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Inflammaging is well understood in the study of humans; however, it is rarely reported
for dairy cows. To understand the changing pattern of the gut microbiota, inflammatory
status and milk production performance during the aging process in cows, we grouped
180 cows according to their lactation period: L1 (n = 60, 1st lactation), L3 (n = 60,
3rd lactation), and L5+ (n = 60, at least 5th lactation) and analyzed their milk
components and daily milk yields to evaluate the changing pattern of milk production.
The microbiota was analyzed using high-throughput sequencing of amplicons of 16S
rRNA, which also allowed us to predict the functions of microbes and then study
the changing pattern of the ruminal and fecal microbiota. Serum cytokines, including
TNF-α, IL-6, IL-10, and TGF-β were measured to study the progress of inflammaging
in the cows. We found that old cows (L5+) suffered from a long-term and low-
level chronic inflammation, as indicated by significantly higher levels of inflammatory
cytokines IL-10, TNF-α, and TGF-β in the L5+ group (p < 0.001). We also observed a
significant decrease in daily milk yield and milk lactose, as well as a significant increase
in somatic cell score, among the cows in the L5+ group. For the gut microbiota, most
of the genera belonging to Prevotellaceae and Lachnospiraceae, which had a higher
abundance among cows of both the L1 and L3 groups (LEfSe, LDA > 2), showed
a similar change pattern during the aging process, both in the rumen and in feces,
and across the six farms. Beneficial bacteria, like Bacteroidaceae, Eubacterium, and
Bifidobacterium, displayed lower abundance in the feces of the L5+ group (LEfSe,
LDA > 2). Reconstruction of the fecal bacteria community indicated transformation of
the fermenting pattern of older cows’ (L5+) feces microbiota, with increased functions
related the protein metabolism and fewer functions related to carbohydrate and lipid
metabolism compared with those in L1 (p < 0.05). Finally, the connections among these
changing patterns were revealed using redundancy analysis and network analysis. The
results support the hypothesis of prolonging a cows’ productive life and improve dairy
cow milk productive performances by manipulating the gut microbiota.
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INTRODUCTION

Over the past few decades, scientists have emphasized the
importance of the ruminal microbiome in ruminant digestion.
Ruminants depend on ruminal microbes to decompose feed
into micromolecules [such as volatile fatty acids (VFAs) and
ammonia], which are easily absorbed by the host. Few studies
have investigated the fecal bacteria communities, because fecal
bacteria communities have fewer effects on cows digestive ability
compared with that of the ruminal bacteria communities. Until
recently, the gut microbiota (refers mainly to the ruminal and
fecal microbiota in our discussions about cow microbiota) was
considered as much more than a community to help with
digesting foods. Some studies found that the ruminal microbial
ecosystem plays an important role in the development of diseases,
such as subacute ruminal acidosis (Wetzels et al., 2017) and frothy
bloat (Pitta et al., 2016). Other studies reported the correlation
between fecal microbiota and mastitis (Ma et al., 2016) and milk
composition (Zhang et al., 2017). Thus the relationship between
the gut microbiota and host health cannot be ignored; however,
the relationship between the composition of the fecal microbiota
and host inflammaging, which has been frequently reported in
other species, remains unknown for dairy cows.

The gut microbiome is associated with many of the most
discussed topics in human health, such as aging (OToole and
Jeffery, 2015), cancer (Roy and Trinchieri, 2017), metabolic
diseases (obesity, diabetes) (Sonnenburg and Bäckhed, 2016), the
digestive system (Desai et al., 2016), the cardiovascular system
(Zhu et al., 2016), the immune system (Thaiss et al., 2016), and
the central nervous system (Mayer et al., 2014). These studies
also confirmed the symbiotic relationship between host and its
gastrointestinal microbes. On the one hand, the gut microbiome
produces a wide array of microbial metabolites [e.g., short-chain
fatty acids (SCFA) and trimethylamine-N-oxide (TMAO)], which
might permeate into the circulatory system, where they might
have either beneficial (Malmuthuge and Guan, 2016) or toxic
(Zhu et al., 2016) effects on host health. On the other hand,
hosts are able to limit the activities of microbes and shape the
structure of the microbiome through the host immune system
(Thaiss et al., 2016), gene expression, or the manipulation of
the diet using direct-fed microbials, prebiotics, or probiotics
(Malmuthuge and Guan, 2017).

Older populations suffer from a chronic low-grade
inflammation, known as inflammaging, which is characterized
by a higher level of inflammation-related cytokines compared
with those in younger people, and this inflammaging might
be the cause of debility and diseases of old age (Biagi et al.,
2010; Claudio, 2010). There are many factors that can result
in inflammaging, and these factors may be involved with the
genetic effects of mitochondrial DNA variants, changes in eating
habits, and chronic exposure to antigens (Claudio, 2010). The
phylogenetic composition of the bacterial community changes
along with the process of aging. The latest studies suggested that
inflammaging could also be resulted from age-related microbiota
changes. Floris showed by transferring aged microbiota to
young germ-free (GF) mice that certain bacterial species (e.g.,
Akkermansia, Proteobacteria) within the aged microbiota

promote inflammaging (Floris et al., 2017). Thevaranjan
demonstrated that inflammaging was highly associated with
age-related microbiota changes that might drive intestinal
permeability and decrease macrophage function (Thevaranjan
et al., 2017). Inflammaging can undermine the balance between
gut microbiota and gut-associated immune system (Biagi et al.,
2010), and contribute to the development of a number of
age-related chronic diseases such as atherosclerosis, type 2
diabetes, Alzheimer’s disease, osteoporosis, and major depression
(Claudio, 2010). The remodeling of gut microbiota may help
with alleviating inflammaging and attaining longevity. The life
span of middle-age killifish, whose gut was recolonized with
bacteria from young donors, was extended (Smith et al., 2017).
However, the theory about which (and how) bacteria influence
inflammaging is not fully clear yet. A review (Brüssow, 2013)
summarized three groups of gut bacteria according to their effects
on host health: (1) Symbiotic gut bacteria, such as Bacteroidaceae,
Eubacterium, Peptococcaceae, Bifidobacterium, and Lactobacillus,
are beneficial to human health; (2) a second group, comprising
Escherichia, Streptococcus, and Veillonella, produce toxic
compounds by fermenting proteins, possibly leading to aging;
and (3) pathogenic gut bacteria that induce infections.

Older dairy cows are more likely to face various health
problems, as well as reduced production efficiency, resulting in a
higher culling hazard (Maia et al., 2014) and causing a measurable
economic loss. The natural lifespan of a cow can be up to 25 years;
however, the average culling age for dairy cows worldwide is only
6 years old mostly due to the physiological and psychological
stress of lactating cows. Despite the importance of longevity to
the productivity of cows, as well as to animal welfare, there is a
lack of proof supporting the hypothesis that a cows’ productive
life could be prolonged by manipulating the gut microbiota.
Some studies reported that the ruminal microbiota changed
during newborn maturation or with increasing age (Jami et al.,
2013; Liu et al., 2017). Studies also confirmed the relationship
between the rectal microbiota and the maturation of newborn
dairy calves (Mayer et al., 2012; Alipour et al., 2018). However,
no study has connected variations in the fecal microbiota with
inflammaging, nor determined whether this could be applied to
different farm environments.

