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Insomnia is a type of sleep disorder which is associated with various diseases’
development and progression, such as obesity, type II diabetes and cardiovascular
diseases. Recent investigation of the gut-brain axis enhances our understanding of the
role of the gut microbiota in brain-related diseases. However, whether the gut microbiota
is associated with insomnia remains unknown. In the present investigation, leveraging
the 16S rDNA amplicon sequencing of V3-V4 region and the novel bioinformatic
analysis, it was demonstrated that between insomnia and healthy populations, the
composition, diversity and metabolic function of the gut microbiota are significantly
changed. Other than these, redundancy analysis, co-occurrence analysis and PICRUSt
underpin the gut taxa composition, signaling pathways, and metabolic functions
perturbed by insomnia disorder. Moreover, random forest together with cross-validation
identified two signature bacteria, which could be used to distinguish the insomnia
patients from the healthy population. Furthermore, based on the relative abundance
and clinical sleep parameter, we constructed a prediction model utilizing artificial neural
network (ANN) for auxiliary diagnosis of insomnia disorder. Overall, the aforementioned
study provides a comprehensive understanding of the link between the gut microbiota
and insomnia disorder.

Keywords: insomnia, random forest, artificial neural network, redundancy analysis, cross validation

INTRODUCTION

Sleep disorder is associated with various diseases’ development and progression, such as obesity,
type II diabetes (Knutson et al., 2007) and cardiovascular diseases (Drager et al., 2017). Insomnia
is the most prevalent sleep disorder, including sleep apnea, restless legs syndrome (RLS) and
narcolepsy, and affects a large proportion of the population on a situational, recurrent or chronic
basis and is also one of the most common complaints in medical practice (Morin et al., 2015). The
signature of insomnia is that patients have difficulty falling asleep, or staying awake, despite plenty
of opportunity to sleep. Like many other psychiatric disorders, insomnia is a multifactorial disorder,

Frontiers in Microbiology | www.frontiersin.org 1 August 2019 | Volume 10 | Article 1770

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.01770
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2019.01770
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.01770&domain=pdf&date_stamp=2019-08-13
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01770/full
http://loop.frontiersin.org/people/709175/overview
http://loop.frontiersin.org/people/774671/overview
http://loop.frontiersin.org/people/709571/overview
http://loop.frontiersin.org/people/513770/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01770 April 1, 2020 Time: 16:37 # 2

Liu et al. Gut Microbiota and Insomnia Prediction

though the detailed pathological aspects of insomnia remain
unclear. Thus, a better understanding of the pathophysiology of
insomnia may provide additional therapeutic strategies.

The gut microbiome, a key component of the intestinal
environment, has been implicated as an essential modulator
for human health (Tilg et al., 2016). Microbial homeostasis is
critical to the host development and health. Dysbiosis perturbs
the host immune system and metabolism balance, which leads
to the development of various kinds of diseases (Cho and Blaser,
2012; Nieuwdorp et al., 2014; Thaiss et al., 2016). Microbial
dysbiosis may also contribute to the development of neurological
disorders and psychiatric disorders, such as autism spectrum
disorder, anxiety disorder, depression and Alzheimer’s disease
(Neufeld et al., 2014; Pistollato et al., 2016; Chen et al., 2017;
Lach et al., 2018). In addition, several studies have provided
preliminary evidence for the involvement of the gut microbiota
in sleep disorders of murine models and human patients. It was
reported that after 4 weeks of sleep fragmentation in experimental
mice, gut flora were dominated by Lachnospiraceae and
Ruminococcaceae, with a gradually reduced relative abundance
of Lactobacillaceae (Poroyko et al., 2016). In another study with
partial sleep deprivation in normal-weighted young individuals,
the composition of the gut microbiota was subtly affected with
an increased ratio of Firmicutes/Bacteroidetes (Benedict et al.,
2016). However, either sleep fragmentation or sleep deprivation
refers to curtailed sleep length due to an externally imposed
restriction of the opportunity to sleep, while insomnia refers to
the inability to fall asleep adequately, either in length or quality.
Considering the significant difference in definition between
sleep fragmentation/deprivation and insomnia, to date, study
investigating the relationship between insomnia and gut flora
remains unexplored.

