Impact Factor 4.259 | CiteScore 4.30
More on impact ›

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Microbiol. | doi: 10.3389/fmicb.2019.01694

Growth promotion of Salicornia bigelovii by Micromonospora chalcea UAE1, an endophytic 1-aminocyclopropane-1-carboxylic acid deaminase-producing actinobacterial isolate

 Khaled A. El-Tarabily1, 2*, Abdulmajeed S. Al Khajeh1, Mutamed M. Ayyash1, Latifa H. Alnuaimi1,  Arjun Sham1, Khaled S. ElBaghdady3, Saeed Tariq1 and  Synan F. AbuQamar1*
  • 1United Arab Emirates University, United Arab Emirates
  • 2School of Veterinary and Life Sciences, Murdoch University, Australia
  • 3Ain Shams University, Egypt

Salicornia bigelovii is a promising halophytic crop for saline soils in semi-arid regions. This study was designed to characterize isolates of endophytic actinobacteria from S. bigelovii roots and evaluate the effects associated with plant growth promotion. Twenty-eight endophytic isolates obtained from surface-sterilized roots of S. bigelovii were initially selected based on their production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in vitro in a chemically defined medium. Application of Micromonospora chalcea UAE1, possessing the highest ACC deaminase activity, to S. bigelovii seedlings significantly enhanced the plant growth under gnotobiotic and greenhouse conditions. This was clear from the increases in the dry weight and length of both shoot and root, and seed yield compared to the non-ACC deaminase-producing isolate Streptomyces violaceorectus, or control treatment. The growth promotion was also supported by significant increases in the content of photosynthetic pigments and the levels of auxins, but significant decreases in the levels of ACC in planta. Under greenhouse conditions, M. chalcea recovered from inside the inoculated roots in all samplings (up to 12 weeks post inoculation), suggesting that the roots of healthy S. bigelovii are a suitable habitat for the endophytic actinobacterial isolates. Pure cultures of M. chalcea were not capable of producing auxins, gibberellic acid, cytokinins or polyamines in vitro. This indicates that the growth promotion is most likely to be due to the reduction of the endogenous levels of the stress hormone ethylene. Our findings suggest that growth and yields of S. bigelovii can be enhanced by the field application of the endophyte M. chalcea UAE1. This study is the first to report potential endophytic non-streptomycete actinobacteria to promote the growth of halophytic plants in semi-arid zones under greenhouse conditions.

Keywords: Micromonospora chalcea, ACC deaminase, Actinobacteria, endophyes, Salicornia bigelovii

Received: 04 May 2019; Accepted: 09 Jul 2019.

Edited by:

Luis E. Fuentes-Ramírez, Meritorious Autonomous University of Puebla, Mexico

Reviewed by:

Roberta Fulthorpe, University of Toronto Scarborough, Canada
Gustavo Santoyo, Universidad Michoacana de San Nicolás de Hidalgo, Mexico  

Copyright: © 2019 El-Tarabily, Al Khajeh, Ayyash, Alnuaimi, Sham, ElBaghdady, Tariq and AbuQamar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence:
Dr. Khaled A. El-Tarabily, United Arab Emirates University, Al-Ain, United Arab Emirates, ktarabily@uaeu.ac.ae
Dr. Synan F. AbuQamar, United Arab Emirates University, Al-Ain, United Arab Emirates, sabuqamar@uaeu.ac.ae