The development of high-throughput sequencing has allowed
us to gain a full-scale view of the composition (by sequencing
16S rRNA amplicons) and function (by the sequencing the
metagenome or by prediction from 16S rRNA data) of the gut
community. However, how to handle the sequences derived from
sequencing of 16S rRNA amplicons remains a challenge. The
operational taxonomic unit (OTU), often at a similarity of 0.97,
was developed to define clusters of organisms (which could
be uncultivated or unknown) grouped by their DNA (Blaxter
et al., 2005). The analysis of 16S rRNA amplicons based on
OTUs has dominated the field of microbiota study for more
than 10 years. There is, however, a need to identify higher
phylogenetic resolution OTUs and to combine OTU results from
different studies; therefore, denoising methods, such as Deblur
(Amir et al., 2017), have been developed to obtain putative
error-free sequences and identify sub-operational-taxonomic-
units (sOTUs).
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In the present study, we used advanced technique to
explore the variations of the fecal bacteria communities, milk
composition, inflammatory cytokines, and routine blood analysis
of 180 cows from six dairy farms. We also analyzed the rumen
bacterial communities of 30 cows, with the aim of finding
an explanation for the fragility of older dairy cows, and the
relationship between the cow gut microbiota and inflammaging,
as well as longevity.

MATERIALS AND METHODS

Ethics Statement
The Institutional Animal Care and Use Committees (IACUCs)
approved all the experimental procedures, which complied with
the China Physiological Society’s guiding principles for research
involving animals. This study did not involve any endangered
or protected animal species, and did not cause any harm to the
experimental animals.

Experimental Design and
Sample Collection
Healthy female Holstein cattle (n = 180) of different ages were
obtained from six different farms (F1–F6, 30 cows from each
farm). The cows were selected according to their physiological
status and grouped by lactation period as follows: L1 (n = 60,
1st lactation), L3 (n = 60, 3rd lactation), and L5+ [n = 60,
ranging from the 5th lactation to the 9th lactation (average 6th
lactation)]. Each farm provided 10 cows of group L1, 10 cows
of group L3 and 10 cows of group L5+. The cows from same
farm had been fed with exactly the same total mixed ration diet
for over 1 month, and the cows from different farms were fed
with different total mixed ration diets; however, all diets were
based on corn silage, and all the cows were fed ad libitum.
All six dairy farms are located in Beijing, China, and belong
to Beijing Sunlon Livestock Development Ltd., and thus had
a similar breeding mode. There were no significant differences
among the three groups in terms of rectal temperature (the mean
of two independent measurements in the morning), days in milk
(DIM), and body condition score (the mean of two independent
evaluations) (Table 1). None of the cows were diagnosed with any
diseases and had not been treated with any antibiotics for the last
3 months until sample collection.

The daily milk yield (DMY) was recorded three times in three
consecutive months before sample collection, and the mean was
calculated for further comparison. Sample collection began in

TABLE 1 | The body condition score, rectal temperature, and days in milk of
cows in this study.

Item Least squares mean ± SE P-value

L1 (n = 60) L3 (n = 60) L5+ (n = 60)

Body condition score 2.9 ± 0.09 2.8 ± 0.09 2.9 ± 0.09 0.668

Rectal temperature (◦C) 38.8 ± 0.05 38.8 ± 0.05 38.8 ± 0.05 0.548

Days in milk (days) 216.6 ± 8.53 213.4 ± 8.53 225.6 ± 8.53 0.576

March 2017 and ended in August 2017, with the samples (feces,
rumen liquid, milk, and blood) coming from the same farm
being collected within 24 h. Feces were collected aseptically in the
morning and transported to the laboratory immediately on dry
ice before being stored in the refrigerator at−80◦C. Milk samples
were collected in the morning, afternoon, and evening, followed
by mixing in the proportion of 4:3:3. Preservatives were used to
keep the milk samples fresh. In addition, 10 ml of anticoagulant
and 10 ml non-anticoagulant blood samples were collected at
the tailhead of cows. Non-anticoagulant blood samples were
coagulated at room temperature for 1 h before centrifugation at
1,000× g for 10 min to separate the serum from the erythrocytes,
and the sera were stored at−20◦C until further processing.

The rumen liquid of 30 cows could only be collected from
the first farm (F1) because of the lack of conditions to collect
the ruminal liquid at the other farms; however, we successfully
collected feces, milk, and blood samples of all 180 cows selected
in the current study. The rumen liquid was collected at noon
(approximately 4 h after the morning feed and on the same day as
feces were collected from the cows in F1) using a flexible stomach
tube, which was washed with clean water before each collection.
About 50 mL of rumen liquid from each cow was aspired through
the mouth, with the initial 100 mL (approximately) discarded
to avoid contamination by saliva. The obtained sample was
transported to the laboratory on ice and then stored in at −80◦C
immediately. The whole period of rumen liquid collection and
storage lasted less than 3 h.

The Measurement of Cytokines and
Milk Components, and Routine
Blood Analysis
Inflammation-related cytokines in serum including tumor
necrosis factor alpha (TNF-α), interleukin (IL)-6, transforming
growth factor beta (TGF-β), and IL-10, were determined using
an ST-360 Microplate Reader (Kehua Bio-engineering Co., Ltd.,
Shanghai, China) and cytokine diagnostic reagents (Jinhaikeyu
Biological Technology Development Co., Ltd., Beijing, China),
which is based on an enzyme-linked immunosorbent assay
(ELISA). Routing blood analysis, including WBC (white
blood cell count), W-SCR (lymphocyte cell ratio), W-MCR
(mononuclear cell rate), W-LCR (granulocyte cell ratio),
W-SCC (lymphocyte cell count), W-MCC (mononuclear cell
count), W-LCC (granulocyte cell count), RBC (red blood cell
count), HGB (hemoglobin), HCT (hematocrit), MCV (mean
corpuscular volume), MCH (mean corpuscular hemoglobin),
MCHC (mean corpuscular hemoglobin concentration), RDW-
CV (red blood cell distribution width of coefficient of variation),
RDW-CV (red blood cell distribution width of standard
deviation), PLT (platelet count), PDW (platelet distribution
width), MPV (mean platelet volume), and P-LCR (large cell
ratio of platelet) in anticoagulant whole blood were analyzed
using a K-4500 Fully Automated Hematology Analyzer (Sysmex
Corporation, Kobe, Japan) within 24 h after sample collection.
The component analysis models designed by Bentley Instruments
Inc. (Chaska, MN, United States) were used to measure and
calculate milk components, including Lactose (milk lactose),
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Car (milk carbamide), FPD (freezing point depression of milk),
Solids (milk solids), Fat (milk fat), Protein (milk protein),
SCS (somatic cell score of milk), and this procedure was
completed within 48 h after milk sample collection. All the
steps referred to above were operated according to corresponding
manufacturer’s instructions.

