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Legal Cannabis production is now experiencing growing consumer demand due to 
changing legislation around the world. However, because of heavy restrictions on 
cannabis cultivation over the past century, little scientific research has been conducted 
on this crop, in particular around use of members of the phytomicrobiome to improve 
crop yields. Recent developments in the field of plant science have demonstrated that 
application of microbes, isolated from the rhizosphere, have enormous potential to 
improve yields, in particular under stressful growing conditions. This perspective 
carefully examines the potential for plant growth-promoting rhizobacteria (PGPR) to 
improve marijuana and hemp yield and quality. It then explores the potential use of 
PGPR for biological control of plant pathogens, which is particularly interesting given 
the stringent regulation of pesticide residues on this crop. As an industry-relevant 
example, biocontrol of powdery mildew, a common and deleterious pathogen affecting 
cannabis production, is assessed. Finally, two PGPR in genera frequently associated 
with higher plants (Pseudomonas and Bacillus) were selected as case studies for the 
potential effects on growth promotion and disease biocontrol in commercial 
cannabis production.

Keywords: cannabis, cannabinoids, plant-growth promoting rhizobacteria, powdery mildew, biological control

INTRODUCTION

Cannabis production is drawing widespread attention because it can be  used as food, fiber, 
medicine, and a recreational drug (Jiang et al., 2006; Kostic et al., 2008). The specific application 
and value is largely based on the concentration and composition of cannabinoids in cannabis 
plants (Sawler et  al., 2015). The demand for cannabis is increasing as medical cannabis and 
cannabis production have been legalized in countries such as Colombia, Mexico, and Canada 
(Schuermeyer et  al., 2014).

In medical cannabis production, the female plant is more desirable than the male for 
production of cannabinoids, due to higher flower biomass and cannabinoid levels (Potter, 
2014). In commercial production, plants are propagated as cuttings from mother plants 
to produce genetically identical daughter plants to maintain population of desirable genotypes 
(Potter, 2014). Studies have attempted to determine which elements of cultivation and 
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genetics contribute to cannabis yield and cannabinoid levels/
composition. Cannabis yield is influenced by light intensity 
and plant density (Toonen et  al., 2006; Vanhove et  al., 2012; 
Backer et  al., 2019). However, little research has been 
conducted regarding the response of yield and cannabinoid 
levels/composition to the application of plant-growth 
promoting rhizobacteria (PGPR), although research has 
already demonstrated the important role of PGPR on the 
production of many other crop species (Mabood et al., 2014; 
Smith et  al., 2015). For example, the application of PGPR 
to plant roots can stimulate crop growth by providing  
mineral nutrition to plants. PGPR can also improve crop 
tolerance to abiotic stresses (e.g., drought and salinity)  
and biotic stress (e.g., plant pathogens) (Yan et  al., 2016; 
Takishita et  al., 2018).

Exploitation of PGPR from the phytomicrobiome (plant 
microbiome) will play an important role in industrial cannabis 
production, and there is a clear need to better understand 
the relationship between the phytomicrobiome and cannabis 
yield, cannabinoid levels/composition and disease resistance. 
This perspective summarizes knowledge about factors that 
contribute to cannabis yield and secondary metabolite 
biosynthesis. In addition, we  examine the potential role of 
PGPR, with a focus on two widely prevalent genera (Pseudomonas 
and Bacillus), in achieving high yields, desirable cannabinoid 
profiles, and disease resistance in cannabis.

STRATEGIES TO INCREASE CANNABIS 
YIELD AND QUALITY

To achieve optimal quality for medical use, indoor marijuana 
cultivation aims to maintain highly controlled growth 
conditions, with stable, high-quality lighting, and temperature 
and humidity control. Production conditions that influence 
marijuana yield and cannabinoid concentration include plant 
genotype and environmental conditions including temperature, 
water availability, and fertilizer application during the vegetative 
growth period, photoperiod, light type, and quality and the 
development stage of the plant (Lydon et  al., 1987; Tipparat 
et  al., 2012; Marti et  al., 2014; Caplan et  al., 2017). At a 
physiological level, plant growth regulators can also affect 
cannabinoid accumulation. For instance, application of 
gibberellic acid (GA3) can increase or decrease the accumulation 
of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) 
in cannabis leaves while abscisic acid (ABA) and cycocel 
increase THC content (Mansouri et  al., 2011; Singh et  al., 
2011). The mechanism underlying these effects is not currently 
understood. One hypothesis is that the application of GA3 
contributes to an increase of 1-aminocyclopropane-
1-carboxylate (ACC), which subsequently increases ethylene 
levels in the plant. According to this theory, higher levels 
of ethylene result in increased THC and CBD contents 
(Mansouri et  al., 2011).

