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Identifying the microbes present in probiotic products is an important issue in
product quality control and public health. The most common methods used to
identify genera containing species that produce lactic acid are matrix-assisted laser
desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA
sequence analysis. However, the high cost of operation, difficulty in distinguishing
between similar species, and limitations of the current sequencing technologies have
made it difficult to obtain accurate results using these tools. To overcome these
problems, a whole-genome shotgun sequencing approach has been developed along
with various metagenomic classification tools. Widely used tools include the marker
gene and k-mer methods, but their inevitable false-positives (FPs) hampered an
accurate analysis. We therefore, designed a coverage-based pipeline to reduce the FP
problem and to achieve a more reliable identification of species. The coverage-based
pipeline described here not only shows higher accuracy for the detection of species
and proportion analysis, based on mapping depth, but can be applied regardless of
the sequencing platform. We believe that the coverage-based pipeline described in this
study can provide appropriate support for probiotic quality control, addressing current
labeling issues.

Keywords: NGS, probiotics, lactic acid bacteria, whole genome shotgun sequencing, mapping coverage,
identification, metagenomics

INTRODUCTION

In light of the trend toward increasing interest in health, many probiotic products are emerging.
The global probiotics market exceeded 40 billion USD in 2017 and more than 12 million tons
of these products are expected to be consumed by 20241. Probiotics are now used not only for
nutrition, but also for medical purposes, such as to promote the development of the infant immune

1https://www.gminsights.com/industry-analysis/probiotics-market
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system (O’Toole et al., 2017; Michelini et al., 2018). In
this growing market, defective products are also increasing,
which can pose some risks to consumers (Lewis et al., 2015).
Although authorities such as the United States Food and Drug
Administration (FDA) check all probiotic products before they
permit their sale, they could pass products without knowing
whether the bacteria in these products might be mislabeled.
Thus, to safely manage the probiotic market, it is necessary to
verify whether probiotic products actually contain the species
mentioned on their labels. Such genera include Lactobacillus,
Bifidobacterium, and Bacillus, which are referred to as genera
containing species that produce lactic acid (GSLA) throughout
this manuscript.

There are many ways to identify GSLA at the species
level (Herbel et al., 2013), such as matrix-assisted laser
desorption/ionization–time of flight mass spectrometry
(MALDI-TOF MS) and 16S rRNA sequence analysis (Angelakis
et al., 2011; Garcia et al., 2016). For MALDI-TOF MS, the
initial cost is high (Wieser et al., 2012) and the approach to
identifying species is library-based, which may lead to difficulty
detecting species that are not listed in the spectral database
(Singhal et al., 2015). Even if information is present in the
database, being able to accurately identify similar species remains
a challenge (Dušková et al., 2012; Bailey et al., 2013). In a similar
manner, 16S rRNA sequences may be difficult to analyze because
full-length 16S rRNA must be read for accurate profiling, and
the sequencing must be carried out with high accuracy (Edgar,
2018a,b). Notably, the Illumina and Ion Torrent platforms are
based on short read lengths of less than 400 bp (Hodkinson and
Grice, 2014) which makes it difficult to compare 1,600 bp, the full
length of the 16S rRNA gene, with sequences in public databases
(Yang et al., 2011). Conversely, the Pacbio and Nanopore
platforms are capable of long read sequencing over 2,000 bp, but
with error rates of more than 10% (Rhoads and Au, 2015); thus,
comparison of 16S rRNA at the 97% similarity level for species
classification is not suitable (Wagner et al., 2016). Although the
circular consensus sequencing (CCS) method of Pacbio can read
the full length of 16S rRNA with high accuracy (Frank et al.,
2016; Pootakham et al., 2017), it costs more than the common
16S amplicon method used by the Illumina platform.

As a solution to the above problems, the whole genome
shotgun sequencing method has been proposed and widely
applied in numerous microbial community analyses (Loman
et al., 2012; Quince et al., 2017). One requirement for the
whole-genome shotgun sequencing approach is metagenomic
classification, which can follow various strategies (Breitwieser
et al., 2017) including matching k-mers [e.g., Kraken (Wood and
Salzberg, 2014), k-SLAM (Ainsworth et al., 2017), and CLARK
(Ounit et al., 2015)], aligning to marker genes [e.g., MetaPhlAn
2 (Truong et al., 2015) and GOTTCHA (Freitas et al., 2015)]
and translating into amino acid sequences [e.g., Kaiju (Menzel
et al., 2016)]. These methods use a specific region of interest for
detection instead of the whole genome, causing markers to lose
their specificity. For example, if a new species is not available as a
reference due to the absence of assembly data, but shares similar
regions with other species due to horizontal gene transfer (HGT)
(Hiraoka et al., 2016), the markers may detect other species.

