
MINI REVIEW
published: 06 August 2019

doi: 10.3389/fmicb.2019.01722

Frontiers in Microbiology | www.frontiersin.org 1 August 2019 | Volume 10 | Article 1722

Edited by:

Sophia Johler,

University of Zurich, Switzerland

Reviewed by:

Laura M. Carroll,

Cornell University, United States

Heather A. Carleton,

Centers for Disease Control

and Prevention (CDC), United States

*Correspondence:

Baiba Vilne

baiba.vilne@bior.lv

Specialty section:

This article was submitted to

Food Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 07 March 2019

Accepted: 12 July 2019

Published: 06 August 2019

Citation:

Vilne B, Meistere I, Grantiņa-Ieviņa L
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Foodborne diseases (FBDs) are infections of the gastrointestinal tract caused by

foodborne pathogens (FBPs) such as bacteria [Salmonella, Listeria monocytogenes

and Shiga toxin-producing E. coli (STEC)] and several viruses, but also parasites and

some fungi. Artificial intelligence (AI) and its sub-discipline machine learning (ML) are

re-emerging and gaining an ever increasing popularity in the scientific community and

industry, and could lead to actionable knowledge in diverse ranges of sectors including

epidemiological investigations of FBD outbreaks and antimicrobial resistance (AMR). As

genotyping using whole-genome sequencing (WGS) is becoming more accessible and

affordable, it is increasingly used as a routine tool for the detection of pathogens, and

has the potential to differentiate between outbreak strains that are closely related, identify

virulence/resistance genes and provide improved understanding of transmission events

within hours to days. In most cases, the computational pipeline of WGS data analysis

can be divided into four (though, not necessarily consecutive) major steps: de novo

genome assembly, genome characterization, comparative genomics, and inference of

phylogeny or phylogenomics. In each step, ML could be used to increase the speed

and potentially the accuracy (provided increasing amounts of high-quality input data) of

identification of the source of ongoing outbreaks, leading to more efficient treatment and

prevention of additional cases. In this review, we explore whether ML or any other form

of AI algorithms have already been proposed for the respective tasks and compare those

with mechanistic model-based approaches.

Keywords: machine learning, food-borne disease, outbreaks, bacterial WGS, bioinformatics analysis pipeline

1. INTRODUCTION

Foodborne diseases (FBDs) are infections of the gastrointestinal tract caused by foodborne
pathogens (FBPs) such as bacteria and several viruses, but also parasites and some fungi.
Salmonella, Listeria monocytogenes and Shiga toxin-producing Escherichia coli (STEC) are some
of the most important bacterial FBPs (Sekse et al., 2017), causing the most outbreaks and the
largest number of sporadic cases with severe illness or even fatal outcome (EFSA, 2015; Sekse
et al., 2017). Salmonella infections affect people at all ages and the main food sources of infection
typically include ready-to-eat foods, eggs, swine and poultry. L. monocytogenes infections mostly
affect elderly people, as well as immunocompromised patients and pregnant women, and display
high mortality rates. Common food sources of L. monocytogenes include ready-to-eat foods such
as smoked fish and soft cheeses. STEC has been associated with severe complications, e.g., acute
kidney failure, often affecting elderly and immunocompromised people, and also small children.
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The main food sources of STEC infections are bovine meat,
followed by vegetables and juice (EFSA, 2015).

Whole-genome sequencing (WGS) is becoming more
accessible and affordable as a routine approach for early
detection of FBD outbreaks (Buultjens et al., 2017; Sekse et al.,
2017). WGS captures the entire genome within hours to days and
has the potential to differentiate between outbreak strains that are
closely related, identify virulence/resistance genes and provide
improved understanding of transmission events (Quainoo et al.,
2017; Andersen and Hoorfar, 2018). Moreover, third-generation
sequencing technologies such as Oxford Nanopore (ONT)
sequencing and PacBio Single Molecule, Real-Time (SMRT),
which allow the generation of ultra-long (up to 300 kb) reads,
are well suited to assemble reference genomes from outbreak
strains de novo, potentially contributing to more precise
taxonomic assignment, while offering increased detection
speed and relatively decreasing costs, as, in comparison to
Illumina short-read sequencing, both technologies are still three
and almost seven times more expensive, respectively (Brown
et al., 2017; Sekse et al., 2017; Nicola De Maio, 2019). Several
proof-of-concept studies have demonstrated the superiority
of WGS over traditional typing methods for a range of high
priority food-borne pathogens, e.g., Salmonella enterica, Listeria
monocytogenes, Campylobacter species and STEC (Kanamori
et al., 2015; Quick et al., 2015; Moran-Gilad, 2017). Large
initiatives have emerged to investigate the options of replacing
conventional methods with WGS for outbreak investigations.
Two such examples include the ENGAGE (Establishing Next
Generation sequencing Ability for Genomic analysis in Europe)
(Hendriksen et al., 2018) and INNUENDO projects (Llarena
et al., 2018), focusing on the idevelopment of dedicated analytical
platforms and standardized analysis pipelines, e.g., for E. coli and
different Salmonella spp. serotypes (Hendriksen et al., 2018).

