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In food safety the detection of food contaminations with pathogenic microorganisms is
a race against time and often outpaced by error-prone epidemiological approaches. For
evidence-based outbreak investigations fast and reliable techniques and procedures are
required to identify the source of infection. Metagenomics has the potential to become a
powerful tool in the field of modern food safety, since it allows the detection, identification
and characterization of a broad range of pathogens in a single experiment without pre-
cultivation within a couple of days. Nevertheless, sample handling, sequencing and
data analysis are challenging and can introduce errors and biases into the analysis.
In order to evaluate the potential of metagenomics in food safety, we generated a mock
community containing DNA of foodborne bacteria. Herewith, we compare the aptitude
of the two prevalent approaches – 16S rDNA amplicon sequencing and whole genome
shotgun sequencing – for the detection of foodborne bacteria using different parameters
during sample preparation, sequencing and data analysis. 16S rDNA sequencing did
not only result in high deviations from the expected sample composition on genus and
species level, but more importantly lacked the detection of several pathogenic species.
While shotgun sequencing is more suitable for species detection, abundance estimation,
genome assembly and species characterization, the performance can vary depending
on the library preparation kit, which was confirmed for a naturally Francisella tularensis
contaminated game meat sample. The application of the Nextera XT DNA Library
Preparation Kit for shotgun sequencing did not only result in lower reference genome
recovery and coverage, but also in distortions of the mock community composition.
For data analysis, we propose a publicly available workflow for pathogen detection
and characterization and demonstrate its benefits on the usability of metagenomic
sequencing in food safety by analyzing an authentic metagenomic sample.

Keywords: metagenomics, food safety, mock community, bioinformatics, shotgun, 16S, harmonisation,
Francisella tularensis

Frontiers in Microbiology | www.frontiersin.org 1 August 2019 | Volume 10 | Article 1805

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.01805
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2019.01805
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.01805&domain=pdf&date_stamp=2019-08-06
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01805/full
http://loop.frontiersin.org/people/704420/overview
http://loop.frontiersin.org/people/305409/overview
http://loop.frontiersin.org/people/199539/overview
http://loop.frontiersin.org/people/502029/overview
http://loop.frontiersin.org/people/723754/overview
http://loop.frontiersin.org/people/678028/overview
http://loop.frontiersin.org/people/733208/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01805 August 2, 2019 Time: 19:28 # 2

Grützke et al. Metagenomics for Pathogen Detection

INTRODUCTION

During foodborne outbreaks reliable techniques are required to
identify the source of infection as fast as possible to prevent
further infections with the causative agent. To date, many
outbreaks are solved by epidemiological investigations without
microbiological evidence. One example for this is the foodborne
outbreak of the Shiga toxin-producing Escherichia coli of serotype
O104:H4 with over 4000 endemic infections and 53 fatal cases
in Germany in 2011 (Buchholz et al., 2011). Due to the life-
threatening character of this outbreak, a very fast investigation
was in demand. Initially, Spanish cucumbers were linked wrongly
to the outbreak which led to a drop in vegetable consumption
and export of Spanish vegetables with a high economical damage
(Burger, 2012). In order to avoid wrong source attribution,
microbiological evidence is important. The identification of
pathogenic microorganisms is conducted either by targeted or
culture-dependent methods. Targeted screening methods as PCR
or ELISA can be directly applied without a cultivation step and
are therefore very fast but carry the risk of missing atypical
strains that are not covered by the applied method. Additionally,
these methods do not resolve the affiliation of the detected
pathogen to an ongoing outbreak due to a low resolution on
molecular level. Whole genome sequencing (WGS) requires a
cultivation step in order to receive an isolate from the patient
and the contaminated food that are sequenced by next-generation
sequencing (NGS). This method has a high discriminatory
power and can therefore be used to decipher between outbreak
relevant and -irrelevant strains. Currently, WGS is successfully
used for source attribution in retro-perspective investigation
of foodborne outbreaks (Underwood et al., 2013; Hoffmann
et al., 2016; Kleta et al., 2017). However, the isolation process
can be too time-consuming for high-throughput screenings
of suspected food and is therefore problematic for real-time
analysis. The usage of sequencing-based metagenomics allows the
simultaneous identification and typing of the causative agent as
well as antimicrobial resistance (AMR) or virulence genes and
promises to be a very powerful tool for the surveillance of food
and drinking water.

The metagenomics analysis is a multi-sequential process and
almost every step contains pitfalls that can lead to distorted,
blurred and incomplete results. The proper homogenization and
cell lysis before nucleic acid extraction has one major impact
on the substance of the results. It has to be ensured that all
microorganisms have been made accessible for the cell lysis by
homogenization and cell lysis reagents are chosen properly for
complete access to the nucleic acids (Bag et al., 2016; Knudsen
et al., 2016; Wylezich et al., 2018).

The choice of the sequencing method is another decision
that could introduce bias into the metagenomic analysis. Two
predominant approaches are currently widely used to study the
composition of metagenomics samples: a targeted approach using
a genetic marker like the 16S rRNA gene for bacteria (Patel, 2001)
and a method for the broad-range detection of all pathogens
at the same time using the complete genetic information in
the sample (shotgun metagenomics). The 16S rRNA gene is the
most widely used marker to characterize bacterial communities.

This gene is present in the genome of all bacteria and consists
of alternating variable and conserved areas. The conserved
regions enable the amplification of the nine variable regions
using universal primers. The resulting amplicons are prepared
for sequencing in a step called library preparation by adding
sequences for immobilization, sequencing primer binding sites
and DNA barcodes for sample multiplexing. Many studies rely
on the sequencing of only one variable region. Therefore the
selection of the variable region can influence the results and
has to be chosen with care (Chakravorty et al., 2007; Sun et al.,
2013; Barb et al., 2016). Shotgun metagenomics aims to gain
all genomic information within a sample. The extracted DNA
is fragmented and a library is prepared before sequencing. For
both fragmentation and library construction, different protocols
exist. Either fragments are generated by enzymatic cleavage or by
mechanical shearing (e.g., ultrasonication). Meanwhile, dozens
of kits for library preparation exist and it is proposed that the
choice of the kit can have an impact on the resulting community
composition (Bowers et al., 2015; Jones et al., 2015).