Thus, in the present investigation we combined 16S rDNA
amplicon sequencing and innovative bioinformatic analysis
to examine the pathological and physiological significance
of the gut microbiota between healthy participants and
patients suffering insomnia disorder. Leveraging these innovative
analyses, such as redundancy analysis, co-occurrence analysis,
PICRUSt, random forest and artificial neural networks (ANN),
we demonstrated that the gut taxa composition, signaling
pathways, and metabolic functions are perturbed in patients
with insomnia disorder. Artificial neural networks were also
incorporated by utilizing the relative abundance of the gut
microbiota to establish a prediction model for an unbiased
evaluation of insomnia. This study is the first to combine high-
throughput sequencing and bioinformatic analysis, especially
machine learning, to systemically understand the biological
effect of the gut microbiota on insomnia. Comprehensive
analysis indicated that gut microbiota homeostasis is a strong
determinant, which is closely associated with insomnia disorder.
Overall, the aforementioned study provides a comprehensive
understanding of the link between gut microbiota and insomnia
disorder. By utilizing the machine learning approach, we
identified the signature gut microbiota, which could be
utilized as novel and unbiased prediction targets, which
in other aspects could provide additional interventions for
clinical application.

MATERIALS AND METHODS

Volunteer Enrollment
The experiment was approved by the Ethics Committee of Jinan
University (Approval #: GNU-20180306).

The volunteers were recruited from the public and The First
Affiliated Hospital of Jinan University in Guangzhou, China.
After being informed on the rights and obligation, all participants
understood the benefits and risks of the experiment totally and
signed an informed consent document. In compliance with
strict standards for inclusion and exclusion criteria (Detailed
in Supplementary Materials), all participants were assessed by
two psychiatrists. In the event of any dispute or difference of
judgment, the participant would be excluded. All participants
accepted polysomnography treatment at the Sleep Medicine
Center of Jinan University. Finally, twenty qualified volunteers
were enrolled and separated into two groups (Insomnia group
and Normal Control group). Their fecal samples were collected
by sterilized instruments in the morning upon polysomnography
treatment, and then stored in a freezer at −80◦C for 16S
rDNA sequencing.

16S rDNA Amplicon Sequencing
Bacterial DNA from patients’ feces was extracted by utilizing
the ZR Fecal DNA Kit (Zymo Research, United States).
A multiplexed amplicon library covering the V3-V4 region
of 16S rDNA gene was PCR-amplified with the optimized
primer sets for the Illumina HiSeq 2500 sequencing instrument.
A total of 1,534,966 high-quality reads were obtained, with an
average of 76,748 reads (range 66,570–84,443) per sample. All
chimera sequences were removed by VSEARCH (Quince et al.,
2016). Chimera-free sequences were processed using a standard
QIIME 1.91 pipeline (Caporaso et al., 2010) and clustered into
operational taxonomic units (OTUs) at a 97% similarity threshold
using an “Open-Reference” approach. Taxonomy was assigned
using the RDP classifier against the Greengenes database (May
2013 release) (McDonald et al., 2012). The raw Illumina pair-end
read data for all samples have been deposited in the Short Read
Archive under the Bioproject: PRJNA527914.