In addition, sequencing and assembly errors in the reference
data can affect the detection of species, causing problems if it is
necessary to rigorously determine the presence or absence of a
species (Peabody et al., 2015).

In this study, we introduce a new GSLA classification pipeline
that effectively reduces the false-positive (FP) rate using mapping
coverage. The coverage yielded by alignment to the representative
strain of a species was the coverage criterion. Due to the
fact that the classification pipeline was based on the whole
genome, the accuracy of the proportion analysis based on
mapping depth was high, and FPs at the species level were
not present; thus, more reliable results were achieved than with
other metagenomic classification methods. We expect that the
coverage-based pipeline presented in this study will facilitate
efficient quality control of probiotic products, as well as the
relabeling of products with inaccurate information. Overall,
application of our pipeline could have a positive contribution
to public health.

MATERIALS AND METHODS

Our pipeline consists of two stages: database construction and
species detection. During the database construction stage, one-
to-one coverage was calculated for each species of GSLA, and a
representative strain was selected for construction of a database
to detect that species. Based on coverage, the detection threshold
was also determined. During the second stage, the probiotic
metagenomic data were mapped to the database created in
the first stage. Species exceeding the coverage threshold were
recorded as the detected species. A more detailed explanation of
the GSLA detection pipeline is provided in Figure 1.

Determination of the Representative
Strain
The complete genomes of 126 species and 597 strains of GSLA
were downloaded from the National Center for Biotechnology
Information (NCBI2) (Supplementary Table S1). One-to-one
pairs of average nucleotide identity (ANI) were obtained within
species and filtered at a threshold of 95% identity. Illumina
paired-end simulated data were generated using the ART
simulator (art_illumina) program with the following parameters,
based on the HiSeq 2000 platform (2 × 100 bp): mean size of
DNA fragments: 350 bp, read coverage: 100 fold, and standard
deviation of DNA fragment size: 10 (Huang et al., 2012).
The reference genome was assigned one-to-one in the manner
described above to determine coverage using bowtie2 with default
settings (Langmead and Salzberg, 2012). After comparing the
minimum coverage value by setting different strains as the
reference genome, the strain with the highest minimum coverage
value was selected as the representative strain for that species.
At this point, if subspecies existed within a given species, if any
strain group had an ANI value less than 95%, despite belonging
to the same species, or if more than two groups clustered
distinctly on the heatmap of all pairwise one-to-one ANI values,

2http://www.ncbi.nlm.nih.gov/
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FIGURE 1 | Pipeline overview. First, the complete genome data set was downloaded from the NCBI and filtered based on 95% ANI to obtain 126 species and 597
strains. Then, the one-to-one pairwise coverage of all strains of each species was calculated. In this case, the strain with the highest minimum coverage value for a
given species was selected as the representative strain for that species. For example, if there are four strains of a species, we consider each of the strains as a
reference strain; the coverage is calculated by aligning sequence data of the remaining three strains to the reference strain using bowtie2. Afterward, the minimum
coverage of each strain is compared (Orange: strain_1: 0.79, strain_2: 0.86, strain_3: 0.87, strain_4: 0.83) and that with the highest value is selected (Red: strain_3:
0.87). Thus, the strain with the highest coverage is the representative strain of that species. A reference database was constructed using the representative strains
and whole-metagenome shotgun sequencing data of probiotic probiotics were aligned to it. Only species exceeding 0.7137 coverage were judged to be present in
the probiotic product.

we selected additional representative strains. After that, the
coverage threshold for detecting GSLA species was set to the
lowest minimum coverage value out of the representative strain
selected for each species. A reference set was then constructed for
GSLA classification by combining the representative strains into
a multi-FASTA file. In order to determine the coverage criterion,
the values obtained from mapping the sequence reads to only one
representative strain and to all representative strains combined
into a set must be similar. This is because it explains how
accurately the sequence reads are aligned to the representative
strain of the species to which they belong.

Sequencing of Probiotic Products
We sequenced the GSLA species in six probiotic products:
one with Illumina and five with Ion Torrent technology.
Considering that the Illumina platform was used for processing
the simulated data and data from the NCBI sequence read
archive (SRA3), and produced reliable results, testing real

3http://www.ncbi.nlm.nih.gov/SRA

data using a different sequencing platform, such as the Ion
Torrent, can reduce the platform bias of our pipeline. With
the Illumina platform, library preparation was carried out using
the TruSeq Nano DNA LT Kit (Illumina), and sequencing was
then conducted using the NextSeq 500 sequencer (Illumina) in
paired-end read mode. The read length was 150 bp per read.
With the Ion Torrent platform, the prepared libraries were
sequenced using the Ion S5 sequencer (Ion Torrent) and the read
length was 350 bp.

