxa with potential
importance in plant health and production. However, until now
the functional potential of the wild blueberry soil microbiome
remained largely unknown. In this study we applied shotgun
metagenome sequencing to study the functional characteristics of
these communities.

As previously reported (Tessler et al., 2017), whole-
metagenome sequencing coupled with clade-based taxonomic
algorithm (MetaPhlAn2) approach for the taxonomic profiling of
microbial communities was far less comprehensive compared to
rRNA gene sequencing analysis. For example, only 22 microbial
taxa were identified in our study compared to 996 eukaryotic and
6,802 bacterial OTUs identified by 18S and 16S rRNA sequencing
(Yurgel et al., 2018). However, in agreement with our previous
reports Proteobacteria, Acidobacteria, and Actinobacteria
were the predominant bacterial phyla identified in the wild
blueberry-associated soil microbiome (Yurgel et al., 2017, 2018).

Nucleotide Composition
Interestingly, GC-content varied greatly between the forest
and field rhizosphere metagenomes. It was previously reported
that both phylogeny and the environment affected nucleotide
composition of microbial communities from diverse ecological
niches (Reichenberger et al., 2015). In our study, the difference
in GC-content was only detected between field bulk soil and
rhizosphere of managed plants. On the other hand, both plant-
proximity and management affected the taxonomic composition
of wild blueberry microbial communities (Yurgel et al., 2017,

2018) confirming the importance of environments in shaping
microbial nucleotide composition.

It is also important to notice that the raw reads obtained
from rhizosphere and bulk soil niches also exhibited distinct
GC-signature. Both field and forest bulk soil metagenome had
significantly higher (p < 0.05) GC-content (∼60%) compared
to rhizosphere metagenomes (∼50%). We calculated that GC-
content of V. corymbosum scaffold was ∼38%. Therefore, our
initial hypothesis was that residual plant tissue contributed to
rhizosphere metagenomes decreasing their GC-content. In our
analysis we filtered raw reads against genome of V. corymbosum
(Bian et al., 2014) to remove plant derived reads. However, after
quality control filtering and removal of contaminant sequences
forest rhizosphere metagenome still exhibited lower GC-content
compared to the other metagenomes, suggesting that the
presence of plant DNA in the raw metagenome was not the only
reason for the distinct GC-signature of rhizosphere metagenome.

Carbon-Nitrogen Cycling
Microorganisms play a critical role in carbon-nitrogen
biogeochemical cycling. In agreement with this, carbohydrate
and nitrogen metabolism were the most abundant KEGG
functional categories identified in our study. A purple
photosynthetic bacterium from the Bradyrhizobiaceae family,
Rhodopseudomonas palustris, was the most abundant bacterial
species in our samples and is known to have extraordinary
metabolic capabilities. It can acquire carbon by catabolism
of organic molecules and carbon fixation, use light and
organic and inorganic compounds for energy, as well as fix
atmospheric di-nitrogen, actively participating in most steps of
carbon and nitrogen cycle (Larimer et al., 2004). Several other
bacterial taxa involved in nitrogen and carbon cycling from
the Bradyrhizobiaceae, Beijerinckiaceae, Burkholderiaceae, and
Rhodopseudomonas families were identified in our study. This
relatively high abundance of bacteria with potential nitrogen
and carbon fixation capabilities might be attributed to the
adaptation of the microbiome to low fertility soils typical of
wild blueberry habitats (Yurgel et al., 2017). The denitrifying
bacteria Pseudomonas stutzeri (Lalucat et al., 2006) was also
detected in the microbiome. Although the relative abundance of
this bacterium was much lower compared to potential nitrogen
fixers, probably because of slow rate of nitrification in acidic soils.

Niche-Specific Functions
The functional characteristics varied significantly between
rhizosphere and bulk soil microbiomes. Depending on the
level of functional annotation (modules, pathways, or KOs),
between 16 and 23% of the variation in community function was
niche specific. Carbohydrate metabolism was underrepresented,
while the transport of sugars and by product of amino acid
degradation, putrescine, were overrepresented in the rhizosphere,
potentially due to compensation for decrease in some metabolic
capacity of the plant-associated microbiome. Additionally, the
degradation of complex organic compounds was overrepresented
in the rhizosphere. Previously we showed that the community
structure was significantly influenced by the plant, with between
10 and 14% of bacterial community variation being niche-specific
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(Yurgel et al., 2017, 2018), suggesting that some functional
changes between bulk soil and rhizosphere could be attributed
to the alteration in microbial community structure.