In contrast, industrial/fiber hemp is grown outdoors, with 
a view to maximum biomass and yield at minimum production 

cost. Growing conditions, such as temperature, moisture, soil, 
seeding density, and photoperiod determine the yield and 
quality of hemp (Vogl et  al., 2004; Hoppner and 
Mange-Hartmann, 2007; Townshend and Boleyn, 2008).

PLANT-GROWTH PROMOTING 
RHIZOBACTERIA FOR CANNABIS 
PRODUCTION

Plant growth-promoting rhizobacteria are microbes associated 
with plant roots that promote plant growth by (1) providing 
enhanced mineral nutrition, (2) producing plant hormones or 
other molecules that stimulate plant growth and prime plant 
defenses against biotic and abiotic stresses, or (3) protecting  
plants against pathogens by affecting survival of pathogenic 
microorganisms (Podile and Kishore, 2006; Ortíz-Castro et  al., 
2009; Bhattacharyya and Jha, 2012; Nandal and hooda, 2013; 
Vacheron et al., 2013; Ahemad and Kibret, 2014; Yan et al., 2016; 
Rosier et al., 2018). PGPR are well-recognized as promising inputs 
for sustainable agricultural production (Bhattacharyya and Jha, 2012; 
Gupta et  al., 2015; Backer et  al., 2018).

PGPR-associated yield increases in other crops have been 
studied extensively. Many investigations have shown that PGPR 
strains can stimulate the growth of plants, including rice (Etesami 
et  al., 2014), maize (Akladious and Abbas, 2012; Głodowska 
et  al., 2016), soybean (Jayasinghearachchi and Seneviratne, 
2004; Ramesh et  al., 2014), and wheat (Dilfuza and Zulfiya, 
2009). These yield increases have been associated with increased 
germination percentage (Gholami et  al., 2011), seedling vigor 
(Bharathi et al., 2004), root and shoot growth, and total biomass 
production (van Loon et  al., 1998).

Yield and Quality Enhancements 
Associated With Plant-Growth Promoting 
Rhizobacteria
In the case of cannabis production, there is a lack of data 
about the use of PGPR due to past legal restrictions on 
production of this crop. There are only two publications (Conant 
et  al., 2017; Pagnani et  al., 2018) that report data regarding 
the benefits of PGPR inoculation on growth and yield of 
marijuana and hemp. Pagnani et  al. (2018) showed that a 
consortium of PGPR (Azospirillum brasilense, Gluconacetobacter 
diazotrophicus, Burkholderia ambifaria, and Herbaspirillum 
seropedicae) improved the growth and physiological status of 
hemp plants and increased secondary metabolite accumulation 
and antioxidant activity. Conant et  al. (2017) demonstrated 
that the microbial biostimulant product Mammoth P™ promoted 
hemp growth at the bloom stage but did not report effects 
on cannabinoid concentration. Previous studies have shown 
that PGPR inoculation alters secondary metabolite accumulation 
in other plant species (Kim et  al., 2011; Vacheron et  al., 2013; 
Braga et  al., 2016; Mishra et  al., 2018); this leads us to 
hypothesize that PGPR inoculation will alter cannabinoid levels/
composition in cannabis. It is critical to determine the effect 
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of PGPR on the yield of cannabis and on the biosynthesis 
and accumulation of cannabinoids, in particular, in plant tissues 
or organs at various growth stages.

Our laboratory has already illustrated that bacteria isolated 
from one plant species can trigger growth promotion and 
induce stress responses in other species, including crop plants  
(Smith et  al., 2015; Fan et  al., 2017; Ricci et  al., 2019), which 
suggest that known PGPR may stimulate growth in cannabis.  
Moreover, these effects can be induced by inoculating a bacterium 
or a consortium of bacteria onto plants (Souza et  al., 2015). 
We  hypothesize that future research will demonstrate that 
PGPR-based inoculants can alter (1) cannabinoid accumulation,  
(2) increase flower yield for marijuana cultivars and seed and 
fiber yield for hemp cultivars, (3) protect against plant pathogens 
by production of antimicrobial compounds and priming of 
plant immune responses, and (4) reduce the impact of abiotic 
stresses associated with intensive indoor marijuana cultivation 
(e.g., salinity stress) and challenges associated with climate 
change, for outdoor hemp cultivation (e.g., drought, high 
temperatures, flooding).