Determination of Ruminal and
Fecal Bacteria Communities
The procedures of DNA extraction, amplification, and
sequencing were completed by Novogene Bioinformatics
Technology Co., Ltd. (Beijing, China). DNA was extracted from
0.2 g of feces (5 mL for the rumen liquid) using a QIAamp DNA
Stool Mini Kit (Qiagen, Hilden, Germany). Rumen liquid was
first centrifuged at 8,000 × g for 20 min, and the supernatant
was removed. Feces (pellet after centrifugation for rumen liquid)
was added into 1 ml of lysis buffer (500 mM NaCl, 50 mM
Tris−HCl pH 8, 50 mM EDTA, 4% SDS) that blended with
mini Bead Beater (BioSpec, Bartlesville, OK, United States), and
treated in FastPrep (MP Biomedicals, Irvine, CA, United States)
at 5,000 oscillations per minute for 60 s. The mixture was heated
at 95◦C for 15 min, then centrifuged for 5 min at 12,000 × g
to pellet particles. 250 ml of 10 M ammonium acetate were
added to the supernatant, followed by incubation in ice for
5 min and centrifugation at 12,000 × g for 10 min. One volume
of isopropanol was added to each sample and incubated in
ice for 30 min. Precipitated nucleic acids were collected by
centrifugation for 15 min at 12,000 × g and washed with
ethanol 70%. Pellet was suspended in 100 ml of TE buffer and
treated with 2 ml of DNase-free RNase (10 mg/ml) at 37◦C for
15 min. Protein removal by Proteinase K treatment and DNA
purification with QIAamp Mini Spin columns were performed
following the kit protocol. The final DNA concentration was
determined using a NanoDrop 2000 UV-vis spectrophotometer
(Thermo Fisher Scientific, Wilmington, NC, United States), and
DNA quality was checked using 1% agarose gel electrophoresis.
The V3–V4 (341F 5′-CCTAYGGGRBGCASCAG-3′, 806R
5′-GGACTACNNGGGTATCTAAT-3′) region of the 16S ribo-
somal RNA (rRNA) gene was amplified using a thermocycler
PCR system (GeneAmp 9700, ABI, Foster City, CA,
United States). The PCR reactions were conducted using
the following program: 3 min of denaturation at 95◦C; 27
cycles of 30 s at 95◦C, 30 s for annealing at 55◦C, and 45 s for
elongation at 72◦C; and a final extension at 72◦C for 10 min. The
PCR reactions were performed in triplicate in a 20 µL mixture
containing 4 µL of 5 × FastPfu Buffer, 2 µL of 2.5 mM dNTPs,
0.8 µL of each primer (5 µM), 0.4 µL of FastPfu Polymerase,
and 10 ng of template DNA. The resulting PCR products were
extracted from a 2% agarose gel and further purified using the
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union
City, CA, United States) and quantified using QuantiFluor-
ST (Promega, Madison, WI, United States) according to the
manufacturer’s protocol. Purified amplicons were pooled in
equimolar amounts and paired-end sequenced (2 × 250) on an
Illumina (San Diego, CA, United States) HiSeq 2500 instrument
(n = 61,645 ± 9,513 (mean ± SD) raw reads per fecal sample,

n = 48,815 ± 6,590 per ruminal liquid sample) according to the
standard protocols. The Q30 of the raw reads was 96 ± 0.86
(mean ± SD). All the bioinformatic analysis procedures of the
sequences were completed on a QIIME 2 data science platform
(Bolyen et al., 2018). Paired-end sequences were merged and
quality-filtered using the approaches recommended by QIIME 2;
reads with an average Phred quality score below 20 were filtered
out, and paired-end reads were merged at a minimum overlap
of 15 nt. The sub-operational-taxonomic-unit (sOTU) is an
OTU at a similarity of 100%, and thus two sequences from the
same region of 16S rRNA with a single-nucleotide difference
belong to two different sOTUs. Deblur, constructed recently by
Amir et al. (2017), and integrated to QIIME 2, was used to obtain
putative error-free sequences and pick sOTUs. After the default
procedure of Deblur, we obtained a total of 4,115,142 reads for
the fecal samples [22,862 ± 6,588 (mean ± SD) per sample], and
398,597 reads for the ruminal samples (13,287 ± 1,870), with no
chimeras and no sequencing errors (theoretically). After filtering
the sOTUs observed in less than 10 samples, 4,745 sOTUs (3,301
sOTUs for rumen liquid) with single-nucleotide differences and
hardly any false positives were obtained. The representative
sequence of each sOTU was then aligned to the Silva database
(Christian et al., 2013) (Release 132) (trimmed to the V3–V4
region bound by the 341F/806R primer pair) to assign taxonomy
using the q2-feature-classifier (Bokulich et al., 2018). Any
contaminating mitochondrial and chloroplast sequences were
filtered out using the QIIME2 feature-table plugin. This resulted
in 86% of the total sequences being assigned taxonomically at
the genus level. The closed-reference OTUs were then chosen
and further used to predict the functional profile of bacterial
communities and to identify Kyoto Encyclopedia of Genes and
genomes (KEGG) pathways using PICRUSt (Langille et al.,
2013). Unless specified above, the parameters used in the analysis
were set to the defaults.

Statistical Analysis
To study how the production performance, inflammatory
cytokines, and blood biochemical indexes changed with
increasing of age, an SAS (Littell et al., 1996) general linear
model (GLM) procedure considering the fixed effects of farm,
lactation stage (two stages decided by the median of days in
milk), lactation period (L1, 1st lactation; L3, 3rd lactation; L5+,
at least 5th lactation), and the interaction between farm and
lactation period, was used. Principal coordinates analysis (PCoA)
of Bray–Curtis dissimilarity (Bray and Curtis, 1957), which was
calculated from sOTU sequence count table, was used to visualize
the difference in the bacterial community between samples and
among groups, followed by Permutational Multivariate Analysis
of Variance (PERMANOVA), a non-parametric multivariate
statistical test (Anderson, 2010), to test the significance of the
difference in bacterial community among lactation groups.

Before the following analysis of bacteria and predicted
pathways, a relative abundance table of bacteria at genus level
or KEGG pathways of the third level were calculated, and
the mean-only version of a non-parametric empirical Bayes
method (Johnson et al., 2007; Leek et al., 2012) was used
to remove the effect of uninterested variables (farm groups).
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The non-strict version of Linear discriminant analysis Effect
Size (LEfSe), which determines significant taxa differing in at
least one (and possibly multiple) class value(s) (Segata et al.,
2011), was then used to identify the bacterial biomarkers of
lactation groups (L1, 1st lactation; L3, 3rd lactation; L5+, at least
5th lactation). The predicted KEGG pathways observed in less
than 90 samples were filtered out, as the relative abundance of
these pathways deviated markedly from the normal distribution.
ANOVA, followed by Duncan’s test, was then used to detect
the pathways that were differently abundant across the three
lactation groups after the relative abundance of pathways was
log transformed and scaled to a standard normal distribution.
Redundancy Analysis (RDA), introduced by Borcard (Borcard
et al., 2011), was used to analyze the correlation between
the cows’ physiological indexes (inflammatory cytokines, milk
production performance, routine bloods) measured in this
study, and bacterial communities. The permutation test method
(function envfit) constructed in the R VEGAN package (Dixon,
2003) was then used to test the significance of this correlation.
Spearman’s rank correlation coefficient was calculated to measure
the relationship among the cows’ physiological indexes, ruminal
bacteria, and fecal bacteria.

Nucleotide Sequence
Accession Numbers
The sequences in this study were accessible from the NCBI
Sequence Read Archive with accession number SRP202074.