Functional Stability of Bulk Soil
Microbiome
Management was a significant factor influencing the diversity
and structure of bulk soil microbiome with 12% of bacterial
community variation in bulk soil being attributed to management
(Yurgel et al., 2017). However, no significant effect of the
management on the bulk soil microbiome function was detected
in our study. Furthermore, the functional annotation of bulk
soil microbiomes from managed and natural habitats were
very similar and no significant differences in the mean relative
frequency of functions were detected between them. This data
suggested a stronger functional stability of soil microbiome
compared to the community structure. Similar functional
stability of nematode-associated microbiome was reported
previously (Cheng et al., 2013).

Functional Co-occurrence Network
Interaction
To extend our view on the functional capabilities within
the microbiome the interaction between metabolic pathways
was investigated using a co-occurrence network analysis.
This approach allowed us to extend the set of niche-
specific pathways providing more comprehensive insight on
overall microbiome metabolism and its functional specialization.
We also performed statistical analysis of differences in the
mean relative frequency of pathways between combined
rhizosphere and bulk soils samples. As expected, in addition
to 35 pathways, which were differentially represented in bulk
soil and rhizosphere metagenomes, 14 additional pathways
were identified as niche-specific by association. For example,
bisphenol degradation was included into RS pathways category
by its strong co-occurrence association with phenylalanine
and aminobenzoate degradation, which were significantly
overrepresented in rhizosphere metagenome.

Xenobiotics Biodegradation and
Metabolism
The potential of microbial communities to cycle natural halogens
and aromatic compounds in soils is well-documented (Curragh
et al., 1994; Weigold et al., 2016; Hlihor et al., 2017; Vergani
et al., 2017; Hussain et al., 2018). In agreement with these
previous findings, xenobiotics biodegradation and metabolism
was among the most relatively abundant functional categories
annotated in the metagenome, represented by 7% of all high-
quality reads. All but three pathways belonging to this category
were identified in our study including degradation of haloalkanes,
herbicide atrazine, and aromatic compounds, such as bisphenol,
naphthalene, chlorocyclohexane, chlorobenzene, nitrotoluene,
styrene, caprolactam, toluene, benzoate, aminobenzoate, PAHs,
fluorobenzoate, and dioxin. Herbicide atrazin was traditionally
used in management of perennial grasses in wild blueberry fields,
but was banned for use in 2013. The samples used in the study

were collected in summer 2015, which indicates the long lasting
effect of this compound on microbial functional potential.

Around 46% of all high-quality reads annotated as xenobiotics
biodegradation and metabolism category comprised pathways
which were either significantly overrepresented in rhizosphere
or were strongly associated with RS pathways. The enrichment
of the pathways involved in degradation of complex organic
compounds in the rhizosphere could be attributed to several
possible mechanisms. These mechanisms include: an increase in
plant-derived complex molecules with the proximity to the plant,
the stimulation of microbial biodegradation of organic pollutants
by plant rhizo-deposits and inducers, and root exudate facilitated
co-metabolic degradation (Haby and Crowley, 1996; Shaw and
Burns, 2003; Grandy and Neff, 2008; Toyama et al., 2013).

Overall Functional Structure of Wild
Blueberry Microbiome
The pathway co-occurrence network contained four well-
defined sub-networks. Sub-network 1 was considered BSS, Sub-
network 2 was considered RS, and Sub-networks 3 and 4 was
considered niche-independent. The Sub-network 2 comprised
many pathways involved in xenobiotics biodegradation and
metabolism of terpenoids and polyketides. Many of these
functions were negatively correlated with the basic metabolic
pathways from Sub-network 1. 32 negative correlations were
detected between the sub-networks, giving on average ∼1.9
negative correlation per node in Sub-network 2. Taking into
consideration that the majority of pathways in Sub-network 1
were essential for general microbiome function, we can conclude
that functions in Sub-network 1 and 2 formed a single unit,
where the gain of the specific functions essential for adaptation
of the microbiome to the rhizosphere environment were linked
to the loss of some basic metabolic functions. For example,
glycolysis/gluconeogenesis, pentose phosphate pathway, TCA
cycle, carbon fixation, metabolism of cofactors and vitamins
and genetic information processing were underrepresented in
the rhizosphere. This shift in genome functions might be
beneficial for the survival of the microbes in the rhizosphere
but might also reduce the ability of these microbes to withstand
stresses in bulk soils.