One of the major desired applications of metagenomics in
food safety is to identify pathogenic microorganisms present
in food samples. The basis for this is taxonomic classification
that can either be performed by using short reads or longer
DNA sequences obtained by the assembly of the sequencing
reads (Breitwieser et al., 2017). Additionally, variant analysis
might be desired in order to perform pathogen typing to
e.g., source attribute contaminated food samples to foodborne
outbreaks. Pathogenic agents might not always be among
the most abundant species in the sample. As the detection
of microorganisms often relies on the presence of genome
fragments in the sample, lowly abundant members with few
sequencing reads might be missed in the analysis. Additionally,
some of the foodborne bacteria e.g., from the Bacillus cereus have
highly identical genomes and their pathogenicity is determined
by virulence factors that are encoded on additional plasmids.
In order to assess the risk of contaminated food with these
bacteria, specifically their virulence genes have to be detected
in a food sample in combination with genomic evidence
for their presence.

In this study, we aimed to evaluate the performance of the
two predominant metagenomic approaches for their application
in foodborne pathogen detection. With the help of a DNA
standard consisting of food-associated pathogens, we analyze
the impact of the variable regions and the sequencing platform
for 16S rDNA amplicon sequencing and the choice of the
library kit for shotgun sequencing on the results. Additionally,
the proficiency and potential of the prevalent bioinformatics
tools for taxonomic classification for each method was analyzed.
Our data revealed a superiority of shotgun metagenomic
sequencing over 16S rDNA amplicon sequencing in species
identification, abundance estimation, sensitivity as well as
specificity. But also for shotgun metagenomics sequencing,
the choice of the library kit appears to have high impact
on the accuracy of the results. We verified our results
obtained from the analysis of the DNA standard by exemplarily
analyzing a hare liver sample infected with Francisella tularensis
subsp. holarctica. With our knowledge acquired from this
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study we developed a workflow for pathogen detection and
characterization in food samples using shotgun metagenomics
sequencing which could pave the way for the usage of
metagenomics in food safety.

MATERIALS AND METHODS

Samples and Bacterial Strains
The bacterial F. tularensis subsp. holarctica isolate 16T0017 was
isolated on cysteine heart agar (CHA, Becton Deckinson, BD
Heidelberg, Germany) from a carcass of a hare (Lepus europaeus)
found in 2016 in Rhineland-Palatinate during routine sampling
by Friedrich-Loeffler-Institut (Jena), Germany. The liver of the
same animal was provided for metagenomic analysis.

DNA Extraction and DNA Standard
Genomic DNAs (gDNA) used for the DNA standard from
isolates belonging to genera Streptococcus, Staphylococcus,
Bacillus, Brucella, Escherichia, Shigella, Burkholderia, Salmonella,
Klebsiella, Campylobacter, Listeria, Clostridioides, Clostridium,
Yersinia, Vibrio, Ochrobactrum and Morganella (Supplementary
Table S1) were isolated from plate agar or liquid culture
by either using the PureLinkTM Genomic DNA Mini Kit
(Invitrogen, Carlsbad, CA, United States) or DNeasy Blood
& Tissue Kit (Qiagen, Hilden; Germany) according to
the manufacturer’s protocol. The isolation of gDNA from
F. tularensis subsp. holarctica isolate 16T0017 and whole DNA
from hare (L. europaeus) liver was performed as described before
(Busch et al., 2018). All extracted DNA was quantified using the
Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA, United States).
The determination of F. tularensis genome equivalents from
whole liver DNA was performed by qPCR as described before
(Tomaso et al., 2007). DNA molarity was calculated based on the
DNA quantity and the median average length for each species
or if available for the strain specified at NCBI genome database.
DNAs were combined in an equimolar mixture, containing the
same genome copy number (Supplementary Table S2) or the
same 16S gene copy number for the copy number normalized
mixture for each isolate.

16S rDNA Amplification
The amplification of the variable regions (V) of the 16S rDNA
was performed with 27F (Lane, 1991) and 338R (Fierer et al.,
2008) for V1-2, Bakt_341F (Herlemann et al., 2011) and 533R
(Huse et al., 2008) for V3, 520F and 926R (Claesson et al.,
2010; Quince et al., 2011) for V4-5, S-D-Bact-0909-a-S-18 and
P699R (Klindworth et al., 2013) for V6-7, 1100F and 1492R
(Baker et al., 2003) for V7-9 (Supplementary Table S3). The
PCR reaction with Taq DNA polymerase (Invitrogen, Carlsbad,
CA, United States) was prepared according to the manufacturer’s
protocol with 2.5 mM MgCl2 and 0.8 µM of each primer pair.
The PCR amplification was carried out over 35 cycles (30 s at
95◦C, 30 s at 50◦C, 3 s at 72◦C) with an initial 5 min hot
start at 95◦C and a final extension step (1 min at 72◦C). PCR
products were purified with Agencourt AMPure XP (Beckman
Coulter, Brea, CA, United States) using 1.6× sample volume and

quantified using the Qubit 2.0 fluorometer (Invitrogen, Carlsbad,
CA, United States).

Next-Generation Sequencing
DNA libraries for 16S rDNA amplicons sequencing were
prepared with the Ion XpressTM Plus Fragment Library Kit (Ion
Torrent, Gilford, NH, United States) or with the Nextera XT
DNA Library Preparation Kit (Nextera XT) (Illumina, San Diego,
CA, United States) according to the manufacturer’s instructions.
16S rDNA libraries were sequenced with Ion PGMTM using Ion
316TM Chip v2 (Ion Torrent, Gilford, NH, United States) or
on the Illumina MiSeq benchtop sequencer in paired-end mode
with 2 × 251 cycles using the MiSeq Reagent v3 600-cycle kit
(Illumina, San Diego, CA, United States).