Biological Control and Disease Resistance 
Associated With Plant-Growth Promoting 
Rhizobacteria
Currently, PGPR species of the genera Agrobacterium, 
Azospirillum, Azotobacter, Bacillus, Burkholderia, Delftia, 
Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia 
are used commercially as biocontrol agents (Glick, 2012). Some 
of them are already used in the production of various plants, 
to inhibit diseases via a range of mechanisms (Compant et  al., 
2005). For instance, Pseudomonas fluorescens controls downy 
mildew caused by Sclerospora graminicola of pearl millet 
(Pennisetum glaucum) (Raj et  al., 2003) and Bacillus spp. can 
control bacterial leaf blight of rice caused by Xanthomonas 
oryzae (Udayashankar et  al., 2011). Some Pseudomonas and 
Bacillus species are used as biological control agents against 
pests and plant diseases of potato (Hultberg et  al., 2010) and 
sugar beet (Bargabus et  al., 2004).

PGPR can help control plant pathogens by (1) direct 
antagonism against potential pathogens (Beneduzi et al., 2012), 
(2) competition for space and nutrients (Kumari and Srivastava, 
1999), and/or (3) activating induced systemic resistance (ISR) 
in plants, to prevent infection by specific pathogens (Kloepper 
et al., 1980, 2004; van Loon et al., 1998; Jetiyanon and Kloepper, 
2002; Van et al., 2009; Mishra et al., 2010; Egamberdieva et al., 
2017). ISR is mediated by jasmonate (JA)- and ethylene 
(ET)-sensitive pathways (van Loon et al., 1998; Spoel and Dong, 
2012). However, the ability of PGPR strains to elicit ISR appears 
to depend on the host/rhizobacterium combination (Beneduzi 
et  al., 2012). When successfully activated by PGPR, ISR can 
enhance the defense capacity of plants by priming for potentiated 
expression of defense genes (Tjamos et  al., 2005). It is clear 
that PGPR strains, inoculated onto plants, can increase the 
ability of plants to defend against specific pathogens by eliciting 
the production of endogenous plant hormones, such as IAA 

and GA3. Pieterse et al. (2000) found that following the induction 
of ISR, plants have an enhanced capacity to convert ACC to 
ethylene, which provides a greater potential to produce ethylene. 
However, Beneduzi et al. (2012) found that ET- and JA-dependent 
plant responses can be triggered without a concomitant increase 
these phytohormones, working instead by enhancing sensitivity 
to these hormones. Therefore, future research should attempt 
to determine if the application of PGPR can control infection 
of cannabis plants by pathogens due to ISR activation via 
production of plant hormones and/or increased expression of 
defense-related genes.

Powdery Mildew Control in Indoor Cannabis 
Cultivation: An Example of Potential Plant-Growth 
Promoting Rhizobacteria Application
Cannabis can be infected by a plethora of phytopathogens, leading 
to reduced plant productivity from the seedling to harvest stages 
(McPartland, 1996; Kusari et al., 2013). For example, Botrytis cinerea 
and Trichothecium roseum (McPartland, 1996) are commonly found 
on marijuana plants, especially outdoors, and can seriously damage 
the plant by attacking leaves, flowers, stems and branches. Indoor-
produced cannabis plants are threatened by Trichothecium roseum 
(McPartland, 1991) and Golovinomyces sp. (Thompson et al., 2017), 
which attack the leaves and flowers, causing pink rot and powdery 
mildew diseases, respectively. It is highly desirable to effectively 
address these threats, to prevent yield losses in cannabis production.

Powdery mildew is a severe fungal disease that damages 
leaves and buds at all growth stages, and is especially common 
in indoor cannabis production, due to high humidity levels. 
Powdery mildew infection causes leaves to senescence prematurely 
affecting photosynthetic rate and yield, and reducing flower 
bud quality (McPartland, 1996; McPartland and Cubeta, 1997). 
Powdery mildew spores destroy the cannabis resin leading to 
reductions in the medicinal value of marijuana plants (McPartland, 
1996). Thus, there is a significant need to develop effective 
methods to control powdery mildew in cannabis production.

Biological control of plant pathogens, including powdery 
mildew, provides several advantages over existing chemical 
control measures. To date, the application of chemical controls 
such as bicarbonates or refined horticultural oils, has been 
used to control powdery mildew in other crops (Fernandez 
et al., 2006). However, these sprays may injure young seedlings, 
and may have deleterious effects on soil structure (McPartland 
and Hillig, 2008). Bacillus subtilis has been shown to effectively 
control strawberry and cucurbit powdery mildew caused by 
Sphaerotheca macularis (Lowe et  al., 2012) and Podosphaera 
fusca (García-Gutiérrez et  al., 2013), respectively, while 
Pseudomonas aeruginosa can control pea powdery mildew when 
applied as a foliar spray (Bahadur et  al., 2007). These results 
suggest that inoculating cannabis with PGPR may assist in 
controlling powdery mildew, representing a substantial advantage 
over currently available chemical control methods. In addition, 
fungicide residues could be  eliminated on plant parts destined 
for human consumption (buds for marijuana and seeds for 
hemp) if an effective biocontrol technology could be  applied 
as a root drench, instead of as a foliar spray.
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EXAMPLES OF WIDELY PREVALENT 
PHYTOMICROBIOME MEMBERS: 
PSEUDOMONAS AND BACILLUS FOR 
GROWTH PROMOTION AND DISEASE 
CONTROL IN CANNABIS