RESULTS

Changes of Inflammation-Related
Cytokines, Routine Bloods, and
Production Performances
With Increasing Age
Four cytokines (TNF-α, IL- 6, TGF-β, and IL-10) were
measured to study the changes in inflammation-related cytokines
with increasing age, and to determine if aged cows suffer
from inflammation. Using SAS GLM, we observed low-
level inflammation among the cows in the L5+ group. The
concentrations of TNF-α, TGF-β, and IL-10 showed a similar
changing pattern; their levels were higher in L5 than L1 and
L3 (p < 0.001) but not statistically different between L1 and L3
(Table 2). IL-6 levels were significantly higher in the L3 and L5+
groups, and no significant difference was observed between L3
and L5+. Thus, the levels of all the measured cytokines were
significantly higher in L5+ compared with those in L1 (p< 0.05).

SAS GLM analysis of milk production performance suggested
a decrease in milking performance as the cows grew older. Milk
lactose and DMY tended to decline, while the SCS and FPD
tended to increase with age (p< 0.001). Among the three groups,
L5+ had the lowest level of daily milk yield, at about 5 kg lower
than that in L3, and 3 kg lower than that in L1 (p < 0.05). Total
milk solids and milk protein levels were also the lowest in L5+
when comparing the means, although the differences were not
significant. This decline in production performance of old dairy

TABLE 2 | Difference in inflammation-related cytokines, production performance,
and routine bloods across three lactation groups.

Item Least squares mean ± SE P-value

L1 (n = 60) L3 (n = 60) L5+ (n = 60)

Inflammation-related cytokines

TNF-α (pg/ml) 169.29 ± 3.61b 166.29 ± 3.62b 188.44 ± 3.60a < 0.001

IL-6 (pg/ml) 138.36 ± 4.12b 154.48 ± 4.13a 150.55 ± 4.12a 0.018

IL-10 (pg/ml) 20.74 ± 0.77b 22.34 ± 0.77b 26.44 ± 0.77a < 0.001

TGF-β(ng/ml) 66.30 ± 1.87b 70.68 ± 1.87b 76.55 ± 1.86a < 0.001

Performances of production

DMY (kg/day) 37.91 ± 0.83b 39.95 ± 0.99a 35.23 ± 0.84c < 0.001

Lactose (%) 5.00 ± 0.04a 4.79 ± 0.04b 4.67 ± 0.04c < 0.001

Car (mg/dL) 12.67 ± 0.44 12.66 ± 0.44 12.57 ± 0.44 0.986

FPD (mOH) 554.16 ± 1.65b 556.07 ± 1.66b 564.48 ± 1.64a < 0.001

Solids (%) 11.18 ± 0.15 11.55 ± 0.15 11.13 ± 0.15 0.090

Fat (%) 3.00 ± 0.09 3.26 ± 0.09 3.17 ± 0.09 0.146

Protein (%) 3.14 ± 0.02 3.19 ± 0.02 3.11 ± 0.02 0.065

SCS 2.95 ± 0.15c 3.50 ± 0.15b 4.49 ± 0.15a < 0.001

Blood routine

WBC (109/L) 11.67 ± 0.44 11.10 ± 0.44 10.58 ± 0.44 0.221

RBC (1012/L) 6.03 ± 0.07a 5.73 ± 0.07b 5.70 ± 0.07b < 0.001

HGB (g/L) 96.59 ± 1.15 93.78 ± 1.15 93.88 ± 1.15 0.151

HCT (%) 27.90 ± 0.33 27.03 ± 0.33 26.80 ± 0.33 0.051

MCV (fL) 47.67 ± 0.31b 48.75 ± 0.31a 48.65 ± 0.31a 0.024

MCH (pg) 16.52 ± 0.12b 16.96 ± 0.12a 17.04 ± 0.12a 0.004

MCHC (g/L) 346.93 ± 0.87 347.79 ± 0.87 349.77 ± 0.87 0.064

PLT (109/L) 429.27 ± 13.38 418.09 ± 13.40 390.67 ± 13.35 0.113

W-SCR (%) 56.23 ± 1.00 53.60 ± 1.00 53.54 ± 1.00 0.100

W-MCR (%) 6.00 ± 0.21 6.18 ± 0.21 6.51 ± 0.21 0.210

W-LCR (%) 37.77 ± 0.96 40.22 ± 0.96 39.94 ± 0.95 0.146

W-SCC (109/L) 6.69 ± 0.29 6.09 ± 0.29 5.87 ± 0.29 0.124

W-MCC (109/L) 0.70 ± 0.03 0.67 ± 0.03 0.68 ± 0.03 0.800

W-LCC (109/L) 4.28 ± 0.17 4.34 ± 0.17 4.03 ± 0.17 0.384

PDW (fL) 6.64 ± 0.09b 6.78 ± 0.09ab 6.98 ± 0.09a 0.020

MPV (fL) 6.12 ± 0.05b 6.26 ± 0.05ab 6.33 ± 0.05a 0.006

RDW-SD 17.46 ± 0.29 17.70 ± 0.29 18.29 ± 0.29 0.123

RDW-CV 0.17 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.265

P-LCR (%) 3.21 ± 0.20b 3.88 ± 0.20a 3.89 ± 0.20a 0.024

TNF-α, tumor necrosis factor alpha; IL-6, interleukin 6; TGF-β, transforming
growth factor beta; IL-10, interleukin 10; DMY, daily milk yield; Lactose, milk
lactose; Car, milk carbamide; FPD, freezing point depression of milk; Solids, milk
solids; Fat, milk fat; Protein, milk protein; SCS, somatic cell score of milk; WBC,
white blood cell count; W-SCR, lymphocyte cell ratio; W-MCR, mononuclear cell
rate; W-LCR, granulocyte cell ratio; W-SCC, lymphocyte cell count; W-MCC,
mononuclear cell count; W-LCC, granulocyte cell count; RBC, red blood cell count;
HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration;
RDW-CV, red blood cell distribution width of coefficient of variation; RDW-CV, red
blood cell distribution width of standard deviation; PLT, platelet count; PDW, platelet
distribution width; MPV, mean platelet volume; and P-LCR, large cell ratio of platelet
were compared across three lactation groups (L1, L3, L5+, corresponding to 1st
lactation, 3rd lactation, and at least 5th lactation) using GLM, general linear model
in SAS. The least squares means labeled with different letters were significantly
different (Duncan’s test, p < 0.05), otherwise they were not significantly different.

cows (L5+) indicated that the physiological functions of aged
dairy cows had diminished.

We also compared the blood physiology of the three groups.
As shown in Table 2, there was a significant decline in the RBC
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FIGURE 1 | The dairy milk yield of cows with high and low TNF-α level SAS
GLM procedure showing that cows with higher TNF-α levels produce less
milk. 180 cows were divided into two groups at the median of TNF-α level,
and the daily milk yield of the two groups was compared using GLM (General
Linear Model) in SAS.

count in L3 and L5+ (p < 0.001). Some blood physiological
indexes related to the size of red blood cells (MCV, MCH) and the
size of platelets (PDW, MPV, P-LCR) were increased in the L5+
group compared with those in the L1 group (Table 2, p< 0.05).