DNA from F. tularensis subsp. holarctica isolate 16T0017
was likewise prepared with the Nextera XT DNA Library
Preparation (Nextera XT) Kit and paired-end sequenced with
2 × 300 cycles on the Illumina MiSeq benchtop sequencer.
DNA libraries for shotgun sequencing were prepared from
the same DNA standard or from whole DNA from hare
with Nextera XT DNA Library Preparation (Nextera XT)
Kit, Nextera DNA Flex Library Prep (Nextera DNA Flex)
Kit, TruSeq Nano DNA Library Prep (TruSeq Nano) Kit
(Illumina, San Diego, CA, United States) and ThruPLEX

R©

DNA
seq (ThruPLEX) Kit (Takara Bio Inc., Kusatsu, Shiga, Japan)
according to the manufacturer’s instructions and pooled prior
to sequencing in paired-end mode with 2 × 151 cycles on
the NextSeq 500 sequencing system (Illumina, San Diego, CA,
United States). Further details on sequenced samples can be
found in Supplementary Table S4. All sequences are publicly
available at the European Nucleotide Archive (ENA) under the
study accession ERP115955.

Bioinformatics Analysis
Adapters in fastq files generated with PGM were removed
after demultiplexing with Cutadapt (Martin, 2011). Paired end
reads generated with MiSeq were merged with Qiime (Caporaso
et al., 2010) before trimming. Quality trimming of all reads was
performed with fastp (Chen et al., 2018) with a mean quality
of 30, allowing trimming from both ends for reads generated
with the PGM. For random subsampling, seqtk1 was used with
trimmed reads. For analysis of combined amplicons the same
numbers of preprocessed reads from each amplicon after random
subsampling were pooled in silico. Pooled and individual 16S
rDNA amplicon sequences were either classified using kraken2
with default parameters and provided 16S rDNA databases,
Qiime2 (Bolyen et al., 2018) with dada2 pipeline and classify-
consensus-blast for taxonomic assignment or Qiime with OTU
clustering at 99% similarity with cdhit, sortmerna, uclust_ref,
or usearch_ref and taxonomic assignment with uclust. The used
databases for the 16S rDNA analysis with Qiime and Qiime2 are
Greengenes 13.8, Silva v132 and NCBI as downloaded in March
27, 2017. The taxonomic profile from shotgun sequencing was
generated with trimmed reads by using MetaPhlAn2 (Truong
et al., 2015), kraken (Wood and Salzberg, 2014) and kraken2 with

1https://github.com/lh3/seqtk
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RefSeq v87. For the calculation of the Bray–Curtis dissimilarity
indices and assigned reads, abundances of the expected genera
and species were extracted. Metagenomic assemblies were
generated using MEGAHIT (Li et al., 2015) and reference
genome coverage of the resulting contigs was calculated with
QUAST (Gurevich et al., 2013). Bray–Curtis dissimilarities were
calculated in R with the vegan package (Dixon, 2003). Mapping
of all reads to F. tularensis subsp. holarctica FTNF002-00
(GCF_000017785.1_ASM1778v1_genomic.fna) or to the mock
community reference genomes was performed using BWA
mem (Li, 2013) and bowtie2 (Langmead and Salzberg, 2012),
respectively. Covered bases were extracted with samtools (Li
et al., 2009) and bedtools (Quinlan and Hall, 2010). Species
specific reads were extracted from kraken2 output by using
bbmap (Bushnell, 2014) after the translation of taxids to
the full taxonomic lineage with taxonkit (Shen and Xiong,
2019). Kraken2 mpa-reports were filtered for pathogenic species
using ABSA database as downloaded in May 2, 2018. From
the resulting list, intra-run contaminations were eliminated
manually. Taxonomic classification of extracted reads was
verified with BLASTn with max_target_seqs 500 and max_hsps
500 parameters in combination with NCBI nt database.
For subspecies estimation Mash screen (Ondov et al., 2016)
with winner-take-all strategy was run. Virulence factors were
identified in species specific reads by using SRST2 (Inouye et al.,
2014) with default parameters for strict criteria and a minimum
coverage of 60 and minimum depth for the relaxed criteria in
combination with the Virulence Factor database (VFDB) (Chen
et al., 2005) as downloaded in April 24, 2018. Plots were generated
in R with ggplot2, ggtree, cowplot or in MS Excel. The Venn
diagram was generated with Venny (Oliveros, 2007) and the
workflow diagram was drawn by using Draw.io2.

RESULTS

Mock Community
In order to evaluate the usage of metagenomics sequencing
methods and analysis tools for the detection of pathogens in
food samples a DNA standard was constructed. The standard
consists of 34 equimolarly pooled bacterial DNAs belonging
to 17 genera and 30 species (Figure 1 and Supplementary
Tables S1, S2). The bacterial species were selected based on
their incidence in foodstuff and pathogenicity (Tauxe, 2002).
In addition to obligate human pathogenic bacteria that cause
foodborne illness when ingested, closely related opportunistic
or nonpathogenic bacteria were chosen in order to analyze the
ability to dissect pathogenic and nonpathogenic species from one
another during the analysis (Figure 1). The standard includes
15 strains belonging to the phylum of gram-negative Firmicutes
and 19 to gram-positive (Alpha-, Beta-, Gamma- or Epsilon-)
Proteobacteria. Except for B. cereus, Clostridium perfringens,
Salmonella enterica, and Staphylococcus aureus whereof DNA
from two strains were included, all other species are represented
by a single isolate. The resulting DNA standard has an average

2https://www.draw.io/

GC-content of 43% and the included genomic DNA ranges
between 28 and 68% GC-content (Figure 1).