Bioinformatics Analysis
Alpha rarefaction was analyzed by the Faith’s phylogenetic
diversity (Faith, 1992), Chao1 (Chao, 1984), Shannon and
Simpson index (Chao and Shen, 2003). β-diversity was estimated
by computing weighted and unweighted UniFrac distance.
Principal Coordinates Analysis (PCoA), Redundancy Analysis
(RDA) and heatmap of correlation were plotted by “ggplot2,”
“vegan,” and “corrplot” packages of R (version 3.5.1). Manhattan
Plot was plotted by “edgeR,” “dplyr” and “ggplot2” to present
the differential relative abundance between groups. These
results were tested by Monte Carlo permutation and Student’s
t-test. Organism-level microbiome phenotype prediction was
obtained by BugBase software (Riaz et al., 2017). To decipher
the difference of microbiota structure between groups, LEfSe
(linear discriminant analysis effect size) was performed and
the cladogram was graphed with default parameter (p < 0.05
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and LDA score > 2.0) (Fisher, 1936). To probe the microbial
metabolism and predict metagenome functional content from
the marker gene, PICRUSt was utilized to explore differences
of the KEGG pathway between groups (Langille et al., 2013).
To decipher the gut microbiota ecology, co-occurrence analysis
was performed with the “igraph” package (Nordhausen, 2015)
of R with data filtered at species level considering only those
relative abundance present in at least 70% of the samples in
each group. The edges were estimated by Spearman confident
index (abs(r) > 0.6, p < 0.05). Communities inside two networks
were determined by the fast-greedy modularity optimization
algorithm (Clauset et al., 2004), which was one of the approaches
to determine the dense subgraph in Graph Theory. The circle
bar was plotted according to the eigenvector centrality scores
(ECS) to estimate the importance and betweenness of each
node (Ruhnau, 2000). To identify the key signature microbiota,
five-fold cross validation together with Random Forest analysis
were performed to compute importance scores (mean decrease
accuracy, MDA) to estimate the importance of variables by
utilizing the “randomForest” v.4.6-14 package (Breiman, 2001)
in R. At species level, in order to establish a prediction model to
predict the sleep-related physiological parameter, the ANN was
performed on python 3.6.1 with the pyTorch, sklearn, pandas,
and numpy packages. The optimized parameters, including
learning rate, activation function, layers, number of neurons and
dropout, were selected by grid search and cross-validation.

RESULTS

Insomnia Disorder Leads to Significant
Structural and Functional Changes of
Gut Microbiota
Among the twenty qualified enrolled volunteers, basic personal
information including height, weight and BMI presented no
significant difference between groups except for age (insomnia:
33.00 ± 6.90; normal: 26.10 ± 1.85) (Supplementary Figure S1).
Considering previous research demonstrated the gut microbiota
differed little in adults based on more than 1,000 very healthy
Chinese individuals (Bian et al., 2017), only 7 mean-years of
difference between groups could be tolerated. All the volunteers
were accepted according to inclusion and exclusion criteria
(detailed in Supplementary Materials). All fecal samples from
participants were collected for high-throughput sequencing. 16S
rDNA V3-V4 region amplicon sequencing generated 1,534,966
high-quality reads, with an average of 76,748 reads (range
66,570–84,443) per sample. All raw data were filtered by
VSEARCH and processed using a standard QIIME 1.91 pipeline
against the Greengenes database (May 2013 release). Rarefaction
measurement of Shannon and Simpson index, Goods_Coverage,
and species accumulation curve (SAC) indicated that sequencing
depth was enough to capture all bacterial species and sufficient for
downstream analysis (Supplementary Figure S2). Rarefaction
analysis of chao1 (p = 0.007) and PD whole tree (p = 0.001)
index showed significant difference between the healthy and
insomnia groups, suggesting that insomnia disorder may result in

alteration of gut microbiota diversity (Figure 1A). Furthermore,
β-diversity calculated with the Unweighted UniFrac (p = 0.0006)
and Weighted UniFrac (p = 0.0032) algorithms indicated that
the insomnia and normal groups had significant structural
difference by the first dimension of space distance (Figure 1B).
To confirm the composition of difference between two groups,
a Manhattan plot was used to represent the fold change of
insomnia/normal group and revealed a significant difference,
especially the Firmicutes and Bacteroidetes phylum, which
was confirmed by Linear Discriminant Analysis Effect Size
(LEfSe) analysis and identified 87 biomarkers (Figures 1C,D).
Meanwhile, BugBase algorithm-based prediction suggested that
the insomnia group preferentially enriched with the gram-
negative and potential pathogenic taxa compared with the
normal group (Figure 1E and Supplementary Figures S3A–F).
Other than the composition and diversity of gut microbiota,
PICRUSt algorithm was performed to assess the functional
difference by plotting the differential pathways against KEGG
database. We identified pathways such as steroid hormone
biosynthesis (ko00360), Retinol metabolism (ko00830), Vitamin
B6 metabolism (ko00750), Folate biosynthesis (ko00790), Citrate
cycle TCA cycle (ko00020) that were predicted to be enriched in
the insomnia group (Kruskal test p < 0.05), while Arachidonic
acid metabolism (ko00590), Pantothenate and CoA biosynthesis
(ko00770), Lysine biosynthesis (ko00300), and Glycerolipid
metabolism (ko00561) associated pathways were downregulated
(Kruskal test p < 0.05) (Figure 1F).