We then sought to determine if there is a connection between
inflammatory cytokines and milk yield. We divided the 180
cows into two groups exactly at the median of the TNF-
α level, and then compared the milk yield between the two
groups using SAS GLM, which considered farm group, lactation
group (L1, L3, L5+), lactation stage (two levels divided by the
median of lactation days), and TNF-α group as fixed effects. The
results in Figure 1 showed that the dairy cows with a higher
level of blood TNF-α in blood tended to produce less milk
(about 2 kg, p< 0.01).

Variation of Fecal Microbiota
Among the Six Farms
Bray–Curtis dissimilarity (Bray and Curtis, 1957), which is
computed from sequence counts of bacteria, is good at
quantifying the difference in abundance between two different
bacterial communities. To make this Bray–Curtis dissimilarity
easier to understand, we used the technique of unsupervised
principal coordinates analysis (PCoA) to visualize the Bray–
Curtis dissimilarity matrix among 180 dairy cows’ feces
microbiota. In the PCoA plot (Supplementary Figure S1A),
the visible distance between two points approximates to the

Bray–Curtis dissimilarity between the two corresponding cows’
bacteria communities. A remarkable spatial separation among the
six farms’ clouds was observed in Supplementary Figure S1A
(PERMANOVA, p< 0.001), suggesting a large difference between
the cows’ feces microbiota from different farms.

To further understand this variation in fecal microbiota
between different farms, we used a flower figure (Supplementary
Figure S1B) to characterize the distribution of sOTUs among
the six farms. Supplementary Figure S1B shows that, although
most of the sOTUs (54%) were shared by all farms among
the 4745 observed sOTUs, there were some sOTUs observed
only in one specific farm. Considering that all the sOTUs
observed in less than 10 samples were excluded from this
analysis, these farm-specific sOTUs could be very convincing
and meaningful. More information about these common sOTUs
and farm-specific sOTUs is shown in Supplementary Table S1.
In addition, even for those sOTUs that were shared among
most farms, their abundance fluctuated markedly between farms
(Supplementary Figure S2).

Change of Fecal Bacterial Communities
With Increasing Age
Principal coordinates analysis based on Bray–Curtis dissimilarity
was applied six times independently for the six farms to analyze
the difference in bacterial composition across the three lactation
groups. The PCoA plots (Figure 2) showed that the clouds
derived from the L1 and L5+ data were separated from each other
within each farm, indicating that their bacterial communities
were different. The point clouds of L3 groups, which were
more likely to be located between L1 and L5+, were hard to
tell from L1 in some cases (Figures 2A,D,E). We then used
the PERMANOVA technique to test if there were significant
separations across the centers of the three lactation groups’
bacterial communities. As shown in Table 3, five out of six
farms had overall p-values below 0.001, which provided sufficient
proof that there were significant differences across the bacterial
communities from the three lactation groups. Even for the non-
significant farm (F5), the difference was significant if we only
looked at the p-value of L1 versus L5+ (p < 0.05). The results
of PERMANOVA confirmed those of PCoA; that there was a
significant difference between the bacterial composition of the L1
and L5+ groups (p< 0.05).

The non-strict version of LEfSe (Segata et al., 2011) was
used to determine the bacteria most likely to explain the
differences among lactation groups, by coupling Kruskal–Wallis
tests for statistical significance with additional tests assessing
biological consistency and effect relevance. Bacteria with LDA
scores greater than 2 were speculated to have a different
abundance across the three lactation groups (Figures 3, 4).
Finally, we identified 18 clades as biomarkers of L5+, which
could distinguished L5+ from the other two groups and were
more abundant in the L5+ samples, including Terrisporobacter,
Cellulosilyticum, Christensenellaceae R-7 group, dgA-11 gut group,
and eight genera belong to the Ruminococcaceae (Ruminococ-
caceae UCG-009, Ruminococcaceae UCG-004, Ruminococcaceae
NK4A214 group, Ruminiclostridium 5, Ruminiclostridium 1,
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FIGURE 2 | Principal coordinates analysis (PCoA) to visualize the differences among the fecal bacteria communities of three lactation groups from six farms. (A–F)
PCoA was applied six times separately for the six farms (F1–F6) to visualize the differences in fecal bacterial communities across three lactation groups. In each plot,
each point represents a sample, the distance between two points approximates the difference of their bacterial communities (Bray–Curtis dissimilarity), and the
points belonging to different lactation groups were shown in different colors.
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TABLE 3 | PERMANOVA to test the difference in bacterial communities across
three lactation groups.

Overall

Farm Pairwise permanova p-value p-value

L1−L3 L1−L5+ L3−L5+

(n = 20) (n = 20) (n = 20)

F1 (n = 30) 0.407 < 0.001 0.002 < 0.001

F2 (n = 30) 0.005 0.007 0.035 < 0.001

F3 (n = 30) < 0.001 < 0.001 0.016 < 0.001

F4 (n = 30) 0.017 < 0.001 < 0.001 < 0.001

F5 (n = 30) 0.484 0.019 0.350 0.131

F6 (n = 30) 0.030 < 0.001 < 0.001 < 0.001

Permanova, a non-parametric method, was applied separately in six farms to
test the significance of the difference in fecal bacteria communities across
three lactation groups. F1–F6 represent six farm groups, and L1 (1st lactation),
L3 (3rd lactation), and L5+ (at least 5th lactation) represent the three lactation
groups. All the p-values were calculated by permutating 1000 times. Each pairwise
p-value was calculated from 20 samples, and each overall p-value was calculated
from 30 samples in the corresponding farm.

Hydrogenoanaerobacterium, Caproiciproducens, and Angelaki-
sella), as well as a lineage of Elusimicrobia. We found 11
clades that were more abundant in the L3 group, including
Pygmaiobacter, Tyzzerella 3, Coprococcus 3, Clostridium
sensu stricto 6, Bacteroides, and a lineage of Bifidobacterium.
We also found 33 clades as biomarkers of L1, including
Succinivibrio, [Eubacterium] nodatum group, [Eubacterium]
brachy group, Defluviitaleaceae UCG-011, four genera
belonging to the Ruminococcaceae (Ruminococcaceae UCG-
014, Ruminococcaceae UCG-005, Ruminiclostridium 9, and
Fournierella), 12 genera belonging to the Lachnospiraceae
(Marvinbryantia, Lachnospiraceae UCG-001, Lachnoclostridium,
Dorea, Coprococcus 2, Blautia, Anaerostipes, Anaerosporobacter,
Agathobacter Acetitomaculum, [Eubacterium] xylanophilum
group, and [Eubacterium] ventriosum group) and all the
genera belong to the Prevotellaceae (Prevotellaceae UCG-004,
Prevotellaceae UCG-003, Prevotellaceae UCG-001, Prevotella
9, Prevotella 1, and Alloprevotella). Clearly, there was a
reconstruction within the family Ruminococcaceae as the
cows grew older.