Many basic metabolic functions were similarly represented in
bulk soil and rhizosphere. For example, within the carbohydrate
metabolism category, starch, sucrose, pyruvate, galactose,
ascorbate, glyoxylate, dicarboxylate, aldarate, propanoate,
butanoate, and C5-branched dibasic acid metabolism and
pentose and glucuronate interconversions were not niche
specific, indicating functional capability of both in bulk soils
and rhizosphere microbiome to metabolize a divers set of sugars
and organic acids. In general, primarily metabolites (sugars,
organic acids, and amino acids) are predominant compounds
found in root exudates, while secondary metabolites (polycyclic
aromatic compounds and phytohormones) are less abundant
(van Dam and Bouwmeester, 2016). However, the composition
of root exudates is affected by plant genotype, age, and biotic and
abiotic factors (Chaparro et al., 2013; Mhlongo et al., 2018). It
was proposed that plant root exudates are derived from the most
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abundant metabolites available at the time. For example,
even small changes in plant water status can impact the
composition of root exudates. It was shown that Quercus
ilex (holm oak) root exudates contained 71% of secondary
metabolites and 81% of primary metabolites under drought
stress and the recovery phase, respectively (Gargallo-Garriga
et al., 2018). The functional structure of the wild blueberry
soil microbiome indicated that the basic metabolic functions
necessary for both bulk soil and rhizosphere microbiomes are
complemented with rhizosphere-specific functions, which could
provide the microbiome with additional functional capabilities to
respond to environmental fluctuations in rhizosphere triggered
by changes in the composition of root exudates. Interestingly,
the majority of the pathways from Sub-network 2 were involved
in the degradation of secondary metabolites, such as polycyclic
aromatic compounds and terpenoids suggesting the importance
of these pathways in microbiome responses to plant stress status.

On the other hand, Sub-networks 3 and 4 were less connected
in the network. We hypothesize that this low integration
of the pathways comprising Sub-network 3 into general
microbiome metabolic functions (Sub-networks 1 and 2) could
provide the microbiome with additional functional capabilities
for interaction with host–plant, including chemotaxis, plant–
pathogen interaction, and lipid and glycan metabolism.

CONCLUSION

We investigated the functional characteristics of the wild
blueberry soil microbiome with shotgun metagenomics
sequencing. The metagenome GC-content varied greatly between
rhizosphere microbiomes from managed and unmanaged
habitats indicating the importance of environments in shaping
microbial nucleotide composition. A relatively high abundances
of microorganisms with potential nitrogen and carbon fixation
capabilities were detected suggesting an adaptation of the
microbiome to low fertility soils typical for wild blueberry
habitats. In contrast to the rhizosphere metagenome, the bulk
soil metagenome exhibited functional stability indicating similar
functional repertoire in microbiomes associated with soils
from managed and natural habitats. Lower relative abundance
in general metabolic functions, such as carbohydrate and
amino acid metabolism and higher relative abundance in
sugar and putrescine transport, as well as degradation of
complex organic compounds were detected in the rhizosphere
microbiome. The analysis of the pathway co-occurrence network
extended the set of niche-specific functions and provided a
better understanding of overall microbiome metabolism and

its functional specialization. The strong modular structure of
metagenome indicated a potential trade-off between functional
adaptations of microorganisms to the rhizosphere environment
and its basic metabolic function. Based on our analysis we
hypothesize that the rhizosphere-specific pathways involved
in biodegradation xenobiotics and terpenoids could provide
the microbiome with functional flexibility to respond to
plant stress status.
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