16S rDNA Amplicon Sequencing of a
Mock Community
Sequencing of the 16S rDNA is often used to taxonomically-
dissect metagenomic samples. Different databases, sequencing
technologies and analysis tools were compared by sequencing a
mock community to assess the performance of the 16S rDNA
amplicon sequencing. For the amplification of the 16S rDNA,
published PCR primers with a high overall coverage for bacteria
were selected based on a study where 16S rDNA primers
were analyzed in silico (Klindworth et al., 2013). Taxonomic
classification with Qiime was performed using cd-hit for
clustering of the operational taxonomic unit (OTU) that shows
best results compared to uclust_ref, usearch_ref and sortmerna
(Supplementary Figure S1). Bray–Curtis dissimilarities were
calculated for combined amplicons (Figure 2B). Higher values
indicate higher deviation from the expected composition of the
mock community. The dissimilarity index varies less on genus
level between used classification tools and databases in the range
of 0.3 to 0.5 whereas at species level the dissimilarity index
varies highly between 0.46 with Qiime and NCBI database to
0.81 with Qiime2 and NCBI database. NCBI and Silva databases
are not available for kraken2 classification or do not include
species taxonomy, respectively. For all classification tools and
databases some species were only detected at very low abundance
(Figure 2C). A detection threshold is set to 10% of the expected
abundance for each member of the mock community. Between
6–31% of the genera and 30–83% of species were detected below
the detection threshold. Most genera and species above this
threshold could be detected with Qiime and NCBI database.
Very poor sensitivity especially on species level was obtained
after kraken2 and Qiime2 analysis. Some genera were not
detected at all (Figure 2C). In particular Burkholderia detection
with all databases and tools is missing and Brucella remained
either undetected with Greengenes or is detected at very low
abundance. In contrast, the abundance of some genera is highly
overestimated as for Vibrio and Bacillus. On species level, six
species remained completely undetected while the abundance
of B. cereus was highly overestimated. In order to test if the
observed overestimation is due to the copy number variation of
the 16S gene, a mock community that was normalized to the
copy numbers for each species was sequenced with PGM and
analyzed with Qiime as described previously. Unsurprisingly, this
normalization to the estimated gene copy number obtained from
The Ribosomal RNA Database (rrnDB) (Stoddard et al., 2015),
decreased the level of over-or underestimation for almost all
genera and 14 species and reduced the Bray–Curtis particularly
on genus level from 0.4 to 0.26, but reduced the number of
undetected only for one species (Supplementary Figure S2).
The amount of false-positive assigned reads (Figure 2A) ranges
between 0.1 and 15% on genus level and 0 and 14% on species
level. When analyzing data with Qiime PGM sequencing resulted
in most cases with all databases in a lower false-positive rate
than MiSeq sequenced amplicons. The opposite can be observed
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FIGURE 1 | Genetic relatedness of mock community members depicted in a phylogenetic tree. The GC-content of the bacterial genomes is displayed next to the
species name. Species names are colored in red for obligate pathogens, in blue for opportunistic pathogens and in green for non-pathogenic species. Nodes were
highlighted for gram-negative Proteobacteria (yellow) and gram-positive Firmicutes (orange).

with kraken2 where MiSeq sequencing showed better results.
Using the Greengenes database with all tools resulted in the
lowest false-positive rate. In general analysis with Qiime2 resulted
in the highest number of unassigned reads and the usage
of the Greengenes database produced the highest amount of
unclassified reads especially on species level which reflects the
previous observation of a higher number of species detected
below a threshold of 10% of the expected abundance. The lowest
amount of unclassified reads and the highest number of true-
positive assigned reads, but also a higher false-positive rate result
from the analysis of the data with Qiime and the NCBI database
on genus and species level.

In conclusion, no tool in combination with any database was
able to detect all members of the mock community. While the
sequencing platform did not have a high impact on the results, the
selection of the database improved the results as the usage of the
NCBI database reduced the amount of false-negative results and
showed a lower dissimilarity index but also resulted in a higher
false-positive rate.

Individual 16S rDNA Amplicon
Sequencing of a Mock Community
Usually, sequencing of only individual amplicons is used for
taxonomic classification of metagenomic samples. However, no
hypervariable region can be used to differentiate between all
bacteria (Chakravorty et al., 2007). In order to determine the

most discriminative region for the bacteria included in the
mock community individual amplicons sequenced either with
PGM or MiSeq were analyzed with Qiime using the NCBI
database and cdhit for OTU clustering. Bray–Curtis dissimilarity
indices were calculated for OTU tables (Figure 3A) resulting
from all individual and from a combination of all amplicons in
comparison to the expected abundances of the mock community
members. On genus level, lowest dissimilarity indices were
obtained when using V3 and V6-V7 region. For most variable
regions on genus level, MiSeq sequenced amplicons performed
better except for V1-V2 region. The best performance on species
level was achieved with V3 region or when all amplicons were
used together for the analysis. On species level, better results
were obtained with the PGM for variable regions V1-2, V4-5
or when all amplicons were combined and with MiSeq for
V3, V6-7 and V7-9. A detection threshold of 10% of the
expected abundances was set for all members of the mock
community. With this threshold, the most genera and species
could be detected when all amplicons were used. Least number of
detected genera and species could be observed when V7-V9 was
sequenced. For almost all variable regions, Burkholderia could
only be detected at very low abundances. For Brucella spp. and
Ochrobactrum sp. detection V3 und V7-9 regions performed
insufficiently. On species level Brucella inopinata, Brucella suis,
Klebsiella michiganensis, and Shigella sonnei were not detected
at all with any amplicon (Figure 3C). On genus level, high-
false positive rates could be observed for regions V3 and V7-V9,
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FIGURE 2 | Taxonomic classification of data generated by sequencing all variable regions of the 16S rDNA gene using a mock community standard with indicated
databases and classification tools on genus and species level. Unclassified, correctly assigned and false-positive assigned reads are depicted in a staggered bar
chart (A). The Bray–Curtis index was calculated after taxonomic classification and represents the dissimilarity to the expected community composition (bars). Dots
indicate the percent of mock community members that could be detected only below a threshold of 10% of the expected abundance (B). The abundance for each
mock community member from data generated with PGM was calculated (C).

while least false-positive assigned reads were obtained for region
V1-V2 and V6-7 (Figure 3B). On species level, the amount
of reads assigned false-positively is very similar between each
amplicon and between the used sequencers with a slightly lower
false-positive rate for variable regions V1-V2, V3 or when all
amplicons are combined. However, for V3 a large number of
reads could not be assigned.

In summary, a combination of all variable regions resulted
in the lowest rate of genera and species below the detection
threshold and in a higher similarity to the expected mock
community composition especially on species level than most
of the individually used amplicons. While for V1-V2 a very
low false-positive rate and a lower amount of genera and
species below the detection threshold was observed, analysis
of V7-V9 resulted in a high false-positive rate, the lowest
number of genera above the detection threshold and the
highest Bray–Curtis dissimilarity to the expected composition of
the mock community.