In the era of Big Data, as the volume and complexity of
data increases steadily, artificial intelligence (AI) and its sub-
discipline machine learning (ML) are re-emerging and gaining
an ever increasing popularity in the scientific community
and industry (Ching et al., 2018). While mechanistic model-
based approaches aim at constructing simplified mathematical
formulations, i.e., hypothesis, of causal mechanisms by carefully
observating, analyzing and trying to understand the complexity
of the respective phenomenon (Baker et al., 2018), machine
learning (ML) algorithms use large-scale datasets to extract
meaningful patterns (i.e., “learn”) and use this “knowledge” to
make predictions on other data (Alkema et al., 2016). Moreover,
ML can be done in a unsupervised manner by exploring and
detecting patterns within the data or in a supervised manner
by classifying, predicting and explaining (Tebani et al., 2016).
Unsupervised ML techniques involve well-known and widely
used methods such as principal component analysis (PCA) and
k-means clustering (Tebani et al., 2016). PCA is a dimensionality
reduction method, transforming a large set of variables into a
smaller set, while preserving as much information as possible
(Hotelling, 1933), whereas k-means clustering groups similar
data points together in a fixed number (k) of clusters and tries to
discover their underlying patterns (Hartigan andWong, 1979). In
life sciences, some frequently used supervised ML strategies have

been Random Forest (RF), Support Vector Machines (SVM),
Naive Bayes (NB), and Artificial Neural Networks (Lai et al.,
2016). RF alorithm randomly selects a subset from the training
data to construct an ensemble of decision tree predictors to
aggregate the predictions, thus lowering the variance (Breiman,
1996). SVM represent a pattern classification technique, which
is based on the idea of transforming the original data that
is not linearly separable to a higher dimensional space and
finding a hyperplane separating the data into classes (Boser
et al., 1992). NB represents a probabilistic algorithm that uses
the probability theory and Bayes’ Theorem in conjunction with
prior knowledge to calculate the probability of each feature to
belong to each of the classes and then outputs the class with
the highest probability (Devroye et al., 2013). Finally, ANNs are
graph computing models, which, at least to some extent, should
mimic the functioning of the human brain, hence its computing
units are called neurons and are interconnected for passing
information to each other. Moreover, networks of neurons are
additionally organized in layers. The first one is an input layer,
receiving the training data. This is followed by several hidden
layers. The last one is an output layer, which performs the actual
prediction of the class (Kruse et al., 2016).

Global multi-disciplinary initiatives like One Health
(OH) (http://www.onehealthinitiative.com/), aiming toward
optimizing the health of people, animals and the environment,
would greatly profit from such approaches, as multiple complex
challenges need to be addressed, including the maintenance of
a safe food and water supply for a growing human population.
Considering the current ease with which people and animals
or animal products can be transported around the globe,
the forefront issues of OH are clearly related to spread of
emerging infectious diseases and antimicrobial resistance
(AMR) (Gibbs, 2014). Especially, outbreaks caused by multi-
drug-resistant bacteria are an urgent and growing global
public health threat (CDC, 2013; WHO, 2014). Effective
management protocols must be in place, as quick identification
leads to faster and more precisely targeted treatment
(Quainoo et al., 2017).

ML strategies have already been used for microbial diagnostics
in diverse contexts, including (i) taxonomic grouping of
metagenomics data (Sedlar et al., 2017; Afify and Al-Masni,
2018); (ii) classification of L. monocytogenes persistence in retail
delicatessen environments (Vangay et al., 2014); (iii) phenotype
prediction of bacterial strains based on presence/absence of
particular genes (i.e., gene-trait matching) (Dutilh et al., 2013;
Alkema et al., 2016; Farrell et al., 2018); (iv) to identify strains
that demonstrate a higher probability to cause severe diseases
(Wheeler et al., 2018); (v) to predict the host range of pathogens
(Lupolova et al., 2017), e.g., identifying their signatures of
host adaptation (Wheeler et al., 2018); and (vi) to predict the
antimicrobial resistance potential of different E. coli strains (Her
and Wu, 2018) or from different sources (Li et al., 2018).

The WGS data analysis pipeline can be generally divided
into four major steps (Figure 1): de novo genome assembly,
genome characterization, comparative genomics and inference of
phylogeny or phylogenomics (Quainoo et al., 2017). However,
these steps are not necessarily consecutive, depending on the
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FIGURE 1 | An overview of an example bacterial sequence data analysis workflow.

objectives of the study. ML could be used in any of these
analyses to increase the speed and potentially accuracy (provided
increasing amounts of high-quality input data). In this review,
we aim to explore whether ML algorithms have already been
proposed for the respective task and compare those algorithms
with mechanistic model-based approaches (see Table 1 for
an overview). We mainly focus on single-genome short-read
(Illumina) bacterial WGS; however in cases where, to the best
of our knowledge, no ML algorithms have been reported for
the respective task, we also briefly touch upon ML algorithms
dedicated to ultra-long read technologies, 16S metataxonomics
and shotgun metagenomics, as these approaches may find future
applications in FBD outbreaks. Currently, the starting point
for any FBD outbreak investigation involving strain typing
is access to isolates, which may be difficult to obtain or
are often even unavailable. Moreover, most food samples are
complex, harboring composite microbial communities. In this
regard, metagenomic approaches would allow one to capture
the full spectrum of microbes in foods entirely without prior
need for culturing and isolation, allowing also the detection
of “viable but not cultivable," as well as non-viable microbes
(Bergholz et al., 2014).