Insomnia Disorder Disturbs the Gut Flora
Interaction
Whether insomnia disorder is associated with the gut microbiota
community network and the network complexity, the graph
theory algorithm and Co-occurrence analysis were performed
to estimate the gut microbiota ecology between groups. The
radar plot computed by the graph theory analysis including
the transitivity, graph density, degree centralization, number of
vertices and number of edges showed that insomnia disorder
did not significantly change the systemic complexity of gut
bacteria, indicating that the gut microbiota in insomnia patients
had already developed a mature network. With this, based
on species data whose relative abundance presented at least
70% of the samples in each group, Co-occurrence analysis
was used to further explore the gut microbiota interaction
and sub-groups in both the normal and insomnia groups
(Supplementary Figure S4 and Supplementary Table S1). The
gut flora interaction network was significantly altered for patients
under insomnia disorder compared with that of the normal
group. Furthermore, the gut microbiota was sub-divided into
five and four sub-groups for the normal and insomnia groups,
respectively (Figure 2).

Gut Microbiota Alteration Strongly
Associated With Insomnia Disorder
As demonstrated above, significant structure, composition and
function of the gut microbiota as well as the bacterial interaction
network were significantly changed between the normal and
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FIGURE 1 | Insomnia disorder leads to significant structural and functional changes of the gut microbiota. (A) α-diversity on Chao1 and PD_whole_tree index
between insomnia and normal group. (B) β-diversity on unweighted and weighted UniFrac PCoA1 between groups. (C,D) Manhattan plot and Linear Discriminant
Analysis (LDA) Effect Size (LEfSe) plot with threshold for LDA score 2.0 showed significant structural difference and identified 87 biomarkers between the two groups.
(E) BugBase algorithm predicted the microbiome phenotypes of the insomnia group differed from the normal group on gram-negative and potential pathogenicity
significantly. (F) To predict the metagenome function, heatmap of PICRUSt analysis showed significant KEGG pathway between groups.

insomnia groups. To further prove whether the insomnia-
associated clinical sleep parameter directly contributes to the
alteration of the gut microbiota, we performed the redundancy

analysis (RDA) to link the insomnia parameter with the relative
abundance of gut microbiota at phylum level (Figure 3). These
clinical sleep parameters from polysomnography (PSG) and the
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FIGURE 2 | Insomnia disorder disturbs the gut flora interaction. Co-occurrence network described interaction among bacterial taxa. Each node annotated on
phylum level presents bacterial species in each group. Each edge colored by the blue and red line indicates the negative and positive interaction between each
node, respectively. Each segment (gray color) represents sub-community in networks. Each bar shows the betweenness of each node in each network.

FIGURE 3 | Gut microbiota dysbiosis strongly associated with insomnia disorder. RDA showed high correlation between gut microbiota on phylum level and clinical
sleep parameter including polysomnography (PSG) and psychological scale including Pittsburgh sleep quality index (PSQ), body mass index (BMI), total sleep time,
sleep efficiency, sleep latency, the number and time of waking after sleep onset (WASO number, WASO time), rapid eye movement (REM), rapid eye movement
latency (REM latency), and non-rapid eye movements stages (N1, N2, N3).