Shotgun Metagenomic Sequencing of a
Mock Community
In order to analyze if different library kits have an impact
on the detection of certain bacteria and community profiling

in metagenomics samples by shotgun sequencing, the mock
community was sequenced after library preparation with
different kits with the NextSeq. The resulting data was quality
trimmed and random subsampled to 54 mio reads for each
library kit to account for variations in sequencing depth. The data
analysis was performed with kraken, kraken2 and MetaPhlAn2
to look for differences between the results outputted by these
frequently used taxonomic classification tools. Bray–Curtis
dissimilarity indices were calculated for resulting taxonomic
abundance tables in comparison to the expected abundances
for the mock community (Figure 4A). On genus level, the
dissimilarity index ranges between 0.13 and 0.27 with lowest
values for the TruSeq Nano library kit in combination with
kraken2. With all analysis tools for both genus and species
level highest dissimilarities were obtained with the Nextera
XT kit, while lowest dissimilarity indices were calculated when
the TruSeq Nano kit was used except for data analyzed with
MetaPhlAn2 where lower dissimilarity was achieved with the
ThruPLEX library kit. On species level, the dissimilarity indices
range between 0.19 and 0.47 over library kits and taxonomic
classification tools. Here, lowest dissimilarities were calculated
after analysis with MetaPhlAn2. All genera included in the
mock community could be detected with all tools however,
Clostridioides was not detected above a detection threshold of
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FIGURE 3 | Taxonomic composition after NGS of a mock community standard with PGM and MiSeq using individual amplicons encompassing up to three variable
regions (V) of the 16S rDNA gene. Bray–Curtis dissimilarity indices (bars) and the amount of species detected below a threshold of 10% of the expected abundance
(dots) are plotted (A). The amounts of false-positive, true-positive and unclassified reads on genus and species level are shown in a staggered bar chart (B).
Taxonomic abundance profiling on genus and species level was performed with Qiime and NCBI database for indicated variable regions (C).

FIGURE 4 | Taxonomic profiling with indicated tools for data generated by shotgun sequencing of a mock community standard processed with indicated DNA library
kits. Bray–Curtis dissimilarity indices (bars) were calculated from taxonomic abundance profiles and the amount of genera and species detected below a threshold of
10% of the expected abundance (dots) are shown (A). Proportions of false-positive, correctly assigned and unclassified reads are depicted (B).
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FIGURE 5 | Completeness of metagenomic assemblies depending on sequencing depth and library kits. Assemblies were generated after shotgun sequencing of a
mock community with indicated DNA library kits with 6 × 106(A), 1.8 × 107 (B) and 5.4 × 107(C) reads. Relative completeness of the assembled genomes in
comparison to the reference genomes in percent are plotted in spider diagrams. The recovered genome fractions from reference genomes for all species included in
the mock community where averaged for at indicated read depths (D).

10% of the expected abundance when the Nextera XT kit was
used (Figure 4A). Least species below the detection threshold
(13–17%) were detected when the data was analyzed with
MetaPhlAn2. With kraken2 17–33% and kraken 33–46% of
the species were not detected above the detection threshold.
Generally 1–5 species less above the detection threshold were
detected when the Nextera XT kit was used as compared to
the other kits. Between 0 and 0.5% of the genera were assigned
false-positive (Figure 4B). No genus was assigned wrongly with
MetaPhlAn2. On species level the false-positive rate is between
0.9–2.4 for MetaPhlAn2, 2.6–2.8 for kraken2, and 3.1–4.1 for
kraken. The amount of unassigned reads between kraken and
kraken2 on genus and species level is very similar between 50
and 57%. A very low rate of unassigned species and genus can be
detected for MetaPhlAn2. However, a read-wise assignment is not
feasible with MetaPhlAn2 where abundance estimation is realized
by unique genomic marker detection (Truong et al., 2015).

To analyze if the usage of different library kits has
consequences on the completeness of draft genome assemblies
from the mock community members, metagenomics assemblies
were generated at different read depths. The recovered genome
fraction calculated by comparing the assembled draft genomes
and reference genomes for each species in the mock community
(Figures 5A–C) show few differences between library kits for
some species as S. enterica, Ochrobactrum anthropi, Klebsiella
spp., E. coli, Brucella spp. and Vibrio spp. Larger differences can
be observed even at very high read depth of 54 million reads
(Figure 5A) for Bacillus anthracis, B. cereus, Bacillus subtillis,

C. perfringens, Clostridium spp. and Campylobacter spp. with
lower amount of recovered genome fraction when the Nextera XT
kit was used. At lower read depth (6 and 18 million reads) even
more species belonging to the genera Listeria, Staphylococcus and
Streptococcus have a lower genome recovery after the assembly
with the Nextera XT kit as compared to the other three library
kits. When comparing the total recovered genomes from all
species of the mock community (Figure 5C) at different read
depths a superiority of the TruSeq Nano Kit closely followed by
the Nextera Flex and the TruPLEX kits over the Nextera XT kit
can be observed.

The observed differences for the Nextera XT kit were further
investigated and 54 million reads per sample were mapped
against the references of all members of the mock community
(Supplementary Table S1) for each library kit. The comparison
of the coverage depths of the references genomes between the kits
revealed a high number of uncovered regions for the Nextera XT
kit and a higher dispersion of coverage depth (Figure 6A), which
indicates a favored generation of fragments for certain genome
regions, that occurs during library preparation (Figure 6A).
Therefore the GC content of the generated reads was compared
between the library kits (Figure 6B). With this we were able to
detect a shift in the GC density of fragments generated with the
Nextera XT kit to higher GC-contents, while this was balanced for
the other three library kits and in accordance with the expected
distribution from the collection of mock-community reference
genomes. To sum up, the choice of the library kit can strongly
influence the performance of shotgun metagenomics sequencing.
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FIGURE 6 | Coverage depth and GC density histograms for reads obtained by sequencing a mock community after library preparation with indicated library kits. The
depth histograms were obtained by read-mapping of the shotgun data to the set of mock-community reference (A). The GC-compositions are plotted as density
histograms for reads and 150 bp long genome fragments for the reference genomes (B).