2. MACHINE LEARNING FOR DE NOVO

MICROBIAL GENOME ASSEMBLY

Genome assembly tools are applied with the purpose of
assembling the sequencing reads into larger fragments (i.e.,

contigs), from which near-complete genomes can be further
re-constructed. As the read lengths of the second generation
(e.g., Illumina) technologies are short (i.e., 50–300 bp), de novo
assembly without a reference genome remains a challenging
task (Zhu et al., 2014). However, de novo assembly is especially
relevant in FBD outbreak investigations, where the source strain
might be undetectable with conventional methods and thus
taxonomically unclassified (Quainoo et al., 2017). Currently, the
majority of the algorithms are based on the de Bruijn graph
or overlap-layout strategies. The de Bruijn graph algorithm
first splits up each read into smaller substrings, k-mers,
which are further used to construct a graph, in which k-
mers represent nodes; two nodes are connected with an
edge if they overlap by k-1 nucleotides and follow each
other in the read. Thus, each contig is represented as a
path within the graph (Zhu et al., 2014). The overlap-layout-
based algorithms start by computing the overlaps among
all the reads, which are then used to perform the genome
assembly (Zhu et al., 2014). For short Illumina read-based
single genome WGS, the most popular assemblers include
Velvet (Zerbino and Birney, 2008), IDBA-UD (Peng et al.,
2012), RAY (Boisvert et al., 2010), SPAdes (Bankevich et al.,
2012), and SKESA (Souvorov et al., 2018), all of which employ
the de Bruijn graph-based assembly strategy. The overlap-
layout-based algorithms are mainly used for the assembly
of ultra-long reads: Minimap/miniasm (Li, 2016) and Canu
(Koren et al., 2017).

For 16S metataxonomics data, interestingly, there is a
tool REAGO (REconstruct 16S ribosomal RNA Genes from
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TABLE 1 | An non-exhaustive list of the mechanistic model-based vs. ML tools for microbial genome analysis.

Category Tools

Mechanistic model-based Machine learning

DE NOVO GENOME ASSEMBLY

Velvet (Zerbino and Birney, 2008), IDBA-UD (Peng et al., 2012),

RAY (Boisvert et al., 2010), SPAdes (Bankevich et al., 2012),

SKESA (Souvorov et al., 2018) Minimap/miniasm (Li, 2016), Canu

(Koren et al., 2017), REAGO** (Yuan et al., 2015)

PERGA (Zhu et al., 2014), Minimus/AMOS (Palmer

et al., 2010), MetaVelvet-SL* (Cheng, 2015)

GENOME CHARACTERIZATION

1. Bacterial strain identification BLASTN (McGinnis and Madden, 2004), JSpeciesWS (Richter

et al., 2016), ANItools (Han et al., 2016), OrthoANI (Lee et al.,

2016), KmerFinder (Hasman et al., 2014), StrainSeeker (Roosaare

et al., 2017), MESH (Ondov et al., 2016), Kraken* (Wood and

Salzberg, 2014), MetaPhlAn* (Segata et al., 2012), QIIME2**

(Caporaso et al., 2010), MOTHUR** (Schloss et al., 2009),

MG-RAST** (Meyer et al., 2008)

PaPrBaG (Deneke et al., 2017), NBC (Rosen et al.,

2008), TACOA (Diaz et al., 2009), PhyloPythiaS+*

(McHardy et al., 2007; Gregor et al., 2016), BLCA**

(Gao et al., 2017), 16S Classifier** (Chaudhary et al.,

2015)

2. Bacterial genome annotation PROKKA (Seemann, 2014), RAST/myRAST (Overbeek et al.,

2014), MetaGeneAnnotator* (Noguchi et al., 2008), MetaGene*

(Noguchi et al., 2006), Tax4Fun** (Aßhauer et al., 2015)

Woods (Sharma et al., 2015), Orphelia* (Hoff et al.,

2009), MGC* (El Allali and Rose, 2013), MetaGUN*

(Liu et al., 2013), Meta-MFDL* (Chen et al., 2016)

3. Virulence gene detection VirulenceFinder (Joensen et al., 2014), PathogenFinder (Cosentino

et al., 2013)

BacFier (Iraola et al., 2012), PaPrBaG (Deneke et al.,

2017)

4. Antimicrobial resistance gene detection ResFinder (Zankari et al., 2012), RGI/CARD (Jia et al., 2017),

AMRFinder (Feldgarden et al., 2019)

DeepARG (Arango-Argoty et al., 2018), PATRIC

(Antonopoulos et al., 2017)

COMPARATIVE GENOMICS

1. Reference-based SNP methods CSI Phylogeny (Kaas et al., 2014), Lyve-SET (Katz et al., 2017),

CFSAN SNP Pipeline (Davis et al., 2015), SPANDx (Sarovich and

Price, 2014), SNVPhyl (Petkau et al., 2017)

2. Non-reference-based SNP analysis KSNP (Gardner et al., 2015)

3. Pangenome-based analysis Roary (Page et al., 2015), PanWeb (Pantoja et al., 2017), Pan-Seq

(Laing et al., 2010)

4. Core genome/whole-genome

multi-locus sequence typing (MLST)

EnteroBase (Alikhan et al., 2018), BIGSdb (Jolley and Maiden,

2010), chewBBACA (Silva et al., 2018)

BAPS/hierBAPS (Cheng et al., 2011, 2013)

PHYLOGENOMICS

RAxML (Stamatakis et al., 2005), FastTree (Price et al., 2009), CSI

Phylogeny (Kanamori et al., 2015), Lyve-SET (Katz et al., 2017),

PHYLIP (Shimada and Nishida, 2017), BEAST (Drummond and

Rambaut, 2007)

*The tool is dedicated to shotgun metagenomics; ** the tool dedicated to 16S metataxonomics.

metagenOmic data), which combines homology search that
considers also the secondary structure and properties of 16S
ribosomal RNA genes to perform their de novo reconstruction
(Yuan et al., 2015).