psychological scale include the Pittsburgh Sleep Quality index
(PSQ), Hamilton Anxiety Scale (HAMA), Hamilton Depression
Scale (HAMD), Epworth Sleepiness Scale (ESS) and Insomnia
Severity Index (ISI). Here, we demonstrated that 67.13% of the
variance could be interpreted by twelve environmental factors
(in other words: clinical sleep parameter), which means that
insomnia disorder could significantly alter the population of the

gut microbiota at phylum level and samples from two groups
were obviously separated. In particular, according to the Monte
Carlo permutation test, some clinical sleep parameters, e.g.,
Pittsburgh sleep quality index (PSQ, r2 = 0.6074, p = 0.002)
and rapid eye movement sleep (REM, r2 = 0.2663, p = 0.045),
play a pivotal role in clustering the distribution of flora between
groups. Meanwhile, ANOSIM based on the Bray Curtis distance
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FIGURE 4 | Identification of the signature gut microbiota associated with insomnia disorder by random forest. (A,B) To identify the signature biomarkers, five-fold
cross-validation together with random forest generating ∼2 million decision trees was performed in the discovery mode. (C) Considering the box plot of their relative
abundances, two species taxa were selected as the key biomarker. (D) The partial dependence of classification in random forest were plotted. (E) The correlation
analysis between signature taxa and clinical sleep parameter was plotted.

also confirmed the observation from RDA analysis that the
difference between groups was more significant than that within
groups (statistic R: 0.1944, p = 0.015) (Supplementary Figure
S5). Both RDA and ANOISM analysis clearly suggested that
clinical sleep parameters associated with insomnia disorder
directly contribute to the separation and clustering of the gut
microbiota between groups.

Identification of the Signature Gut
Microbiota Associated With Insomnia
Disorder by Random Forest
The traditional approaches such as LEfSe by comparing the
difference of relative abundance of gut flora between groups
resulted in the identification of 87 biomarkers. It is difficult
to utilize these markers to establish a prediction model for
disease diagnosis. To improve the biomarker identification,
we incorporated a robust statistical analysis and applied five-
fold cross-validation together with random forest to generate
∼2 million decision trees (Supplementary Figure S6), leading

to identification of three optimal species biomarkers with
consideration of lowest error rate plus standard deviation. With
further analysis to identify V68 (g__Prevotella) as an outlier, we
thus selected V45 (g__Bacteroides) and V124 (o__Clostridiales)
as the most important biomarkers to distinguish the insomnia
patients from healthy individuals with a ROC curve at
AUC = 0.87 (Figures 4A–D, Supplementary Figure S7, and
Supplementary Table S1). Moreover, V45 was highly correlated
with HAMD (r = 0.70, p < 0.001), HAMA (r = 0.62, p < 0.01),
ISI (r = 0.62, p < 0.01), sleep efficiency (r = −0.56, p < 0.05),
PSQ (r = 0.63, p < 0.01) and sleep latency (r = 0.66, p < 0.01)
while V124 correlated with ESS (r = −0.45, p < 0.05), ISI
(r = −0.48, p < 0.05), REM latency (r = −0.49, p < 0.05), and PSQ
(r = −0.51, p < 0.05) (Figure 4E and Supplementary Figure S8).
Even in the Co-occurrence plot, these two key microbiotas both
occupied hub-like positions with high betweenness (Insomnia:
V45 0.702499227 V124 0.034447479; Normal: V45 0.467046396
V124 0.044448542) (Supplementary Figure S9). All above
results strongly demonstrated that the key microbiota we
identified via the robust statistical approaches led to the
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development of an optimal and robust prediction model for
insomnia diagnosis.

Relative Abundance of Gut
Microbiota-Based Prediction on the
Clinical Sleep Parameter
Given that the gut microbiota tightly was correlated with the
clinical sleep parameter, we sought to establish a mathematical
model to utilize the relative abundance of the gut microbiota
to predict the sleep-related physiological parameter. Here, we
utilized a well-established regression model, LASSO regression
to link the relative abundance of gut microbiota and clinical
sleep parameter resulted in a poor correlation (Supplementary
Figure S10). To overcome the shortcoming of the traditional
machine learning model, we integrated an even more powerful
deep learning model, called an ANN, which is considered to
be able to imitate biological neural networks. By integrating
the clinical sleep parameter into the ANN model, this model
could result in a high coefficient of determination respective
for WASO number: r2 = 0.14, MAE = 4.80; WASO time:
r2 = 0.6, MAE = 15.77; Sleep efficiency: r2 = 0.52, MAE = 5.45;
ESS: r2 = 0.54, MAE = 2.41; HAMA: r2 = 0.66, MAE = 1.81;
HAMD: r2 = 0.55, MAE = 1.83; ISI: r2 = 0.66, MAE = 2.96;
N1: r2 = 0.43, MAE = 2.88; N2 r2 = 0.58, MAE = 3.28; N3:
r2 = 0.34, MAE = 4.97; PSQ: r2 = 0.73, MAE = 1.75; REM
r2 = 0.40, MAE = 3.59; REM latency: r2 = 0.41, MAE = 38.5;
Sleep latency: r2 = 0.42, MAE = 6.12; Total sleep time:
r2 = 0.37, MAE = 45.18 (Figure 5).