The Nextera XT kit performed less efficiently for species detection
and abundance profiling and for many species the genome can
be recovered much better with the TruSeq Nano, TruPLEX and
the Nextera Flex kit, which can be explained by the GC-bias of
the Nextera XT kit. MetaPhlAn2 performed better than kraken2
and kraken for the taxomomic profiling – however, the unique
genomic marker database that is the basis for this tool cannot
easily be expanded.

Comparison of 16S rDNA Amplicon
Sequencing and Shotgun Sequencing of
a Mock Community
For the comparison of shotgun and 16S rDNA amplicon
sequencing, 100,000 reads were classified for each method
with parameters that performed well previously. Bray–Curtis
dissimilarities were calculated (Figure 5). By comparing results
obtained from shotgun metagenomics sequencing to 16S rDNA
amplicon sequencing, much smaller Bray–Curtis dissimilarity
indices can be obtained with shotgun sequencing on genus
and species level except when the DNA-library was prepared
with the Nextera XT library kit that results in much higher
dissimilarity indices. When excluding the Nextera XT library
kit, the average Bray–Curtis dissimilarity on genus level is 0.23
with MetaPhlAn2 and 0.18 with kraken2 as compared to a much
higher dissimilarity of 0.35 for 16S rDNA amplicon sequencing
of the mock community. On species level, a smaller average
Bray–Curtis index is observed when MetaPhlAn2 was used
(0.28), compared to kraken2 (0.39). The largest dissimilarity
was calculated for the 16S rDNA amplicon sequencing with
a Bray–Curtis index of 0.47 independent from the sequencing
platform (Figure 7). A detection threshold was set to 10% of
the expected abundance. All genera could be detected when
shotgun libraries were either prepared with the TruSeq Nano or
the ThruPLEX kit. While for shotgun sequencing Clostridium
could not be detected above the detection threshold with the
Nextera XT and Nextera DNA Flex kit, Brucella was below

the detection threshold for 16S rDNA amplicon sequencing.
On species level > 30% of the species are not detected with
16S rDNA amplicon sequencing in comparison to the shotgun
sequencing where in average 17% species are below detection
threshold when Nextera XT kit is excluded. No method was
able to detect B. suis and Yersinia pseudotuberculosis. With
kraken2 O. anthropi and Bacillus thuringiensis were detected
at very low abundance, while MetaPhlAn2 failed to detect
K. michiganensis and Clostridium botulinum completely. With
16S rDNA amplicon sequencing and the analysis with Qiime
additionally B. inopinata, Burkholderia thailandensis, E. coli,
K. michiganensis, S. sonnei as well as Listeria welshimeri were not
detected above the detection threshold.

Shotgun sequencing provides much lower dissimilarity indices
on average, especially on species level as obtained after 16S
rDNA amplicon sequencing. More importantly, more genera
and species above the detection threshold could be detected
with shotgun sequencing. However, the results obtained with the
Nextera XT kit are less reliable in accordance to the previously
described results.

Detection of a Highly Pathogenic
Bacterium, F. tularensis Subsp.
holarctica in Game Meat Using
Metagenomics Shotgun Sequencing
For the verification of the previously obtained results originating
from the shotgun sequencing of a mock community, an authentic
metagenomic sample was sequenced. The sample was collected
from a wild hare liver in Germany infected with F. tularensis
subsp. holarctica. In parallel to DNA extraction, a F. tularensis
subsp. holarctica isolate was recovered from this sample.
F. tularensis subsp. holarctica was detected via real-time PCR
targeting the tul4 gene that is specific to F. tularensis as described
previously (Versage et al., 2003). Via extrapolation of a standard
curve, 1.2 × 107 genome equivalents were calculated. DNA
libraries were prepared using the Nextera DNA Flex, Nextera
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FIGURE 7 | Comparison of the taxonomic profile generated with data from
shotgun sequencing with indicated DNA library kits and 16S rDNA
sequencing with indicated sequencing platforms of a mock community
standard. 100,000 reads were subsampled from data of both applications.
Bray–Curtis dissimilarity indices (bars) were calculated from taxonomic
abundance profiles and the amount of genera and species detected below a
threshold of 10% of the expected abundance (dots) are shown.

XT, ThruPLEX and TruSeq Nano kits. At different read depths
obtained by subsampling the original data to 6 million, 18 million
and 54 million reads, library kits and analysis tools were tested. Of
all tested tools, only kraken2 that can be used with the complete
RefSeq database enables a taxonomic classification referring to
the whole metagenomic sample. Independent of the read depths
F. tularensis was detected with a relative abundance between 0.1
and 0.3%. The lowest amount of F. tularensis assigned reads
(0.1%) was obtained when the Nextera XT kit was used and
highest amount of reads (0.3%) when the ThruPLEX library kit
was used. 99% of the reads were assigned to Mammalia whereof
97% were assigned to Oryctolagus cuniculus. MetaPhlAn2 was
similarly able to identify F. tularensis in the sample. Here the
abundance of F. tularensis was between 43% with the TruSeq
Nano kit and 63% with the Nextera DNA Flex kit. Although
MetaPhlAn2 is able to identify strains, no strain or subspecies
was detected with all kits. The highest amount of bacteria species
was detected with kraken2 when the library was prepared with
the Nextera DNA Flex kit (6,445 species) while least species were
detected with the Nextera XT Kit (5,561 species) (Figure 8A). In
the other domains of life, the number of detected species was very

similar between the library kits. It is worth mentioning that the
highest number of detected viral species could be obtained with
the ThruPLEX kit which correlates with the overall number of
classified viral reads. Only 3,438 bacteria species (< 62%) are
shared after classification with kraken2 when all four library kits
are compared (Figure 8D).