ML has been used in PERGA (Paired-End Reads Guided
Assembler) (Zhu et al., 2014) to determine the correct
contig extension. For this, the alogirthm constructs a decision
model, considers the avaialble information from paired-end
reads such as different read overlap size and various branch
features, i.e., path weight, read coverage levels and gap
size. In addition, PERGA also detects tandem repeats with
the aim to resolve branches in the assembly graph and
construct longer and more accurate contigs and scaffolds
(Zhu et al., 2014). Minimus/AMOS (Palmer et al., 2010)
contains a module that uses ML (C4.5 decision tree, NB
and RF) in combination with features identified from prior
sequencing projects and completed genomes to classify overlaps
as true or false, by this improving the quality of the
genome assembly.

For shotgun metagenomics, ML-based strategies has been
proposed in order to pre-allocate (i.e., cluster) reads into
similar groups before the assembly step, thus reducing the
overall computational complexity of the process (Cheng, 2015).
Moreover, when assembling metagenomics data, the de Bruijn
graph is usually decomposed into individual sub-graphs to build
an isolated genome; however, there are still the so called chimeric
nodes, i.e., those present in more than one sub-graph, which
need to be identified and split apart (Afiahayati et al., 2015).
For this, ML (SVM) has been applied, e.g., as implemented in
MetaVelvet-SL (Afiahayati et al., 2015).

3. MACHINE LEARNING FOR MICROBIAL
GENOME CHARACTERIZATION

After assembly, the bacterial identity of the isolate usually
needs to be identified, followed by genome annotation and
identification of those genes that might be of clinical importance,
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such as antimicrobial resistance and virulence genes. For
this, genome characterization tools are being developed which
compare the assembled contigs to several reference databases of
known genes and reference genomes (Quainoo et al., 2017).

3.1. Bacterial Strain Identification
In this category, computational tools, which can assess bacterial
identity either directly from reads or from pre-assebled contigs
are used (Quainoo et al., 2017). Current tools are often based on
genome-wide sequence similarity statistics (Ciufo et al., 2018).
NCBI BLAST (the Basic Local Alignment Search Tool) is one of
the most popular alignment tools and its variant BLASTN can
be used to identify species from contigs using the Nucleotide
Collection (nr/nt) database, which contains all the microbial
sequences from the NCBI database (McGinnis and Madden,
2004). However, for large-scale read mapping, BLAST may be
too slow (Deneke et al., 2017). Generally, this approach may fail
to detect novel species in cases when closely related genomes
are not found in the reference databases (Deneke et al., 2017),
which are known to be biased toward cultivable pathogenic
bacteria (Farrell et al., 2018). Average Nucleotide Identity (ANI)
(Clingenpeel et al., 2015) has been recently proposed as an
alternative metrics for the identification and classification of
bacterial species, calculated by performing several pair-wise
comparisons of all sequences shared between two given strains.
This method is implemented within tools such as JSpeciesWS
(Richter et al., 2016), ANItools (Han et al., 2016), and OrthoANI
(Lee et al., 2016). Alternatively, composition-based methods such
as KmerFinder (Hasman et al., 2014) exist, which employ a
precomputed database compiled using 1,647 complete bacterial
genomes from the NCBI database divided into 16-mers. Given
an input file of unknown bacterial species, the program provides
an overview of all k-mers that match all the templates in the
database (i.e., the “standard” method) or counts all the k-mers
that might originate from a particular strain (i.e., the “winner
takes it all” method; Hasman et al., 2014). StrainSeeker (Roosaare
et al., 2017) starts with a Newick-format tree and derives a list
of k-mers for each node in that tree. Thereafter, the observed
vs. expected fractions of node-specific k-mers are being analyzed
to determine each node’s presence in the input data (Roosaare
et al., 2017). MESH (Ondov et al., 2016) is another k-mer
based strain identification algorithm that extends the MinHash
dimensionality-reduction technique by reducing large (sets of)
sequences into small, representative sketches, which are then
used to infer global mutation distances.

For shotgun metagenomics, Kraken (Wood and Salzberg,
2014) is a k-mer based approach, which tries to match 31-mers
from the input data to a pre-computed database, by considering
all reference genomes in which they occur and then mapping
these 31-mers to the lowest common ancestor. MetaPhlAn
(Segata et al., 2012) first collects all clade-specific marker genes,
i.e., from strain to phylum, into a database, which it then utilized
for the taxonomic classification of metagenomic shotgun data.

For 16S metataxonomics data, sequence alignment-based
approaches are usually used to assign taxa (Chaudhary et al.,
2015). For this, QIIME2 (Caporaso et al., 2010), MOTHUR
(Schloss et al., 2009), and MG-RAST (Meyer et al., 2008)

are the most commonly used pipelines. Overall, the major
limitations of the above approaches are the computational
time requirements and dependence on the reference databases
(Chaudhary et al., 2015).

To overcome these limitations, ML-based approaches have
been proposed. NBC (Rosen et al., 2008) calculates k-mer
frequency profiles of all publicly available microbial reference
genomes and uses these profiles to train a naive Bayesian classifier
to identify the respective genome by any query fragment.
TACOA (Diaz et al., 2009) achieves taxonomic classification
by combining the k-nearest neighbor algorithms with kernel-
based ML strategies. Yet another ML-based approach, PaPrBaG
(Pathogenicity Prediction for Bacterial Genomes), has been
recently proposed, which, in addition to taxonomic classification,
also aims to predict the pathogenic potential of the respective
strains (Deneke et al., 2017).

For shotgun metagenomics, PhyloPythiaS+ (McHardy et al.,
2007; Gregor et al., 2016) is a sequence composition-based
method that uses hierarchical structured-output by employing a
multiclass support vector machine (SVM) classifier.