Detection Ability Test
Whole-genome shotgun sequencing data for a single species were
downloaded from NCBI SRA and mapped to a reference set
to determine whether that bacterial species was present. If two
or more bacteria were detected that could not be distinguished
based on the ANI criterion, an additional analysis was conducted.
In this additional analysis, all complete genomes of the species
identified in the detection test were used as reference sequences
and aligned using the bowtie2 options of “–a (search for
all alignments)” and “–a –score-min ‘C,0,–1’ (search for all
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FIGURE 2 | Distribution of coverage values. A positive correlation between
the ANI and coverage was observed when the representative strain of each
species was used as the reference sequence. The lowest minimum coverage
value was 0.7137 at 96.47% ANI in B. longum.

alignments with perfect match).” The species with the highest
resulting coverage was designated as the detected species.

Next, to examine the detection capability of the metagenomics
method, the program performed three processing steps to yield
simulated data, SRA data, and real probiotic sample data.
First, using simulated data, we created one large metagenome
dataset by combining reads for 13 species obtained through
ART simulation (Supplementary Table S2). Second, data for 10
different species obtained from SRA, which were all collected
with the same platform and read length, were downloaded from
NCBI and combined into one dataset (Supplementary Table
S3). Finally, to examine the detection capability of bacteria in
actual probiotics using whole-genome shotgun sequencing data,
we used Illumina paired-end read data for 19 GSLA, and Ion
Torrent platform data for 4∼11 GSLA. We used Trimmomatic
(TRAILING: 30) for quality control. For Ion Torrent platform
data, we used the TMAP aligner instead of bowtie2 as an
alignment program, with the setting of stage 1 map 4. For the
30 Gb ∗ 2 of Illumina data, the processing time required was
measured with the file size reduced to 15 Gb ∗ 2, 7.5 Gb ∗ 2,
3 Gb ∗ 2, and 1.5 Gb ∗ 2 through random sampling.

Subsequently, the complete genomes of 19 GSLA species
approved by the Ministry of Food and Drug Safety (MFDS;
Korean Food & Drug Administration) as probiotics were used to
calculate the proportional abundance of the species in the sample
(Supplementary Table S4). All the reported strains of 19 species
at the complete genome level were concatenated according to
species, to create a single FASTA file. A reference dataset was
then constructed for proportion analysis by combining all of
these files into a multi-FASTA file. The species proportions were
calculated according to the relative ratio of the mapping depth
of a given group, divided by the average length of sequences

for that group. Furthermore, only simulated and SRA data were
used, and we have combined 10 species to have equal proportions
of 10%. For simulated data, we used a number of reads for
each species that was in proportion to the sequence length for
that species, to simulate the actual data product (Supplementary
Table S5). For SRA data, we carried out additional analysis
to identify the most similar strain to each downloaded SRA
sequence, and the read count in proportion to the sequence
length of that strain, and then combined these strains into one
dataset. We also used the same data as for the detection capability
test. All of these detectability tests were repeated using several
other metagenomic classifiers, such as MetaPhlAn 1 (Segata et al.,
2012), MetaPhlAn 2 (Truong et al., 2015), Kaiju (Menzel et al.,
2016), k-SLAM (Ainsworth et al., 2017), CLARK-S (Ounit and
Lonardi, 2016), and KrakenHLL (Breitwieser and Salzberg, 2018)
for a comparison of the results with those from our pipeline.

Data Availability
The sequencing data analyzed for this study are available via the
NCBI Sequence Read Archive (SRA) under accession number
BioProject PRJNA508569. The document for python source code
and the reference sequence data index file used for detection and
proportion analysis in this study are freely available from the
Github repository4 and Google Drive5.

RESULTS

Building a Representative Genome Set
and Determining the Coverage Criterion
In this study, complete genomes for a total of 126 species and 597
strains of GSLA were downloaded from NCBI (Supplementary
Table S1). Rather than using all 597 strains, we selected
representative strains for each species to form a representative
genome set, due to high sequence identity among the genomes of
strains within a species. The representative strain was that having
the highest minimum coverage in all pairwise comparisons
between genomes of strains within a given species. Before
analyzing the coverage data, ANI analysis was performed to verify
whether the genomes represented the same species. In general,
if ANI exceeds 95%, genomes can be classified as the same
species (Goris et al., 2007). However, pairwise ANI calculations
showed that some strain genomes did not exceed the ANI
criterion despite being from the same species. In our research,
Bacillus pumilus, Bacillus amyloliquefaciens, Lactobacillus casei,
and Lactococcus lactis contained strains that were not considered
to be of the same species, and which were instead classified
into two groups based on 95% ANI (Supplementary Figure S1).
For example, when mapping a shotgun read simulated from
the genome of the L. casei type strain (GCF_000019245.4) to
a genome of L. casei (GCF_000829055.1) in another group, we
found that the read mapping coverage was very low, to the extent
that it cannot be regarded as the same species (Supplementary
Figure S2; Fontana et al., 2018). Although L. casei did not have