Metagenomic assembly at different read depths was performed
in order to analyze how the performance of the different library
kits influences the completeness of the F. tularensis draft genome
(Figure 8B). All assemblies were compared to the complete
genome of F. tularensis subsp. holarctica FTNF002-00 (Barabote
et al., 2009) that was determined as the most similar reference
genome to the isolate obtained from the metagenomic sample
with Mash. With 2 and 6 million sequenced reads, only a very
small proportion of the reference genome could be detected. At
the highest tested read depth of 54 million reads, the assemblies
from the ThruPLEX and TruSeq Nano kit were similarly able to
cover 94% of the reference genome. Also with the Nextera DNA
Flex kit, > 90% of the reference genome could be recovered. With
the Nextera XT kit however, only 65% of the reference genome
is assembled. Reads classified as F. tularensis with kraken2 were
extracted and mapped to the F. tularensis subsp. holarctica
FTNF002-00 complete genome (Figure 8C). The percentage of
uncovered bases was 1.4% with the TruSeq Nano kit and similar
between the ThruPLEX and the Nextera DNA Flex kit with
2.3–2.9% while with the Nextera XT kit around 12% of the bases
were not covered.

In summary, it was possible to detect F. tularensis in an
authentic metagenomic sample with all library kits. The lowest
proportion of F. tularensis reads was detected with the Nextera
XT kit when classification was performed with kraken2. The
highest species richness could be similarly obtained with the
Nextera DNA Flex and the ThruPLEX kit. When comparing the
recovery of the F. tularensis reference genome after performing
metagenomic read assembly the higher genome fraction could
be obtained when the TruSeq Nano and the ThruPLEX kit were
used, while even at high read depth 30% less of the reference
genome could be recovered when the Nextera XT kit was used.
Corresponding results were obtained when reads were mapped
to the reference genome.

Workflow for the Detection and
Characterization of Pathogenic Bacteria
by Metagenomic Shotgun Sequencing
Detection of pathogenic bacteria in metagenomic samples
usually comprises a step of taxonomic profiling of shotgun
sequencing data with bioinformatics tools. As shown in this
study, taxonomic profiling might result in false-positive and
false-negative assignments of sequences especially on species
level. Therefore, less pathogenic or opportunistic species could
be detected instead of human pathogenic species that would
result in an underestimation of the risk potential and vice versa.
A verification of the classification results is hence necessary.
Additionally, the species level that is the output of most classifiers
might not be sufficient to assess the risk of foodstuffs; therefore it
is indispensable to determine resistance and virulence genes from
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FIGURE 8 | Analysis of a hare liver sample infected with Francisella tularensis after shotgun sequencing with indicated DNA-library kits after sampling 5.4 × 107

reads for each kit. Species richness for different domains of life was determined (A). From metagenomics assemblies the completeness of the F. tularensis subsp.
holarctica genome compared to the reference genome was calculated at different sequencing depths (B). Reads were mapped to F. tularensis reference genome
and unmapped bases along the genome are shown as vertical lines (C). Venn diagram shows overlap between species detected with kraken2 from data generated
with different DNA library kits (D).

FIGURE 9 | Workflow for the detection and characterization of pathogenic microorganisms using shotgun metagenomics sequencing. Taxonomic profiles are
generated with kraken2 using the complete RefSeq database. The resulting taxonomic abundance table is filtered for pathogenic species using ABSA database. For
detected pathogens classified reads are extracted and verified with BLASTn using the nt database from NCBI. Subspecies is resolved by determination of closest
available reference using Mash. Virulence factors are detected with SRST2 in combination with the VFDB. (A) Analysis of a hare liver sample infected with
F. tularensis subsp. holarctica using the workflow shows determination of the F. tularensis subspecies (B) and the detection of virulence factors (C) at different read
depths from metagenomic sequencing data and WGS data of the isolate extracted from the same hare liver sample.

the dataset as well as the closest reference genomes for potential
pathogens. Another problem of the taxonomic classification is
the complexity of the outputted species lists, which comprise
between hundreds and thousands of species for metagenomic
samples. In order to find species relevant for risk assessment, it is
necessary to filter for pathogenic microorganisms automatically
which will remove irrelevant information for risk assessment and
help to reduce the complexity of the analysis. Here we propose a

metagenomic analysis workflow for the microbial risk assessment
of food samples (Figure 9A).

First steps include the trimming of the raw data for low
quality bases in the reads and classification of trimmed reads
with kraken2 using the complete RefSeq. In our experience,
smaller databases that include only subsets of eukaryotic genomes
increase the false-positive classification rate immensely. The
resulting species list is filtered for human, animal or plant
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TABLE 1 | BLASTn results for detected and ABSA-filtered human pathogens with
kraken2 classified reads for each library kit applied for shotgun sequencing of a
F. tularensis contaminated hare liver: Nextera DNA Flex (NDF), Nextera XT (NXT),
ThruPLEX (TP) and TruSeq Nano (TSN).

Species NDF NXT TP TSN

Francisella tularensis 999/1000 992/1000 960/1000 998/1000

Francisella philomiragia 14/38 3/12 26/76 12/40

Arcobacter butzleri 1/22 0/0 0/0 0/0

Streptococcus suis 1/48 0/0 0/0 0/0

Moraxella osloensis 0/0 5/20 2/12 0

Acanthamoeba castellanii 1/50 0/0 0/0 0/0

Atopobium parvulum 1/2 0/0 0/0 0/0

Streptococcus gallolyticus 0/0 0/0 0/0 1/10

Numbers indicate how many reads could be verified with BLASTn from total
number of kraken2 classified input reads.

pathogens as well as for select CDC or USDA agents using
the risk group database from the American Biological Safety
Association (ABSA) as it was shown before for viruses in clinical
samples (Tausch et al., 2018). For selected pathogens of interest,
classified reads are extracted from the metagenomic dataset
in order to (i) verify the classification with BLASTn and the
nucleotide database from NCBI, (ii) estimate the closest distance
to a published reference genome with Mash for subspecies
identification and (iii) identify virulence factors using SRST2
using the Virulence Factor Database (VFDB). The proposed
workflow is publicly available at gitlab3.

For F. tularensis subsp. holarctica infected hare liver
sample sequenced with the four library kits the initial
taxonomic classification list with > 7,000 species was reduced to
323–393 species by filtering for human pathogenic species. Only
eight human pathogenic species could be confirmed by BLASTn.
Thereof only F. tularensis and F. philomiragia were detected with
all four library kits and the opportunistic pathogens Moraxella
osloensis was detected with two library kits (Table 1). Each further
pathogenic species was detected with only one library kit and only
one confirmed read.