For 16S metataxonomics data, prediction-based ML
approaches for taxonomic classification have started to emerge,
as opposed to homology-basedmethods (Chaudhary et al., 2015).
For example, BLCA is a tool for taxonomic classification of 16S
rRNA gene sequences, which combines sequence similarity to
the reference database with Bayesian posterior probabilities to
weight the degree of sequence similarity of the query sequence to
every hit from the database (Gao et al., 2017). 16S Classifier is a
similar tool that deploys RF and is compatible with the QIIME2
pipeline (Chaudhary et al., 2015).

3.2. Bacterial Genome Annotation
Bacterial genome annotation tools explore which genes are
contained in the respective bacterial genome by retrieving the
relevant features (i.e., coding regions and their putative products,
non-coding RNAs and signal peptides) from raw reads or
pre-assembled contigs (Seemann, 2014; Quainoo et al., 2017).
PROKKA (Seemann, 2014) is a software suite unifying several
feature prediction tools, such as Prodigal (Hyatt et al., 2010) for
the identification of coding sequences, RNAmmer (Lagesen et al.,
2007), Aragorn (Laslett and Canback, 2004), and Infernal (Kolbe
and Eddy, 2011) for the prediction of ribosomal, transfer and
non-coding RNA genes, respectively, as well as SignalP (Petersen
et al., 2011) to identify signal leader peptides. RAST/myRAST
(Overbeek et al., 2014) is another popular genome annotation
tool, which uses a SEED k-mer-based annotation algorithm to
predict coding sequences, as well as tRNAs and rRNAs.

For shotgun metagenomics, there are several model-based
approaches, including MetaGeneAnnotator (Noguchi et al.,
2008) or MetaGene (Noguchi et al., 2006), both using Markov
chain models to identify genes.

However, the main limitation of these models is that they
require optimization of thousands of parameters, which limits
their practical use (Zhang et al., 2017). Sequence similarity-
based methods, on the other hand, are considered rather time-
consuming and computationally demanding, especially when
applied to shotgun metagenomic data. This poses a bottleneck
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for efficient sequencing data analysis (Sharma et al., 2015).
Moreover, RAST is known to have difficulties dealing with mixed
or contaminated cultures, as its algorithm relies on closely related
isolates (Quainoo et al., 2017). In addition, these methods are
used to find genes with previously known homologous proteins
and cannot predict novel genes (Zhang et al., 2017).

Unfortunately, 16S metataxonomic data does not provide any
information on functional genes and proteins for the microbial
communities being analyzed (Aßhauer et al., 2015); however,
these can be predicted using pangenome-based approaches such
as Tax4Fun (Aßhauer et al., 2015).

Alternatively, ML (RF) and similarity-based (RAPsearch2)
approaches have been combined in a tool called “Woods”
(Sharma et al., 2015); however, it is currently restricted to the
prediction of protein coding sequences only.

For shotgun metagenomics, several ML-based methods have
been proposed, such as Orphelia (Hoff et al., 2009), MGC
(El Allali and Rose, 2013), MetaGUN (Liu et al., 2013), andMeta-
MFDL (Zhang et al., 2017), e.g., the latter using a deep stacking
networks learning model and multiple genomic features (i.e.,
the usage of monocodons and monoamino acids) for identifying
genes from metagenomic fragments (Zhang et al., 2017).

3.3. Virulence Gene Detection
In this part of the analysis, the aim is to explore whether the
previously annotated genes infer virulence, i.e., some degree
of pathogenicity to the host (Quainoo et al., 2017). However,
virulence gene detection does not necessarily have to follow the
genome annotation step. It can also be performed either using
reference database entries as BLAST queries against assembled
genomes or mapping raw reads against reference database entries
(or any other collection of genes of interest). Also, predicted (but
not annotated) coding DNA (or predicted protein) sequences can
be screened for virulence gene content. Themost commonly used
reference database for virulence genes is the Virulence Factor
Database (VFDB) (Chen et al., 2016), containing information on
951 bacterial strains and 1,075 virulence factors (as of March
2019), including different characteristics, such as whether a
virulence factor is used in offensive or defensive actions. Recently,
VFDB has been supplemented with VFanalyzer, a Web-based
tool that builds orthologous groups of genes using a query
genome and pre-analyzed reference genomes and then performs
sequence similarity searches among the VFDB gene collection
for atypical and strain-specific virulence genes (https://doi.org/
10.1093/nar/gky1080). Frequently used tools to predict virulence
genes from sequencing data include VirulenceFinder (Joensen
et al., 2014), a Web-based tool that uses BLASTN (Camacho
et al., 2009) and contains virulence markers for four microbes:
Listeria, S. aureus, E. coli, and Enterococcus. Another Web-based
tool is PathogenFinder (Cosentino et al., 2013), which assumes
that bacterial pathogenicity (or lack of it) depends on groups of
proteins that are consistently found together in either pathogens
or non-pathogens. PathogenFinder aims to identify such groups
of proteins.

Several ML-based approaches have been proposed for
virulence gene detection. VirulentPred (Garg and Gupta, 2008)
is a bi-layer cascade SVM-based prediction method, where

the first layer classifiers are being trained using different
protein sequence features, such as amino acid and dipeptide
composition. The results from the first layer are then passed to
the second layer classifier, which utilizes sequence similarity and
a BLAST database containing both virulence and non-virulence
genes. BacFier (Iraola et al., 2012) uses known pathogenic
vs. non-pathogenic strains and their genetic features (e.g., the
presence or absence of different virulence-related genes) to train
ML algorithms in predicting pathogenicity of input bacterial
genomes. Finally, as described above, PaPrBaG (Deneke et al.,
2017) also aims to predict the pathogenic potential of microbial
strains by means of training on a large number of established
pathogenic species in comparison with non-pathogenic bacteria
and their sequence features. PaPrBaG is a RF-based method
for the assessment of the pathogenic potential of a set of reads
belonging to a single genome. It helps in the prediction of novel,
unknown bacterial pathogens. PaPrBaG provides prediction in
contrast with other approaches that discard many sequencing
reads based on the low similarity to known reference genomes.