DISCUSSION

Insomnia disorder as a common clinical symptom is a critical
part of sleep disorder (Panossian and Avidan, 2009). It is
often accompanied by excessive arousal and sleep debt, which
always lead to adverse impacts such as mental or physical
fatigue. From the statistics of more than 50 epidemiological
studies, the prevalence of insomnia symptoms was estimated
at 10∼48% (Ohayon, 2002). Insomnia disorder is functionally
linked to cardiovascular and nervous system diseases (Javaheri
and Redline, 2017; Tobaldini et al., 2017). The classic hypothesis
is Spielman’s 3P Model including predisposing, precipitating
and perpetuating factors (Spielman et al., 1987). Recently,
it has been reported that the hypothalamic–pituitary–adrenal
axis (HPA) may contribute to the incidence of insomnia
(Levenson et al., 2015). Moreover, in 2017 a genome-wide
association study (GWAS) identified risk genomic loci and
genes that are associated with the incidence of insomnia, and
suggested that insomnia is highly polygenic (Hammerschlag et al.,
2017). However, none of these studies provided a mechanistic
interpretation of the causes or even objective approaches for
insomnia diagnosis. Here, our study is first to comprehensively
compare the gut microbiota between insomnia patients and
healthy individuals. With these data, we established a robust
statistical prediction model to utilize the relative abundance
of the gut microbiota to distinguish insomnia patients from
the normal population and to estimate levels of sleep quality

through the novel bioinformatics technology and machine
learning algorithm.

The unhealthy shift of gut microbiota, also called dysbiosis,
is associated with various metabolic diseases such as obesity,
type II diabetes, hypertension and cardiovascular diseases
(Clarke et al., 2014; Kristensen et al., 2016; Adnan et al.,
2017; Sun et al., 2018). In this study, we demonstrated
that α- and β-diversity of the gut microbiota in insomnia
patients is significantly altered. Meanwhile, by comparing the
difference of the relative abundance between insomnia and
healthy individuals, we identified that Bacteroidetes are the
dominant taxa in the insomnia group, while Firmicutes and
Proteobacteria were enriched in the normal group, resulting
in a decreased ratio of Firmicutes/Bacteroidetes. Our results
are different from observations made in previous studies in
individuals with sleep deprivation or restriction. In their studies,
the F/B ratio shows either no change or is increased after
partial sleep deprivation (Benedict et al., 2016; Bushman et al.,
2017). This discrepancy with respect to the change over the
F/B ratio may be due to the difference regarding the clinical
definition between sleep restriction/deprivation and insomnia.
Sleep deprivation or restriction is not considered to be a specific
disease, but rather a result of a wide range of interruption
from external environmental factors. It is worth mentioning that
although subjects in previous study followed strict experimental
protocol, they not only had ad libitum access to food/drink
throughout the experiment, but also were allowed to read,
play video or board games, watch television, and interact with
laboratory staff to help remain awake (Bushman et al., 2017).
These environmental factors may contribute to variation in the
gut microbiota, which leads to difficulty in interpreting the
results. Compared to those with sleep deprivation, patients with
insomnia who do not have externally imposed restrictions on
the opportunity to sleep still have trouble falling asleep, staying
asleep, or waking too early, resulting in daytime impairment
(Brown, 2005). Our study demonstrated that although insomnia
and sleep deprivation may result in similar reductions on sleep
length in most cases, they may lead to different consequences
regarding the dysbiosis of the gut microbiota. In addition,
this ratio change is also reported in different life stages and
pathological circumstances. A study looks into the ratio of
F/B between adults and elders, suggesting that a higher ratio
in the adult gut is observed, while it starts to decrease in
individuals undergoing aging (Doré et al., 2009). Alteration of
the F/B ratio is also observed in those with metabolic diseases,
such as obesity (Turnbaugh et al., 2006; Koliada et al., 2017)
and type II diabetes (Vogensen et al., 2010). Furthermore,
our BugBase-based phenotypical prediction also demonstrated
that the insomnia group was enriched with bacterial taxa
to be potentially pathogenic. This may link the insomnia-
related sleep disorder population with high potential disease
development and progression, as more evidence has proved
that chronic sleep disorder is associated with a multitude
of health conditions and even systemic metabolic disorder
(Van Cauter et al., 2008).