Changing Pattern of Bacterial Functions
With Increasing Age
To study how the functions of fecal bacteria changed with
increasing age, we first predicted the functions of fecal bacteria
using PICRUSt, and then used ANOVA followed by Duncan’s
test to compare the abundance of predicted KEGG pathways
across the three lactation groups. We detected 249 KEGG
pathways of the third level after filtering the pathways observed
in less than 90 samples, which were not compatible with the
analysis of ANOVA and Duncan’s test. We observed that 37%
of the selected pathways (93 pathways) had changed during
aging (ANOVA, p < 0.05). Figure 5 shows the 42 most
significant pathways with p-values below 0.005. For the KEGG
pathways related to essential nutrients shown in Figure 5, six
pathways related to the metabolism of amino acids (Cysteine and

FIGURE 3 | Histogram of the LDA scores computed for differentially abundant
fecal bacteria across three lactation groups. LEfSe scores could be
interpreted as the degree of consistent difference in relative abundance of the
analyzed fecal bacteria communities across the three lactation groups. The
histogram thus identifies which clades among all those detected as
statistically and biologically differentially abundant and could explain the
greatest differences across the three groups. In brief, the blue bars, for
example, represent the bacteria with the highest abundance in L5+ compared
with those in the other two groups.

methionine metabolism, D-Alanine metabolism, D-Glutamine,
and D-glutamate metabolism, Glutathione metabolism, Glycine,
serine and threonine metabolism, Phosphonate, and phosphinate
metabolism) were more abundant in L5+ and L3 than in L1.
Three pathways belonging to the metabolism of carbohydrates
category (Starch and sucrose metabolism, Galactose metabolism,
and Fructose and mannose metabolism) were more abundant
in L1 than in L5+. Two pathways related to the metabolism of
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FIGURE 4 | The fecal bacteria (highlighted by small circles and by shading) showing different abundance values among three lactation groups. There are six layers
from the inside of this plot to the outside, corresponding to six levels of taxonomy (kingdom, phylum, class, order, family, and genus). Each node (small circle)
represents a taxon; blue nodes represent the bacterial biomarkers of L5+ with the highest abundance in L5+ compared with that in the other two groups (red for 1st
lactation, green for 3rd lactation), while yellow nodes indicate the bacteria that are not statistically and biologically differentially abundant among the three lactation
groups. The diameter of each circle is proportional to the taxon’s abundance. This representation, employing the Silva taxonomy, simultaneously highlights high-level
trends and specific genera; for example, multiple differentially abundant sibling taxa are consistent with the variation of the parent clade.

lipids (Glycerophospholipid metabolism and Lipid metabolism)
were more abundant in L1 than in L3 and L5+. In addition, two
pathways (NOD-like receptor signaling pathway, and Antigen
processing and presentation) belonging to the Immune System
category were less abundant in L3 and L5+. The biosynthesis
of ansamycins appeared to be less active in L3 and L5+,
and some pathways that might produce toxic metabolites such
as, Peroxisome and Bacterial toxins, were more active in L3
and L5+. Two pathways related to trypanosomiasis (African
trypanosomiasis and American trypanosomiasis) were more
abundant in L3 and L5+ (Duncan’s test, p< 0.05).

Correlation Analysis
After the effects of farm groups were corrected, RDA was used
to analyze how much the physiological indexes were related
to the cows’ fecal bacteria community. The goodness of fit
statistic of RDA is the squared correlation coefficient (r2), and
the significance of this r2 was assessed using a permutation
test in the VEGAN package. The results of performing 2000
permutations are shown in Table 4, which shows that age
(months after birth), with a r2 of 0.353, was the variable most
related to the bacterial community, except for farm groups,
followed by DMY (0.143) and milk fat (Fat, 0.125). The variables
with a significant r2 (p < 0.05) were used to draw RDA maps
(Figure 6), in which the length of each arrow represents its
degree of correlation to the bacterial community in the RDA
(no permutations). Coloring the samples by their different

lactation groups showed that the centroids of the three groups’
clouds were well separated, which confirmed the remarkable
correlation between the cows’ age and their fecal bacteria
community (Figure 6A). By plotting the bacteria in an RDA
map, we could easily find the bacteria most related to a specific
variable, and those most involved in the significance of the
variable’s r2-value. For example, among the 30 most abundant
bacteria labeled in Figure 6B, Cellulosilyticum, Ruminococcaceae
UCG-009, and Ruminococcaceae NK4A214 group, located in
the positive direction of the age arrow, were positively
related to age, whereas Succinivibrio, Ruminococcaceae UCG-
005, Blautia, Anaerosporobacter, Agathobacter, Acetitomaculum,
and Prevotellaceae UCG-003 were negatively related to age. In
addition, these bacteria must contribute the most to the size of
the r2-value for the age variable. More information could be
found by comparing the angles between the arrows; for example,
SCS, TNF-α, MPV, and MCH were positively related to age,
as their arrows expanded toward almost the same direction;
by contrast, platelets, daily milk yield, and milk lactose were
negatively related to age.

Instead of relating bacteria to the physiological indexes while
the effects of lactation groups existed, as above, we next removed
the effects of both farm groups and lactation groups before
we calculated the Spearman’s rank correlation between bacteria
and physiological indexes. Therefore, the correlations shown in
Figure 7 were more like partial correlations, meaning they were
correlated even when the cows’ age was unchanged, and only
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FIGURE 5 | The 42 most significant KEGG pathways that were differently annotated across three lactation groups. ANOVA, followed by Duncan’s test, was used to
assess the significance of the difference after log transformation and standard normal scaling of the relative abundance of the pathways. (A–G) The top 42 significant
KEGG pathways with ANOVA p-values below 0.005 are showed in these barplots, which were split by the first taxonomic level of the KEGG pathways. The
difference between two lactation groups with different letters above their bars was significant (Duncan’s test, p < 0.05), otherwise they were not significant, and the
standard error (SE) of the group mean is displayed with error bars.

the 30 bacteria most related to physiological indexes are shown.
We found that Cellulosilyticum, which was more abundant in
the L5+ group, was strongly and positively correlated to TNF-α.

Coprococcus 3, which was more abundant in L3 compared with
that in L1 and L5+, was strongly and positively correlated with
daily milk yield [FDR (false discovery rate) adjusted p< 0.001].
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TABLE 4 | The correlation between physiological indexes and fecal
bacteria communities.

Index r2 P-value

Age 0.353 < 0.001

DMY 0.143 < 0.001

Fat 0.125 < 0.001

HGB 0.105 < 0.001

Lactose 0.100 < 0.001

Solids 0.098 < 0.001

MPV 0.094 < 0.001

HCT 0.076 0.002

RBC 0.073 0.002

SCS 0.070 0.003

P-LCR 0.064 0.003

RDW-CV 0.064 0.003

PLT 0.060 0.004

TNF-α 0.055 0.010

FPD 0.054 0.010

PDW 0.054 0.008

Protein 0.049 0.014

MCH 0.043 0.025

MCV 0.038 0.037

W-MCR 0.032 0.059

RDW-SD 0.031 0.077

IL-6 0.031 0.064

W-MCC 0.030 0.085

W-SCR 0.022 0.140

MCHC 0.022 0.150

W-LCR 0.022 0.139

TGF-β 0.019 0.207

IL-10 0.014 0.314

W-LCC 0.013 0.347

W-SCC 0.005 0.656

Car 0.004 0.746

WBC 0.002 0.816

The significance (p-values) of the correlation between a cows’ physiological indexes
and bacterial communities were assessed by permutating 2000 times using the
method in the R VEGAN package. The goodness of fit statistic of RDA, the
squared correlation coefficient (r2), which measures the correlation between cows’
physiological indexes and bacterial communities, is showed in this table. The
abbreviations are the same as those shown in the footnote to Table 2.