3.4. Antimicrobial Resistance Gene
Detection
In this step, computational analysis is used to explore whether
the previously annotated bacterial genes infer antimicrobial
resistance, i.e., the ability of microorganisms to grow despite
exposure to antimicrobial substances (Quainoo et al., 2017).
However, again, the same is true as for virulence gene
prediction—this step does not necessarily have to follow the
genome annotation step, e.g., it can be also conducted right
after assembly. Frequently used tools for this purpose include a
Web-based tool ResFinder (Zankari et al., 2012) and RGI/CARD
(Jia et al., 2017). Both perform homology-based resistome
prediction: ResFinder (Zankari et al., 2012) uses BLAST, whereas
RGI/CARD (Jia et al., 2017) makes use of a manually curated
resource containing antimicrobial resistance genes, proteins and
mutated sequences—CARD (Jia et al., 2017). Resently, NCBI has
developed AMRFinder (Feldgarden et al., 2019) which utilizes
the NCBI’s curated AMR gene database - Bacterial Antimicrobial
Resistance Reference Gene Database-, currently including 4,579
antimicrobial resistance gene proteins and over 560 hidden
Markov models (HMMs).

ML approaches for the same task include DeepARG (Arango-
Argoty et al., 2018), a deep learning approach using neural
networks and previously curated databases, such as CARD
(Jia et al., 2017), for predicting antibiotic resistance genes and
annotating them to 30 known antibiotic resistance categories,
creating a manually curated database, DeepARG-DB. PATRIC
(Antonopoulos et al., 2017) uses the genomes in its in-house
database and their antimicrobial resistance-related metadata,
such as susceptibility or resistance to a given antibiotic, to build
AdaBoost (adaptive boosting) ML-based classifiers and predict
those regions within a bacterial genome that are associated with
antimicrobial resistance (Davis et al., 2016). When a genome
is submitted to the PATRIC annotation service, these classifiers
are used to predict if the organism is susceptible or resistant to
an antibiotic. However, PATRIC is limited to identifying only
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genes encoding resistance to certain antibiotics (beta lactam,
carbapenem, and methicillin) and in certain bacterial species.
In this context, ML has also been applied to identify genomic
features possibly related to minimum inhibitory concentration
(MIC) of an antibiotic, i.e., its lowest concentration preventing
visible growth of bacterium in vitro, e.g., for Nontyphoidal
Salmonella (Nguyen et al., 2019).

4. MACHINE LEARNING FOR MICROBIAL
COMPARATIVE GENOMICS

After characterization of an individual genome is accomplished,
the next step is to perform comparative genomics and detect
relatedness between strains, identify potentially clonal strains
and pinpoint the putative source of the outbreak (Brown et al.,
2019). Bacterial species should be determined before performing
comparative genomic analyses, since most algorithms will
perform better when closely related bacterial strains can be
used. Comparative genomics methods can be largely divided
into three groups: (i) reference/non-reference-based SNP-based
methods, (ii) pangenome-based and (iii) core genome/whole-
genome multilocus sequence typing (MLST).

4.1. Reference-Based SNP Methods
Standard strategies to identify genetic variation, which occurs
in a strain, usually focus on single nucleotide polymorphisms
(SNPs). Raw reads are mapped to a perform better when
closely related, high-quality reference genome, identifying SNPs
as variations in relation to that reference genome. CSI Phylogeny
(Kaas et al., 2014), Lyve-SET (Katz et al., 2017), CFSAN SNP
Pipeline (Davis et al., 2015), SPANDx (Sarovich and Price, 2014),
and SNVPhyl (Petkau et al., 2017) include such pipelines. In
addition, there are also tools such as Harvest/Parsnp (Treangen
et al., 2014) that, instead of trying to performing whole-genome
alignment, focus on constructing a core-genome alignment,
i.e., identifying a set of orthologous sequence conserved in
all aligned genomes. However, reference-based SNP methods
are generally recommended only if a high-quality reference
genome exists (Brown et al., 2019), when higher resolution is
required than can be achieved using cgMLST/wgMLST, or when
a cgMLST/wgMLST scheme is not available (Katz et al., 2017).

4.2. Reference-Free SNP Analysis
Reference-Free SNP Analysis does not require alignment to
a reference genome to identify SNPs. Such examples include
kSNP (Gardner et al., 2015), a k-mer-based approach where
the user provides the length of the flanking sequence including
the SNP, i.e., the SNP is at the central base of the k-mer, and
the flanking (k-1)/2 bases on both sides of the SNP define the
locus. First, kSNP counts all k-mer oligos for each input genome.
This is followed by several filtering steps: (i) the k-mer list is
then condensed so that counts reflect both occurrences on the
forward and reverse strands; (ii) for raw reads, kSNP discards
k-mers that occur only once, as such singletons are likely to
be sequencing errors; (iii) for each genome, kSNP discards k-
mers that have more than one central base variant for a given
locus. Finally, kSNP merges and sorts all k-mers across all user
provided genomes and looks for SNP loci in themerged list. Then

it compares the SNP loci for each genome with the merged list to
identify the SNPs in each genome, reporting the locus and the
central base, i.e., the SNP, for every genome containing that locus
(Gardner et al., 2015).