4https://github.com/asleofn/APD
5https://drive.google.com/drive/folders/1fOakwxOp7QbxQooi8pHYjfrKIbxPuryl
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any officially named subspecies, the nine strains analyzed were
divided in two groups consisting of seven and two strains, with
the latter two strains being L. casei LC5 and L. casei ATCC
393. Similarly, B. pumilus had no officially named subspecies,
but it was consistent with the previous work in which the
whole genome phylogenetic tree analysis showed that B. pumilus
was divided into two clades. One of the clades was clustered
with Bacillus altitudinis (Tirumalai et al., 2018). Moreover,
L. lactis was classified into two groups based on 95% ANI,
such that it explained the presence of two subspecies, L. lactis
subsp. lactis and L. lactis subsp. cremoris, through their NCBI
accession numbers (Salama et al., 1991). Another study also
showed the presence of two subspecies for B. amyloliquefaciens,
which were B. amyloliquefaciens subsp. amyloliquefaciens and
B. amyloliquefaciens subsp. plantarum along with the result of the
ANI analysis (Borriss et al., 2011). Therefore, the classification of
two groups indicated the subspecies within those species.

Unlike the species listed above, Bifidobacterium longum is
reported to have three subspecies based on the different ANI
criterion (Mattarelli et al., 2008). Interestingly, 95% of the
ANI cutoff defined B. longum as one species, however, it was
classified into three subspecies when the cutoff increased to 97%
(Supplementary Figure S1E). In order to investigate whether
B. longum should be divided into three subspecies based on ANI
criteria for accurate subspecies classification, we first checked
the NCBI accession number of each strain and confirmed that
one of the three subspecies was B. longum subsp. infantis. The
other two groups could not be identified based on the NCBI
accession number, we therefore indirectly determined whether
the subspecies were represented by using data of subspecies
of B. longum downloaded from the SRA. As a result, the
strains were divided into three groups according to the coverage
standard: B. longum subsp. longum, B. longum subsp. suis, and
B. longum subsp. infantis (Supplementary Figure S3; Mattarelli
et al., 2008). Therefore, a total of 132 strains, including three
strains of B. longum, two strains each of L. lactis, B. pumilus,
B. amyloliquefaciens, and L. casei, and 121 strains of other
individual species were selected for the 126 species analyzed,
and a representative genome set was constructed from these
sequences (Supplementary Table S6).

In the meantime, when selecting the representative strain, the
minimum coverage varied greatly depending on which strain was
used. In the case of B. longum, for which 18 strains were reported,
the minimum coverage was 0.7137 when the representative
genome was used, while it reduced to 0.5534 when a non-
representative genome from strain GCF_000020425.1 was used
(Supplementary Figure S4). In addition, the minimum coverage
of 0.7137 was similar to the result of 70% obtained from DNA-
DNA hybridization (DDH), which was used for experimental
identification (Goris et al., 2007). Furthermore, the highest
minimum coverage values for the representative strains ranged
between 0.7137 and 0.993 across species (Figure 2). Although
the minimum mapping coverage of B. longum obtained 0.7137,
it increased to 0.8453 when representative strains from each
subspecies were considered. However, because the value of 0.8453
was obtained without considering variants of other species that
may or may not be present in the reference dataset, we set the

lowest value obtained for mapping coverage of all GSLA of 0.7137
as the baseline for species detection.

As we calculated the ANI and mapping coverage, we wanted
to see the relationship between them. As a result, it showed
a positive correlation in most species, but the strength of this
correlation differed among species. For example, the coverage
and ANI values for Enterococcus faecalis and Pediococcus
pentosaceus were not related (Supplementary Figure S5).

Meanwhile, the baseline for species detection was assigned
when reads were aligned to a single genome. The representative
genome set contained 132 strains in total, but the results of read
mapping coverage targeting a single genome could differ due
to the presence of homologous regions between species. Thus,
we checked whether the same results were obtained using only
the representative strain versus the entire set of representative
genomes as a mapping target. In this test, we used simulated
reads of nine strains for two species, Lactobacillus helveticus
and Lactobacillus brevis. No significant difference in mapping
coverage was observed (<0.0017) on aligning each strain to the
representative strain of the same species, or to the reference set
containing all 132 strains (Supplementary Table S7).