Further Association of the Ruminal
Bacteria to the Lactation Group, and to
Fecal Bacteria and Physiological Indexes
In this part, we were only able to analyze the samples of 30
cows from one of the six farms (F1) because of a lack of
conditions to collect the ruminal liquid in the other farms.
From the PCoA plot of the ruminal bacteria communities
(Supplementary Figure S3), we observed the differences among
the rumen bacteria communities of the three lactation groups
(PERMANOVA, p < 0.05); however, compared with that of
the L1 group, the rumen bacteria communities of L5+ were
more similar to those of L3. In contrast to the LEfSe analysis
of fecal microbiota, in this experiment we selected the bacteria
with an LDA > 4 as the biomarkers of each lactation group

in the LEfSe analysis of rumen bacteria to avoid false positives
because we had only 30 samples. We found that, Rikenellaceae
RC9 gut group and two genera belonging to the Ruminococcaceae
(Ruminococcaceae NK4A214 group and Ruminococcaceae UCG-
014) were more abundant in L3. The abundance of Prevotella 1,
the most abundant bacterial genus in the rumen (average relative
abundance = 0.34), declined when cows grew to the third
lactation (L3). We did not find any ruminal bacteria biomarkers
for the L5+ group in this study (Supplementary Figure S4).

Correlation network analysis was used to visualize the
Spearman’s rank correlation coefficient matrix among cows’
physiological indexes, the dominant rumen bacteria, and fecal
bacteria. We detected a close and complex connection network
among physiological indexes, rumen bacteria, and fecal bacteria
(Figure 8). All the gut bacteria, whether in the rumen or
feces, were connected with each other to some extent (directly
or indirectly, positively or negatively). The interactions among
rumen bacteria were much more complicated than those among
fecal bacteria. Both rumen bacteria and fecal bacteria were related
to the physiological indexes. Among the physiological indexes,
the age variable had the largest number of connections with the
ruminal and fecal bacteria (the number of lines connected to a
node) in the network (32 connections in total), followed by TGF-
β (17), IL-10 (13), and milk Fat (12), indicating that cows age and
inflammatory cytokines play an important role in this network,
and that gut bacteria were hypersensitive to increasing age and
to the progress of inflammatory status. There were significant
positive correlations among TGF-β, IL-10, TNF-α, and the cows’
age (FDR adjusted p< 0.01).

DISCUSSION

Chronic low-grade inflammatory status (inflammaging) was
reported in humans and model animals (Claudio, 2010;
Thevaranjan et al., 2017). In the present study, we observed
similar inflammaging in older cows (L5+), with significantly
higher levels of TGF-β, TNF-α, IL-10, and SCS (p < 0.001,
Table 2). The L5+ group also showed decreased milk production
performance, with significantly lower yields of milk and lower
milk lactose levels compared with those in both L1 and L3
(p< 0.001, Table 2). Note that the increase in anti-inflammatory
cytokines such as IL-10 should not always be interpreted as a
beneficial change, because an increase of IL-10 might be a sign
of dyshomeostasis as a result of increasing TNF-α (Figure 8). In
addition, anti-inflammatory cytokines can have proinflammatory
activity under specific circumstances. Inflammaging is thought to
be the cause of the age-related decline in the functionality of the
immune system (immunosenescence) (Larbi et al., 2008). Thus,
it is not difficult to explain the negative effect of TNF-α on milk
yield in the current study (Figure 1). Inflammaging may be one
of the reasons for higher culling hazard and reduced production
efficiency in older cows.

Age-related changes in the composition of the symbiotic
microbiota in humans have been demonstrated (Biagi et al.,
2010; Liang et al., 2011; Yu et al., 2015); however, the
results of these studies differed in terms of signature microbes

Frontiers in Microbiology | www.frontiersin.org 11 August 2019 | Volume 10 | Article 1803

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01803 August 9, 2019 Time: 11:46 # 12

Zhang et al. Inflammaging and the Gut Microbiota

FIGURE 6 | Continued
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FIGURE 6 | RDA analysis of the correlation between bacteria and a cows’ physiological status. (A) Each point represents a sample; each arrow represents a
quantitative explanatory variable (age, inflammation-related cytokines, production performance, routine bloods). Projecting a sample’s point at right angles on an
arrow approximates the position of the sample along that variable, and the distance between two samples’ points approximates their difference in bacterial
communities; the cosine values of the angles between explanatory variables reflect their correlations. (B) Each point represents a bacterial genus; the species that
failed to be assigned a genus taxa are included in “unclassified.” The top 30 abundant genera are labeled with their taxa. The size of a point reflects the abundance
of the corresponding genus. The cosine values of angles between the bacteria and explanatory variables, and between the response variables (bacteria) themselves
or explanatory variables themselves, reflect their correlations.

FIGURE 7 | The 30 bacteria most related to cows’ physiological status. Spearman’s rank correlation is shown as the color of the tile in this heatmap: Red means a
positive correlation, blue means a negative correlation. “∗,” “∗∗,” “∗∗∗” indicate FDR (false discovery rate) adjusted p-values <0.05, <0.01, and <0.001, respectively.

and inconsistent conclusions. In fact, mice under different
experimental conditions also showed different changing pattern
with increasing age (Kozik et al., 2017; Thevaranjan et al.,
2017). Moreover, Zaneveld believed that the microbiological
changes induced by many perturbations are stochastic, and thus
lead to a transition from a stable to an unstable community
state (known as the “Anna Karenina principle” for animal
microbiomes) (Zaneveld et al., 2017). Thus it is important to
conduct experiments under different conditions to form a valid
conclusion. In the current study, we observed marked differences
among the fecal microbiota derived from cows reared in different
farms (Supplementary Figure S1). This suggested that the effect

of farms, which might be co-effects of the management action,
the composition of the total mixed ration, and environment of
the different farms, was one of the reasons that led to the changes
in pattern of the cows’ feces microbiota.

In the analysis of large data derived from various
environments, there is a lack of methods to handle an experiment
design comprising more than one category variable as an
influencing factor on microbes whose abundance was known to
disobey the Gaussian distribution. This rules out any analysis
model that considers Gaussian distribution as a fundamental
assumption. In the present study, we used a non-parametric
method (Johnson et al., 2007; Leek et al., 2012) to remove the
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FIGURE 8 | Correlation network among the most abundant 50 ruminal bacterial genera, most abundant 50 fecal bacterial genera, and physiological indexes (mean
age, inflammatory cytokines, milk production performance, and routine bloods). Light blue nodes represent genera of fecal bacteria. Yellow nodes represent genera
of ruminal bacteria. Green nodes represent the physiological indexes measured in this study. A line between two nodes represents their significant correlation
(Spearman’s rank correlation, FDR adjusted p < 0.01), and the thicker the line is, the great the absolute value of the correlation coefficient. The red and blue lines
represent positive and negative correlations, respectively. The sizes of the nodes of the ruminal and fecal bacteria reflect the abundance of the
corresponding bacteria.

effect of the uninterested variable (farm), and used another
non-parametric method, LEfSe (Segata et al., 2011), to test the
effect of the variable of interest (lactation group), thus producing
believable results and conclusions.