The biological and physiological function of gut microbiota
could be defined from multiple aspects, such as the taxonomic
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FIGURE 5 | Relative abundance of gut microbiota-based prediction on the clinical sleep parameter by artificial neuron network (ANN). Based on species data, ANN
was established to predict clinical sleep parameter with optimized parameter including layers, neuron number, learning rate, dropout rate, and activation function in
5-fold cross validation. WASO, Wake after sleep onset; ESS, Epworth Sleepiness Scale; HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Depression Rating
Scale; ISI, Insomnia Severity Index; PSQ, Pittsburgh Sleep Quality Index; REM, Rapid eye movement; N1, Non-rapid eye movement stage 1; N2, Non-rapid eye
movement stage 2; N3, Non-rapid eye movement stage 3.
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composition and diversity, which are poorly conserved across
individuals while the genetic composition and functional capacity
are evolutionally conserved across individuals. Thus, to decipher
the metabolic switch of gut bacteria, the PICRUSt algorithm
was utilized to map the bacterial genetic pathway against the
KEGG database. Compared to normal group, a wide range of
pathways was altered obviously in our study. It is interesting to
note that vitamin B-related pathways were significantly induced
in the insomnia group, while the level of vitamins is highly
associated with the clinical practice of insomnia (Lichstein et al.,
2007). In our insomnia patients, the analysis suggested vitamin
B6 catabolism (ko00750) in the gut microbiota is significantly
enhanced, resulting in vitamin B6 deficiency for the host. It
was reported that vitamin B6 is administered as a common
therapeutic practice for insomnia disorder and its deficiency
results in fatigue and depression (Baldewicz et al., 1998).
Thus, additional vitamin B6 supplementation could ameliorate
insomnia symptoms (Baldewicz et al., 1998). Moreover, the folate
(also called vitamin B9) biosynthesis-related pathway (ko00790)
was also increased in the insomnia group. Previous study of
serum nutritional biomarkers and dietary supplementation of
folate demonstrated that folate acid has a high correlation
with the development of sleep disorder (Sato-Mito et al., 2011;
Zonderman et al., 2014). In addition, endogenously synthesized
arachidonic acid significantly facilitates the release of GABA
in the striatum (Chéramy et al., 1996), while GABA could
enhance the catabolism of serotonin into N-acetylserotonin
(the precursor of melatonin) in rat (Balemans et al., 1983).
It has long been speculated that GABA is associated with
the synthesis of melatonin and thus might exert regulatory
effects on sleep functions. In our study, our bioinformatic
analysis demonstrates that arachidonic acid biosynthesis was
lower in the insomnia group, indicating that lower production
of arachidonic acid from gut microbiota may be associated with
a high incidence of insomnia. However, whether arachidonic
acid supplementation may improve insomnia symptoms requires
further clinical investigation. These results provide a link
that gut microbiota and their metabolites maybe a mediator
with respect to the development of insomnia. With this
information, novel therapeutic and intervention approaches
could be developed for people suffering from insomnia
disorder in the future.