No False Positive Results in Detection
Ability Test
We performed a detection test to determine whether the
representative genome set, and the baseline were applicable to
actual data rather than simulated data. In the detection ability
test, four types of data were used. First, single-species data
downloaded from NCBI SRA were tested and we then executed
the program with data representing various GSLA species in the
order of simulated data, SRA, and real data. For single-species
data, we investigated the 19 probiotic GSLA species approved
by the MFDS; from the SRA data of the 16 species, only one
species was correctly detected for each dataset. The maximum
coverage of species other than the detected species was as low as
0.01–0.25, confirming that only one species was detected without
considering the possibility of false-negative (FN) results. In
contrast, two species were identified in SRA data of the following
three species: L. casei, Lactobacillus paracasei, and L. helveticus
(Supplementary Figure S6). The additional species detected in
their data were L. paracasei, L. casei, and Lactobacillus gallinarum,
respectively, which were considered as the same species based on
the ANI criteria for each species. In the case of L. casei, reads
comprising the dataset were generated from sequencing only a
single strain of L. casei. Nonetheless, the sequences of L. paracasei
and L. casei shared similar regions that happened to be aligned in
L. paracasei, eventually exceeding our mapping coverage baseline
for both species. As a result, of the 126 species analyzed in
total, seven one-to-one pairs included different species that were
classified as same species based on ANI (Table 1). To address
this problem, an additional analysis was conducted using the
complete genomes of all species that are not distinguishable
from other species based on ANI as a reference genome set (i.e.,
L. casei – L. paracasei and L. helveticus – L. gallinarum). Reads
were next mapped in all regions using the “–a” option of the
bowtie2 program, which is a tool used for aligning all reads at
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the same loci. Among these reads, the strain with the highest
coverage, i.e., that which is most similar to the genome from
which the reads were generated, was assigned as the detected
species. As a result, all three species were accurately detected:
L. paracasei with a coverage value of 0.9119, L. helveticus with
1 and L. casei with 0.9122 (Supplementary Table S8). Because
this additional analysis was used to determine all alignments,
the time required can vary greatly depending on the size of
the reference dataset. In the case described above, it took about
50 min for 600 Mb ∗ 2 L. paracasei Illumina sequencing data to
be aligned to the reference genome set containing 18 strains of
L. casei+ L. paracasei.

Testing our SRA data with MetaPhlAn 1, MetaPhlAn 2,
CLARK-S, k-SLAM, Kaiju, and KrakenHLL resulted in multiple
FPs, despite the use of single-species data. Seven and nine FPs
were obtained from MetaPhlAn 2 and MetaPhlAn 1, respectively.
Moreover, several hundred FPs occurred among CLARK-S,
k-SLAM, and Kaiju. KrakenHLL provided an ideal threshold
for the unique k-mer count per sample read (unique k−mer =
2000∗million read), but up to 11 FPs were still found in the
filtered results (Table 2).

Detection ability tests for single species did not allow detection
of FNs or FPs, and thus showed perfect results. Nonetheless,
if the data are complex due to a mixture of different species,
high-identity problems may occur, such as increased coverage of
species that are not included in the sample and increased FPs.
Moreover, FNs may occur if the sample does not have sufficient
coverage of a species that makes up a small proportion of the
sample. Therefore, we processed simulated data, SRA, and real
data to determine how accurately our pipeline detected species
in complex data.

First, the simulated data of 13 species combined using the
ART simulator revealed 13 species in our pipeline, but all
classifications contained FPs. The numbers of FPs obtained
using MetaPhlAn 1, MetaPhlAn 2, KrakenHLL, k-SLAM, and
Kaiju were 1, 2, 3, 20, and 2,847, respectively (Figure 3A).
Despite the use of simulated data, one FN was found in each
of the MetaPhlAn 1 and MetaPhlAn 2 results. Meanwhile,
100% Campylobacter curvus was detected using CLARK-S for
unknown reasons.

Second, based on the analysis of data for 10 species
combined, our pipeline detected 10 species and demonstrated
better results than other programs such as MetaPhlAn 1,

TABLE 1 | ANI values for closely related pairs of GSLA species.

Genus Species Species ANI

Bacillus B. gibsonii B. subtilis 98.87

B. vallismortis B. velezensis 98.21

Bifidobacterium B. catenulatum B. kashiwanohense 96.56

B. coryneforme B. indicum 98.28

Lactobacillus L. casei L. paracasei 97.22

L. gallinarum L. helveticus 98.39

Leuconostoc L. garlicum L. lactis 97.93

ANI, average nucleotide identity.

MetaPhlAn 2 and KrakenHLL, which detected 41, 37,
and 32 species, respectively. The other programs using
k-mers or protein sequence data detected a much greater
number of species.