By conducting an experiment upon 180 cows from six
different farms, we were able to draw robust conclusions for
the different farm environments. We found that the bacterial
community did indeed change with increasing age (Figure 2
and Table 3), and some bacteria that were present extensively in
the six farms displayed a relative stable changing pattern across
the lactation groups (Figures 3, 4). In particular, the bacteria
belonging to the Prevotellaceae were more abundant in both the
rumen and feces of young dairy cows (L1) compared with those
in L3 and L5+ (Figure 3 and Supplementary Figure S4), which
was consistent with the study of Liu (Liu et al., 2017). Dysbiosis
of fecal microbiota could definitely be related to inflammation
(Figure 8); for example, Cellulosilyticum, which was strongly and
positively related to TNF-α and negatively related to milk lactose
when the effect of lactation group was removed (Figure 7), was
more abundant in L5+ (Figure 3), indicating that it might be the
key reason for the inflammation of the older cows (L5+).

Our study also demonstrated dysbiosis of the fecal bacteria
community in the older cows by comparing the predicted

functions across the three lactation groups. The reconfiguration
of microbiota in older cows led to changes in the metagenome
such that it contained more functions related to protein
metabolism and fewer functions related to carbohydrate and
lipid metabolism (Figure 5). This finding was in accord with
a previous study of the human metagenome (Rampelli et al.,
2013). The fermentation of proteins often leads to the production
of toxic chemical substances such as NH3, H2S, amines, and
phenols (Brüssow, 2013), while the loss of lipid and carbohydrate
related genes may decrease the potential to generate beneficial
compounds, such as short chain fatty acids (SCFA), which
can protect the intestinal tract from damage. Some species
belonging to the Lachnospiraceae, for example, were reported to
protect against colon cancer in humans by producing butyric
acid (Meehan and Beiko, 2014). In the present study, we
detected a decrease of many genera belonging to Lachnospiraceae
(14 genera) among cows in the L5+ group compared with those
in either the L1 or L3 groups, in both the feces and rumen
(Figure 3 and Supplementary Figure S4). Although not all the
species belonging to Lachnospiraceae showed a beneficial effect
on host health in our study (e.g., Cellulosilyticum), Coprococcus 3,
in particular, was more abundant in cow feces of the third
lactation (Figure 3), as well as strongly and positively related
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to milk yield (Figure 7), indicating that Coprococcus 3 might
be related to the high milk production of third lactation cows.
Moreover, Brüssow (Brüssow, 2013) classified the Bacteroidaceae,
Eubacterium, and Bifidobacterium as beneficial bacteria, because
of their ability to synthesize vitamins, help in digestion, stimulate
immune function, and inhibit pathogenic microbes. However,
these bacteria showed a lower abundance in cows in the L5+
group compared with those in either the L1 or L3 group
(Figures 3, 4). Certain predicted KEGG pathways, which tend to
have negative effect to host health, such as Peroxisome, Bacterial
toxins, African trypanosomiasis, and American trypanosomiasis,
showed a higher abundance among dairy cows in the L3 and
L5+ groups than in the L1 group (Figure 5). The increase
of the peroxisome pathway in older cows may lead to the
production of H2O2. In addition, Hydrogenoanaerobacterium is
an H(2)-producing anaerobic bacterium, and the increase in its
abundance in cows in the L5+ group (Figure 3) might lead
energy waste and the production of H· free radicals. As reactive
oxygen species (ROS), H2O2 and H· could cause oxidative stress
(OS), leading to further inflammation. Therefore, on the one
hand, older dairy cows, especially cows of L5+, face more
threats from toxic substances and ROS, both of which can cause
morbidity of older cows. On the other hand, older dairy cows lack
of the protection of short chain fatty acids, which increases the
chances of toxic compounds and ROS damaging the intestinal
mucosa and further entering blood circulation. In summary,
a decayed microbiota might be one of the reasons why older dairy
cows suffer from chronic low-grade inflammation and decreased
milk production.

Our study mainly focused on the bacterial community of
feces (180 samples), but we also related fecal bacteria to rumen
bacteria (30 samples). Rumen bacteria reacted to aging similarly
to fecal bacteria: Prevotellaceae and Lachnospiraceae showed
a similar changing pattern between rumen bacteria and feces
bacteria. However, rumen bacteria showed some differences; for
example, the interactions among rumen bacteria were much
more complicated than those among fecal bacteria (Figure 8).
All the gut bacteria (in both the rumen and feces) were related
to each other (directly or indirectly, positively or negatively)
(Figure 8), which made them a community, and it is possible
that any changes in its members would cause a domino effect.
Our study supports the hypothesis that the fecal microbiota plays
an important role in host health, at least as an indicator of
host health, suggesting that we should pay more attention to the
balance of the rectal microbiota.

Given the existence of methods to manipulate the gut
microbiota, such as fecal microbiota transplantation (FMT)
(Weingarden et al., 2015), dietary intervention (Weimer, 2014),
or feeding with probiotics directly, the question remains as to
which microbes should be our focus. The results of the present
study support the hypothesis of prolonging a cows’ productive
life and improve dairy cow milk productive performances
by manipulating the gut microbiota. Manipulating the levels
of species belonging to the Lachnospiraceae, Bacteroidaceae,
Eubacterium, Bifidobacterium, Hydrogenoanaerobacterium,
which showed a close connection to the cows’ age and either milk
production or inflammatory cytokines, might help to alleviate

inflammaging and boost milk production. Some bacteria, such as
the Prevotellaceae, which showed a stable changing pattern with
aging in various circumstances, should be subjected to further
intensive study to confirm their influence on host health.
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FIGURE S1 | Differences among the dairy cows’ feces microbiota at six farms.
(A) The unsupervised PCoA of Bray–Curtis dissimilarity. Each point represents a
sample with the composition structure of all observed sOTUs; the distance
between two points thus represents the difference in the microbiota between two
corresponding samples. (B) Flower figure of the distribution of sOTUs among the
six farms. The number in each petal represents the number of sOTUs that are
peculiar to the corresponding farm, and the number in the center represents the
number of sOTUs that are common for all six farms.

FIGURE S2 | Histogram of the LDA scores computed for the differentially
abundant fecal bacteria among the six farms. The bacteria biomarkers of different
farms are represented with different colors.
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FIGURE S3 | Principal coordinates analysis (PCoA) to visualize the differences
among ruminal bacteria communities of three lactation groups within the first farm
(F1). Each point represents a sample in F1; the distance between two points
approximates the difference of their bacterial communities (Bray–Curtis
dissimilarity), and the points belonging to different lactation groups were shown in
different colors.

FIGURE S4 | LEfSe (Linear discriminant analysis effect size) to identify the ruminal
bacteria biomarkers of three lactation groups. (A) Histogram of the LDA scores

computed for differentially abundant rumen bacteria across three lactation groups.
(B) The ruminal bacteria (highlighted by small circles and by shading) showing
different abundance values among the three lactation groups.

TABLE S1 | SOTUs specifically present in a farm or commonly distributed among
all six farms. There are seven sheets in this Excel file; the first sheet exhibits the
sOTUs commonly distributed among all six farms; the second to seventh sheets
show the sOTUs specifically present in each farm; each sheet shows the total
sequence count and taxon of each sOTU.
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