4.3. Pangenome-Based Analysis
Pangenome-based analysis classifies genes as the so called core
genes, found in all bacterial strains under comparison, and into
accessory genes that can be found only in several but not all
strains (Page et al., 2015). Isolates are then clustered based on
their accessory genome (Page et al., 2015). A well-known tool
for pangenome-based analysis is Roary (Page et al., 2015). First,
it identifies orthologous genes by sequence comparison. This is
followed by grouping of these genes into clusters. Finally, the
relationships of the clusters are then represented using a graph,
constructed based on the order in which their occur in the
input data (Page et al., 2015; Brown et al., 2019). Other tools for
pangenome-based analysis include PanWeb (Pantoja et al., 2017)
and Pan-Seq (Laing et al., 2010).

4.4. Core Genome/Whole-Genome
Multi-locus Sequence Typing (MLST)
Core genome/whole-genome multi-locus sequence typing
(MLST) are widely used methods for outbreak investigations,
enabling standardized outbreak management protocols (Nadon
et al., 2017; Brown et al., 2019). Conventional MLST usually
uses only seven genes/loci to derive sequence types (STs), and
is not always able to distinguish between outbreaks resulting
from closely related bacterial variants (Pearce et al., 2018). Core
genome MLST (cgMLST) schemes extend the conventional
MLST, including genes/loci present in 95% to 99% of isolates,
hence offering increased resolution to detect isolate-specific
genotypes, as well as novel transmission events (Nadon et al.,
2017; Brown et al., 2019). If two strains display identical cgMLST
profiles, these are being grouped into one cluster type (CT),
which can be shared using dedicated databases (Quainoo et al.,
2017). CgMLST is implemented within the Ridom SeqSphere+
commercial software suite (JÃijnemann et al., 2013). However,
it is also being utilized by EnteroBase (Alikhan et al., 2018),
Bacterial Isolate Genome Sequence Database (BIGSdb) (Jolley
and Maiden, 2010) and chewBBACA (Silva et al., 2018). On the
other hand, whole-genome MLST (wgMLST) further extends
cgMLST, as it also considers the accessory genes to detect
lineage-specific loci. This method is part of the BioNumerics
(Applied Maths) software suite since version 7.5 (http://www.
applied-maths.com/) and is also implemented within EnteroBase
(Alikhan et al., 2018). For outbreak investigations, cgMLST is
more suited, as it uses species-specific nomenclature; however,
wgMLST might offer higher resolution to discriminate outbreak
strains that form closely related clusters (Nadon et al., 2017;
Brown et al., 2019). Of note, however, both methods strongly
depend on the availability of high-resolution isolate typing
schemes (Pearce et al., 2018), which may not be available for
lesser-studied foodborne pathogens, due to the lack of publicly
available WGS data (Carroll et al., 2019).

To the best of our knowledge, ML-based tools do not seem
to have gained a lot of attention in comparative genomics.
The Bayesian Analysis of Population Structure (BAPS)/hierBAPS
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(Cheng et al., 2011, 2013) tool seems to be the only ML-based
tool for comparative genomics. BAPS/hierBAPS was created by
first collecting large data sets of multi-locus DNA sequence types
(STs), as well as the respective metadata (e.g., host organism,
serotype) from several MLST databases PubMLST (http://www.
pubmlst.org). This data was then utilized to divide the available
pathogens into subsets of different evolutionary lineages or
geographically related sub-populations, as determined based on
molecular [dis]similarities within the database. Then a user-
submitted set of bacterial isolates can be classified to one of
these groups, using a Bayesian model-based ML algorithm.
In addition, recently, several other studies have combined
comparative genomics with ML approaches for the classification
of outbreak strains (Diaz et al., 2017) or source tracking during
outbreaks (Buultjens et al., 2017; Zhang et al., 2019). Diaz et al.
(2017) identified six distinct subtypes of genomes, as well as
their respective SNPs/loci, and trained RF to separate input
genomes into the respective subtypes. Buultjens et al. (2017)
used core genome variation and classification based on principal
components to identify genomic signatures specific to source
of interest, which were further used to predict the origin of
input isolates (Buultjens et al., 2017). Zhang et al. (2019) used
a set of genetic features extracted from Salmonella Typhimurium
genomes, inlcuding core genome SNPs, insertion/deletions and
accessory genes to train a RF classifier in discriminating isolates
from swine, bovine, poultry or wild bird sources. Wheeler et al.
(2018) investigated genomic signatures related to host adaptation
in Salmonella enterica. First, hidden Markov models were used
to identify patterns of sequence variation and their potential
functional consequences. Thereafter, RF was utilized to identify
genes that displayed differences between lineages with different
phenotypes (Wheeler et al., 2018). Sharma et al. (2014) used
MLST to differentiate isolates and categorize an unknown isolate
as either representing a true infection or a likely contaminant.
In particular, the seven genotypes derived from MLST were used
to train three different ML algorithms (SVM; Classification And
Regression Tree Analysis - CART; and a Naive Nearest-Neighbor
Classifier) to segregate isolates of known class (i.e., pathogen or
likely contaminant) on the basis of their alleles, which were then
used to classify an unknown isolate by its MLST allele profile.