Lastly, real data were analyzed using 19 species in Illumina
data, and four to 11 species in Ion Torrent data. In the
Illumina data, our pipeline detected 18 species and a FN, whereas
MetaPhlAn 1, MetaPhlAn 2, and KrakenHLL detected 19 species
along with two, five, and one additional species, respectively
(Figure 3B). Among the five Ion Torrent samples analyzed
(Figures 3C–G), our pipeline yielded one FN in the Probiotics_4
sample (Figure 3E). In MetaPhlAn 2, false detection occurred
in the Probiotics_5 and Probiotics_6 samples; one FN species
and two FPs were detected in Probiotics_5 (Figure 3F), and
four FP species in Probiotics_6 (Figure 3G). Despite filtering
based on the suggested criteria, KrakenHLL resulted FPs across
all five probiotic products, with one, one, one, two, and three
FPs detected, respectively (Figures 3C–G). MetaPhlAn 1 showed
similar performance to MetaPhlAn 2 and KrakenHLL based on
data collected on the Illumina platform, but at least 300, and
sometimes more than 1,000, FPs were obtained with the Ion
Torrent data. CLARK-S, k-SLAM, and Kaiju exhibited more
than 100 FPs in all of the tests described above, regardless of
platform (Figures 3B–G).

High Accuracy of Proportion Analysis
To control the quality of probiotic products, it is essential not
only to detect the presence of species, but also their relative
ratios. The cost of probiotic products varies based on the species
present, and species that make up a small proportion of the
total bacteria may gradually disappear from a product over time.
For proportion analysis, the number of reads as a proportion
of the genome size of each species was standardized so that
the data showed the same ratio (i.e., 10%) for all 10 species
of GSLA. As in the detection ability test described above, FP
species appeared in all programs tested except for our pipeline,
however, only the relative quantities of the 10 species of interest
were compared, without consideration of the FP species. All
other programs were executed based on the proportions revealed
by their results, whereas the calculation was based on mapping
depth for our pipeline. Using simulated data, the variance in
proportions was 0.11 in our pipeline, versus 1.56 in MetaPhlAn
1, 1.75 in MetaPhlAn 2, 4.78 in k-SLAM, 2.72 in Kaiju and 2.76 in
KrakenHLL (Figure 4A). As in the detection ability test, CLARK-
S detected 100% C. curvus species. Using SRA data, the variance
in proportions was 0.27 for our pipeline, 1.49 for MetaPhlAn 1,
2.15 for MetaPhlAn 2, 3.17 for k-SLAM, 2.12 for CLARK-S, 5.51
for Kaiju and 2.04 for KrakenHLL (Figure 4B).

Time Required for Species Detection
It is important to determine the number of reads and time
required to detect the species when using any method because
both time and monetary costs depend on the size of the dataset.
Through random sampling, we controlled costs by reducing the
size of the Probiotics_1 dataset, which was the largest dataset
(30 Gb ∗ 2) used in the detection ability test.
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TABLE 2 | The results of single species data from the SRA.

Species Accession Our process MetaPhlAn 1 MetaPhlAn 2 CLARK-S k-SLAM Kaiju KrakenHLL

L. lactis ERX231530 1 1 + 3 1 + 3 1 + 294 1 + 639 1 + 991 1 + 9

S. thermophilus SRX2610845 1 1 1 1 + 122 1 + 54 1 + 207 1 + 5

L. acidophilus SRX2610831 1 1 1 1 + 89 1 + 38 1 + 160 1 + 2

L. plantarum ERX1625346 1 1 + 1 1 + 2 1 + 245 1 + 62 1 + 291 1 + 2

E. faecium ERX2085159 1 1 1 1 + 149 1 + 86 1 + 809 1 + 2

B. longum ERX1960389 1 1 + 1 1 1 + 258 1 + 149 1 + 626 1 + 1

B. animalis SRX2610848 1 1 1 1 + 109 1 + 28 1 + 314 1 + 5

B. breve SRX2610844 1 1 + 2 1 1 + 39 1 + 22 1 + 108 1 + 6

L. delbrueckii ERX231531 1 1 + 4 1 + 4 1 + 346 1 + 257 1 + 1193 1 + 11

E. faecalis ERX2102726 1 1 + 1 1 + 1 1 + 65 1 + 44 1 + 258 1 + 1

L. rhamnosus SRX2610827 1 1 + 2 1 + 1 1 + 53 1 + 31 1 + 87 1 + 5

L. salivarius SRX2268576 1 1 + 1 1 + 2 1 + 169 1 + 83 1 + 353 1 + 7

L. gasseri ERX980028 1 1 + 2 1 + 1 1 + 112 1 + 74 1 + 251 1 + 3

L. reuteri SRX2268579 1 1 + 1 1 + 1 1 + 91 1 + 34 1 + 358 1 + 1

L. fermentum SRX2268582 1 1 + 1 1 + 1 1 + 79 1 + 32 1 + 206 1 + 4

B. bifidum ERX1101269 1 1 1 1 + 125 1 + 77 1 + 569 1 + 3

L. casei SRX1433289 1 1 + 1 1 1 + 276 1 + 96 1 + 490 1 + 3

L. paracasei ERX178725 1 1 + 9 1 + 7 1 + 281 1 + 122 1 + 575 1 + 10

L. helveticus SRX2268585 1 1 + 1 1 + 3 1 + 184 1 + 53 1 + 206 1 + 7

The number of FP species is represented by “+.”