In our study, insomnia disorder leads to the alteration
of the gut microbiota composition and diversity. However,
whether insomnia disorder directly contributes to the dysbiosis
of the gut microbiota is still unknown. Here, our RDA
analysis and ANOSIM provide strong evidence to support
the role of clinical sleep parameters of insomnia individuals
in dysbiosis of gut microbiota, especially PSQ (r2 = 0.6074,
p = 0.002) and REM (r2 = 0.2663, p = 0.045), based
on a Monte Carlo permutation test. Both results strongly
pinpointed the importance of insomnia disorder as a key
factor in separating gut microbiota from two groups. Upon
establishment of the link between gut microbiota and clinical
sleep parameter, taking advantage of the differential test and
LEfSe algorithm, we identified 87 differential biomarkers from
the normal and insomnia groups. Among the biomarkers, to

further classify their importance, the machine learning approach
is incorporated, such as random forest. This robust statistical
method could identify the signature biomarkers with higher
prediction accuracy and coefficiency, especially for the gut
microbiota-based diseases prediction and diagnosis (Ren et al.,
2018; Zhu et al., 2018). Here, our random forest model together
with the cross-validation model identified two key bacterial taxa
(g__Bacteroides; o__Clostridiales), which are not only tightly
associated with clinical data, but also play a pivotal role in
network of gut ecology and could be used as two critical
biomarkers to identify patients with insomnia.

Classic diagnosis for insomnia disorder relies on either
subjective or objective assessment, including the most common
clinical sleep parameters such as PSQ, ESS, ISI, HAMD, and
HAMA. However, most of these results are often affected by
the subjectivity of individuals, especially for some patients
with insomnia disorder (Åkerstedt and Gillberg, 1990; Landry
et al., 2015). On the other hand, PSG, as the first choice
for objective assessment, is the golden standard for insomnia
diagnosis worldwide. This is restricted by the cost, equipment
and space. Furthermore, the adaptation of the first-night sleep
may affect the PSG results because of the temporary change
of sleep environment (Tamaki et al., 2016). Thus, a convenient
approach is necessary for the diagnosis of insomnia. Given
the tight correlation between microbiota and disease incidence,
whether there is a method to establish a regression model
to predict clinical sleep parameter remains unclear. So, we
introduced a LASSO regression model, which is widely used
in gut microbiota-based clinical study and has been shown
to effectively utilize the relative abundance to predict cancer
development and progression, such as irritable bowel diseases
and colorectal cancer (Tap et al., 2017; Flemer et al., 2018).
Moreover, LASSO could overcome the multicollinearity problem
caused by the interaction between microbes (Tibshirani, 1996),
while regression models were limited in microbiology study
(Alin, 2010). However, in our insomnia case, the LASSO
model could not collect enough fitness for the current study
(Supplementary Figure S10). To overcome the limitation of
LASSO regression, we introduced ANN, which was originally
developed to imitate the biological neural networks of the brain
(McCulloch and Pitts, 1943). ANN is not only an algorithm,
but also a frame for different machine learning algorithms to
incorporate and work together to process complex data. As
it works in the same way as the human brain, compared to
traditional machining learning such as LASSO, ANN brought
out stronger and more robust ability to deal with complex data,
offered a good prediction model with high fitness, and thus
was applied to various areas, especially in quantum chemistry
(Balabin and Lomakina, 2009), general game playing (Silver
et al., 2016), 3D reconstruction (Choy et al., 2016), and medical
diagnosis (Kamruzzaman et al., 2004). In these areas, ANN
like LASSO regression could also effectively and practically
address the multicollinearity problem. Thus, we incorporated
an ANN prediction model to assess sleep quality based on the
relative abundance of the gut microbiota. Although based on
few samples, this model could still obtain good fitness. With
this, we are able to utilize the relative abundance of the gut
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microbiota to provide an alternative and accurate approach for
insomnia diagnosis.

CONCLUSION

The model proposed in the current study utilizes the cutting
edge bioinformatic algorithm to not only underpin the
difference between insomnia and normal health, but also
take advantage of ANN to establish the prediction model
for insomnia diagnosis and sleep quality evaluation based
on the relative abundance of the gut microbiota. Although
all methods above are only based on bioinformatics and
mathematics, we believe these approaches could validate the
results and further prove that even with a small sample
size. With this, we could still be able to draw a solid
conclusion. Of course, more cases will be collected to provide
further evidence in our future work. This will open another
gate and a new perspective for the development of novel
therapeutic strategies by taking advantage of the information
from the gut microbiota.
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