Pseudomonas
In general, Pseudomonas spp. show good colonization in 
numerous ecological niches including soil, water, and plant 
surfaces (Parret et  al., 2003; Humphris et  al., 2005; Schreiter 
et  al., 2018) and can inhibit the growth of plant pathogens 
and promote plant growth. Pseudomonas strains can promote 
plant growth by producing plant hormones such as IAA and 
ACC deaminase (Khan et al., 2016) and function as biocontrol 
agents by producing various pathogen-deterrent compounds, 
including antibiotics, polysaccharides and siderophores (Beneduzi 
et al., 2012; Santoyo et al., 2012; Souza et al., 2015). Pseudomonas 
can induce ISR and to date, experiments with Pseudomonas 
have concentrated on elucidating the molecular and physiological 
mechanisms that are the basis of ISR (Kloepper et  al., 2004). 
Hultberg et al. (2010) demonstrated that strains of Pseudomonas 
can significantly reduce potato late blight disease caused by 
the oomycete Phytophthora infestans.

Bacillus
Bacillus spp. promote plant growth by (1) excreting cytokinins 
into the rhizosphere (Arkhipova et al., 2005) and (2) stimulating 
the synthesis of phytohormones, such as IAA (Shao et  al., 2015) 
and GA3 (Bottini et  al., 2004; Idris et  al., 2007). Bacillus spores 
act as biological control agents by inhibiting the growth of various 
pathogenic microbes (Emmert and Handelsman, 1999; Kumar 
et  al., 2011). Studies have shown that the impact of Bacillus 
spp. varies among crop species and that the application of Bacillus 
can improve agronomic traits of crop plants and impart enhanced 
tolerance to some pathogens (Choudhary, 2011; Lyngwi and Joshi, 
2013). Treatment with Bacillus spp. elicited ISR in most of the 
plant species evaluated and also altered secondary metabolite 
biosynthesis in plants; both effects contributed to protection 
against plant diseases (Kloepper et  al., 2004). In contrast to 
Pseudomonas, using Bacillus strains to trigger the ISR pathway 
in plants is dependent on the ethylene and jasmonate pathways 
(Santoyo et  al., 2012). To date, studies on Bacillus spp. as a 
biocontrol agents and elicitors of ISR have mainly focused on 
aspects of microbial ecology, the resilience of plants with activated 
ISR and direct plant growth promotion (Kloepper et  al., 2004).

Overall, previous research has shown that these two PGPR 
genera have strong influences on plant growth promotion through 
the production of various substances (Table 1; Canbolat et  al., 
2006; Rajkumar et  al., 2006; Wani et  al., 2007; Poonguzhali et  al., 
2008; Rajkumar and Freitas, 2008; Tank and Saraf, 2009; Wani 
and Khan, 2010; Ma et  al., 2011; Ahemad and Kibret, 2014), 
but their application remains virtually unexplored for cannabis 
production. Based on the work from our laboratory (Fan et  al., 
2018; Ricci et  al., 2019), Pseudomonas and Bacillus are very 
common and often dominant bacteria associated with both cultivated 
and wild plants. Given the results of previous studies (Table 1), 

it would be  very interesting to determine if any strains of these 
two extremely common PGPR strains have positive influences 
on cannabis yield and cannabinoid profiles. In addition, further 
studies should be  conducted to investigate the mode-of-action of 
these two strains, to identify commonalities and unique mechanisms 
of growth promotion and biocontrol of plant pathogens.

CONCLUSIONS AND FUTURE 
PROSPECTS

Cannabis is poised to become an important crop globally; its 
importance is increasing with the number of countries legalizing 
the use of cannabis for fiber production and medical applications. 
It is critical to investigate how to improve cannabis yields and 
alter cannabinoid concentration and composition. However, because 
cannabis use has been illegal in most of the world for the past 
century, there is a great shortage of reliable research data in this area.

The use of PGPR inoculants has contributed to improved 
yields for many other crops, as a result of nutrient mobilization, 
hormone production, disease control, and improved stress 
tolerance. Thus, study of the responses of cannabis to inoculation 
with PGPR could provide an efficient approach to improve 
cannabis yield and quality for medical use, and to do so in 
an environmentally sustainable way. PGPR also have the potential 
to provide an effective and acceptable strategy for control of 
key cannabis diseases, without the risks associated with pesticide 
residue. Overall, elements of the phytomicrobiome have the 
potential to increase the safety, yield and quality of cannabis.
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Wani et al. (2007)
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