FIGURE 3 | Results of metagenomic analysis of probiotic products. Panel (A) shows simulated data, (B) shows the real data obtained with the Illumina platform and
(C–G) show real data from the Ion Torrent platform. Green indicates the number of species correctly detected, yellow indicates FNs, and red indicates FPs. The blue
line represents the precision of each classification.
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FIGURE 4 | Species proportion analysis of simulated and SRA data. The number of reads was determined in proportion to the genome size of each species, and a
total of 10 species were combined. Panel (A) shows simulated data, (B) shows data from the NCBI SRA. The closer the classification value of each species is to 10,
the more accurately the proportions are determined.

Bifidobacterium bifidum was not detected at first, while
Lactobacillus fermentum, with 0.6989 coverage, was not detected
when the file size was reduced to 50%. As a result of
a further reduction in file size, from 10 to 5%, three
additional FNs appeared. At 5% of the original data set size,
B. longum, L. paracasei, and Lactobacillus reuteri were not
detected, with 0.713, 0.6936, and 0.5766 coverage, respectively
(Figure 5). According to proportion analysis of these Illumina
data, we confirmed that B. bifidum accounted for 0.01% of
the sample, L. fermentum for 0.11%, B. longum for 1.05%,
L. paracasei for 0.74%, and L. reuteri for 0.17%. Considering
these results, we determined that at least 3 Gb ∗ 2 of data
was required for species detection in Illumina paired-end
data, accounting for about 1% of the sample. When the file
size was reduced, the time required for processing was also

dramatically reduced: 452 min for 30 Gb ∗ 2 and 25 min for
3 Gb ∗ 2 (Table 3).

DISCUSSION

Our pipeline, which is based on mapping coverage, provides new
criteria for determining the presence or absence of GSLA in a
sample, adequately controlling for false detections and showing
high accuracy in proportion analysis.

A benefit of using all available genome information is that it is
possible to address problems such as structural variations in the
genome of an individual species. However, when the same loci
are present at the mapping target, due to homology, most short-
read aligners are randomly mapped to one of them, affecting
the calculation of genome coverage for each species. Those reads
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FIGURE 5 | Changes in coverage values for species when reducing the Illumina data file size, of 30 Gb ∗ 2, to 50, 25, 10, and 5%. Only species that changed to FN
results are shown. L. fermentum was not detected when the data file size was reduced by 50% (30 Gb ∗ 2→ 15 Gb ∗ 2) and B. longum, L. paracasei, L. reuteri
were not detected with a reduction to 5% (3 Gb ∗ 2→ 1.5 Gb ∗ 2). The red dotted line shows 0.7137 coverage. The number in parentheses in the legend is the
proportion analysis result.

can be mapped to the same loci by adjusting the alignment
parameters, but increases mapping time significantly and adds
reads artificially, leading to incorrect results in subsequent
proportion analysis. Moreover, due to the difference among
strains in the number of genomes available in the current
database, it is difficult to set the coverage criterion for the
detection test. According to the detection test, there was no
difference in performance between the pipeline that used only
the genomes of representative strains and that using all available
genomes of all strains. Thus, to obtain data for proportion
analysis in a shorter time without compromising detection ability,
we utilized the representative genome set as reference data.

As this methodology uses only one representative genome
for each species, there is a tremendous difference in the
results depending on which strain’s genome is used as the
representative genome. For example, B. longum had different
minimum coverage when the representative genome or a
non-representative genome from strain GCF_000020425.1 was
used. When the representative genome was used, the coverage
was similar to the results of 70% DDH, whereas, when the
non-representative genome was used, the coverage reduced so
that it was too low to be used as a criterion for mapping coverage.
The criterion cannot be too high or too low because of the ability
of detection. If it is too low, even species that should not be
detected will be detected. Thus, it has to be reasonable, such that
the value that was similar to the result of 70% DDH was set as
the coverage criterion for our pipeline. Additionally, this result
confirms the importance of selecting a representative genome
for species determination using our pipeline, as well as, showing
why we selected a representative genome for each species by
calculating all pairwise minimum coverage values for all strains
with available genomic data. The highest minimum coverage

values for the representative strains varies across species. This
results may have been caused by the myriad of genomic structural
variants present in certain species (Lan and Reeves, 2000). For
instance, the minimum one-to-one pairwise coverage value for
B. longum increased when all representative strains were used
because it considers the structural variation, compared to when
aligning to only one representative strain.