5. MACHINE LEARNING FOR THE
INFERENCE OF MICROBIAL
PHYLOGENOMICS

Finally, comparison tools can be used for the inference of
microbial phylogenomics of pathogenic isolates and generate
detailed networks reflecting the transmission events of outbreak
strains between different patients (Quainoo et al., 2017). In
particular, phylogenomics can reveal whether two isolates are
nearly identical or only distantly related and which might
represent the initial outbreak source strain (Quainoo et al., 2017).
Maximum likelihood is frequently applied when characterizing
pathogens from foodborne outbreaks. RAxML (Randomized
Axelerated Maximum Likelihood) (Stamatakis et al., 2005) and
FastTree (Price et al., 2009) are two maximum likelihood based

phylogenomics estimators, which work by first constructing an
initial tree, which is then further refined in several optimization
steps and tree rearrangements to increase the likelihood
that the respective tree reflects the evolutionary relationships
of the input sequences. These software packages are often
included in the genome comparison pipelines mentioned in
the previous chapter such as CSI Phylogeny (Kaas et al.,
2014) and Lyve-SET (Katz et al., 2017) for streamlined
production of actionable results. Alternatively, distance matrix-
based methods such as neighbor joining (Saitou and Nei,
1987) (e.g., part of the PHYLIP Shimada and Nishida, 2017
package) as well as Bayesian analysis-basedmethods (e.g., BEAST
Drummond and Rambaut, 2007) have been proposed to study
microbial phylogenomics.

Most recently, Suvorov et al. (2019) has proposed an approach
that uses convolutional neural networks (CNNs) for phylogenetic
inference. In particular, CNNs are being trained to extract
phylogenetic signal from a multiple sequence alignment, which
is then used to reconstruct and discriminate alternative tree
topologies. Of note, however, this study used an alignment of only
four sequences.

6. CONCLUSIONS

Over the last years, several ML-based tools have been developed
for different steps of bacterial WGS analysis. However, some
areas of bacterial bioinformatics (i.e., genome assembly and
strain identification) have seen more development than others
(i.e., phylogeny estimation). Overall, AI and its sub-discipline
ML could lead to actionable knowledge in diverse ranges
of sectors, where multiple complex challenges need to be
addressed, including the outbreak investigations of foodborne
pathogens and antimicrobial resistance (Gibbs, 2014; Quainoo
et al., 2017; Ching et al., 2018), considering that WGS may
replace conventional analysis methods already in the near
future (Quainoo et al., 2017). In this scenario, the success of
outbreak investigations will largely depend on how fast and
accurate WGS data can be produced and analyzed (Quainoo
et al., 2017). ML-based algorithms could further speed-up
such investigations, especially as the number of complete
microbial genomes in NCBI RefSeq (http://www.ncbi.nlm.nih.
gov/genome) is rapidly growing (Tatusova et al., 2015), providing
a valuable resource for training ML classifiers. However, even
if substantially improving the accuracy and speed of WGS
algorithms, a number of limitations still need to be overcome
in order to fully utilize the power of ML for outbreak
screenings. WGS analysis tools often rely on sequence similarity
and hence strongly depend on reference databases (Deneke
et al., 2017; Zhang et al., 2017). Moreover, such methods are
rather time-consuming and computationally demanding, thus
representing a bottleneck for efficient sequence data analysis
(Sharma et al., 2015). ML algorithms could potentially increase
the accuracy and speed of clinically and epidemiologically
relevant predictions (Farrell et al., 2018). However, to yield
accurate predictions, besides the choice of the most appropriate
algorithm and a set of well-defined inputs and outputs of
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interest, ML-based strategies generally require large amounts
of high-quality training data (Baker et al., 2018). This presents
a limitation, as currently microbial genome databases are
known to be biased toward cultivable pathogenic bacteria. The
current lack of large and comprehensive databases can be
considered as the key bottleneck for the application of ML
methods (Farrell et al., 2018). Hence, future improvements
can be expected to come from better data curation and
collection, in addition to development of new and improved
classification algorithms (Farrell et al., 2018). Therefore, WGS
data collection must be done in parallel with comprehensive
and standartized metadata collection such as phenotypic
profiling using traditional microbiology methods for isolate
characterization (e.g., phenotypic profiling of antimicrobial
resistance) (Maurer et al., 2017).

Currently, sequencing of bacterial genomes is mostly
performed on Illumina instruments, producing relatively
short reads with limited resolution of low-complexity regions
(Quainoo et al., 2017). Alternatively, ultra-long read technologies
such as ONT (https://nanoporetech.com/) and PacBio SMRT
(https://www.pacb.com/smrt-science/smrt-sequencing/) are
increasingly being used to obtain complete microbial genomes.
However, both technologies are still three and almost seven times
more expensive in comparison to Illumina short-read sequencing
(Brown et al., 2017; Sekse et al., 2017; Nicola De Maio, 2019).
Moreover, both technologies still display rather high error rates
(Mahmoud et al., 2017), which makes themmore suitable for gap
closure in draft genomes using hybrid methods (Quainoo et al.,
2017). Hence, error-profile-aware ML-algorithms implementing
hybrid strategies that make use of more accurate short reads in
conjunction with ultra-long reads may need to be considered for
future applications.

The selection of a harmonized bioinformatics strategy or
pipeline that would perform consistently across outbreak
investigation situations around the world, reaching consensus
on desired standards represents another challenge for the
routine implementation of WGS analysis (Quainoo et al.,
2017). Especially, considering that the numbers of commercial
analysis software platforms, as well as open-source, application-
specific analysis tools are increasing, a rigorous assessment and
benchmarking of their quality is urgently needed (Quainoo
et al., 2017). This would also be a prerequisite for a systematic
comparison between ML-based vs. conventional methods.
Nevertheless, in order to perform such comparisons on a
global scale, WGS data storage and sharing would be of
utmost importance. Although technically feasible, this will
require us to solve several issues of ownership and data
privacy, making sure that these are being adequately protected
(Quainoo et al., 2017).
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