During the process of species identification, two problems
were observed: (1) strains that came from the same species
separated into different species based on ANI criteria, and (2)
two different species grouped together and classified as the same
species. The first problem was solved by selecting an additional
representative strain for each group that was divided based
on 95% ANI. As a result, we were able to identify the strains
at the species level regardless of which group they belonged
to. However, the other metagenomic classification tools such
as MetaPhlAn showed a downside in classifying species. For
example, in the detection ability test, most samples with L. casei
had high coverage, with the representative strain of the group
containing seven strains. Meanwhile, in two samples, i.e., the
simulated data and Probiotics_5 on Ion Torrent, the coverage for
the representative strain of the two strain groups, and not that for

TABLE 3 | Data processing time required when the data set size
was reduced (Min).

Method Program (ver.) Default 50% 25% 10% 5%

Alignment Bowtie 2 (2.3.3.1) 383 105 60 20 10

BAM file sorting SAMtools (1.3.1) 40 15 8 3 2

Genomecov Bedtools (2.20.1) 28 10 5 2 1

Sum 451 130 73 25 13
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the seven-strain group, was greater than 0.7137. In these samples,
MetaPhlAn showed false detections, while MetaPhlAn 1 did not
detect L. casei at all and MetaPhlAn 2 detected Lactobacillus
zeae as a FP instead of L. casei. This FP occurred because
L. zeae falls under the L. casei group based on NCBI taxonomy,
and the two strains were very similar to L. zeae (Kang et al.,
2017). For the second case, the problem is that two species were
detected even though the sample contains only one species. For
example, L. gallinarum was detected in L. helveticus single-species
data, because these species have high identity (Jebava et al.,
2014). In other words, the two species shared reads used in the
process of aligning. To prevent this issue, it was necessary to
accurately classify the data through additional analysis. However,
if the proportion of that GSLA in the product was low or if
insufficient sequencing data were produced, both species may
be undetected due to their shared reads. Therefore, in such
situations, only one species per pair was included in the reference
set to ensure sufficient coverage, and when that species was
detected, accurate species detection was carried out through
additional analysis. However, whether or not both species in
a pair are present in a product remains to be addressed. It is
therefore necessary to reclassify GSLA based on their genetic and
phenotypic relatedness (Salvetti et al., 2018).

Our pipeline is based on the mapping coverage which is
thought to have a positive correlation with ANI. As expected,
the relationship in most species showed a positive correlation,
but such species including E. faecalis and P. pentosaceus had
no correlation. This result may indicate a limitation of the
ANI, as it only uses sequences with the best match in BLASTn
after trimming the overall sequence to 1,020 bp (Arahal, 2014).
Furthermore, cases, where the species classification was unclear
based on the ANI, confirmed that ANI should be modified
based on coverage or that a new method should be developed
to address this problem (Rosselló-Móra and Amann, 2015;
Varghese et al., 2015).

The classification programs used in this study required
filtering of several FPs. Such filtering was easy when analyzing
a single-species sample, but when multiple species were mixed,
different filtering criteria were needed for accurate detection.
That is, if information about the sample is not known, or if only a
small amount of GSLA is present in the sample, the filtering value
must be set blindly such that false detection cannot be controlled.
This may lead to problems such as unresolved labeling errors.

As our pipeline involved the use of all reads mapped to the
whole genome, the results of proportion analysis showed high
consistency. Other classifications based on a specific sequence
region of interest, such as those using k-mer value, had high
variance values of two to three, showing that they are common for
proportion analysis. Whole genomes were used to obtain more
reliable results, which could be compared with identification data

obtained using only 16S rRNA, as well as in the cases described
above. For classification at the species level, it is difficult to
obtain sufficient resolution with current sequencing technologies.
Moreover, to conduct proportion analysis, a case-control study
is the most commonly used method; furthermore, this method
does not show errors when the amount of each species changes.
However, targeting the 16S rRNA to determine the relative ratios
of species is problematic because of differing numbers of 16S
rRNA genes among species of microbes and the variation in copy
numbers within species (Klappenbach et al., 2001).

In conclusion, we have shown that a pipeline using coverage
was better in terms of coverage accuracy than other classification
schemes. Constructing the reference dataset from representative
strains was effective and allowed the pipeline to run with a
reduced computational load. The reliable results obtained by
our pipeline, with respect to GSLA detection (and proportions
thereof) in probiotic products are expected to improve the
quality of probiotics and associated safety management practices.
Furthermore, although the microbes detected were limited to
GSLA in this study, our pipeline can be extended to other
microbes in the soil environment, viruses, and other microbial
groups of interest.
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