Further characterization using Mash for F. tularensis provided
the closest reference available at NCBI F. tularensis subsp.
holarctica FTNF002-00 already at a total read depth of 2 × 106

and is in concordance for what was found for isolate 16T0017
extracted from the same sample (Figure 9B). Thirty-nine
virulence factors (VFs) could be detected with SRST2 and VFDB
for the isolate 16T0017 (Figure 9C). With strict criteria applied
for WGS analysis of isolated strains only 35 VFs were identified
at highest read depths for the metagenomics sample while
all VFs were found when coverage and depths were reduced
(relaxed criteria).

In summary, our workflow enables the reduction of complex
output generated by primary data analysis tools to relevant
information for food safety that simplifies the risk assessment
of foodstuffs using metagenomics sequencing. We were able
to characterize F. tularensis to subspecies level already at low
sequencing depths; however, the recovery of virulence factors
requires higher genome coverage of microorganisms.

3https://gitlab.com/bfr_bioinformatics/foodsafetymetagenomics

DISCUSSION

In this study a mock community DNA standard was generated
and used to broadly evaluate metagenomic sequencing methods
for the detection of foodborne pathogens for microbial risk
assessment of foodstuffs. Here, the predominant metagenomic
sequencing methods 16S rDNA amplicon and shotgun
sequencing as well as several parameters that can distort
the analysis including variable regions of the 16S rRNA gene,
library preparation protocols, sequencing platform, sequencing
depths, clustering, taxonomic classification tools and sequence
databases were tested. 16S rDNA amplicon data is generated and
analyzed in many studies and it can be useful for the detection
of pathogenic bacteria in foodstuffs because the dominant
eukaryotic DNA originating from the food matrix is excluded.
However, this method relies on small nucleotide differences
between genera/species within a short region of 200–300 bp
in size and is hence susceptible to the introduction of wrong
nucleotides by polymerases during the amplification. Another
downside is that the 16S rRNA gene is not a single-copy gene in
most bacteria and its copy number varies between the species
and genera, so that the relative abundance cannot be directly
derived from this data (Louca et al., 2018). However, a better
abundance profile might be obtained by normalizing the data
to the 16S rRNA gene copy number, as we observed it when
the copy number normalized mock community members was
sequenced, however, well-performing tools to correct the data
are still lacking (Louca et al., 2018).

For 16S rDNA amplicon analysis Qiime and its successor
Qiime2 as one of the most used tools for this application as
well as kraken2 that is the successor of kraken and now offers
16S rDNA databases to classify 16S rDNA amplicon data were
chosen for taxonomic classification in this study. At genus level
all tools performed similar. The only database for kraken2 that
includes the species level is Greengenes. At species level, Qiime
performed better than Qiime2 and kraken2 with the Greengenes
database. A side-by side comparison of Qiime and Qiime2 was
never performed, however, two studies comparing OTU (offered
by Qiime) and ASV (offered by Qiime2/dada2) approaches report
lower amount of ASVs than OTUs (Allali et al., 2017; Nearing
et al., 2018), which might explain missed genera and species that
in turn are also the reason for the higher Bray–Curtis dissimilarity
values for Qiime2. The Greengenes database is comparatively
incomplete and has not been updated since 2013 (Balvociute and
Huson, 2017). In our study, many species could not be detected at
all with this database. Nevertheless, this database is still provided
by recently developed tools as kraken2 and Qiime2.

The similarity to the expected composition and the number
of detected species was highest when NCBI database was used.
Furthermore the usage of a combination of all variable regions
improves the detection of pathogenic bacteria. If only one region
can be used e.g., due to limited amount of sample, the V1-V2
region performs better for genus and species detection than
other regions. The sequencing platform does not influence the
results to a high extend and none is consistently superior. Our
study shows that 16S rDNA amplicon sequencing is rather
unsuitable for the detection of pathogens especially on species
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level. On genus level all genera except for Burkholderia could
be detected. However, for several bacteria, genus level is not
sufficient when pathogenicity varies to a substantial extent
between species within one genus, e.g., Listeria monocytogenes
that causes listeriosis after ingestion of contaminated food
products and the apathogenic L. welshimeri.

Shotgun sequencing resulted in a much better genus and
species detection as well as higher similarity to the expected
taxonomic composition for the mock community compared
to 16S rDNA amplicon sequencing. The detection was very
similar between kraken2 and MetaPhlAn2, but the abundance
estimation of MetaPhlAn2 was closer to the expected abundance
on species level. MetaPhlAn2 provides fewer false-positive results
as kraken or kraken2 and is less computation-intensive. However,
its own database with clade-specific unique marker genes cannot
be extended independently and e.g., for Brucella genus human
pathogenic B. suis, B. abortus, B. melitensis, B. canis and
B. neotomae species are not included, which leads to false-
negative results and misclassification if these Brucella species
are present in the sample. Admittedly, Brucella exhibit a low
genetic diversity between species (Scholz and Vergnaud, 2013)
and unique genetic markers genes might be difficult to identify.
Therefore species assignment within the Brucella genus can
rather be performed on the level of single nucleotide differences.
A promising novel tool, mOTUs2, that uses marker genes in
combination with single nucleotide variation profiles and offers
an extendable database might be able to cope with this issue
(Milanese et al., 2019). However, with these approaches, detection
of microorganisms relies on the presence of marker genes which
requires these genes to be sequenced and can be problematic
for low abundant pathogens. Kraken and kraken2 offer the
opportunity to construct custom databases. With kraken2, it is
now possible to use even very large genome databases such
as the complete RefSeq and thereby provides an opportunity
to also identify the matrix signals and to detect pathogens
from all domains of life at once. This may still yield false-
positive classifications as it can be observed when classified reads
for human pathogens are verified with BLASTn. Hence, we
recommend verifying the kraken2 results for pathogenic species
via BLASTn as we propose with our workflow.

As we could show in this study, the choice of the library
kit belongs to one of the key considerations for pathogen
detection and characterization in metagenomics food samples
when shotgun sequencing is applied. Fewer species above
the detection threshold can be observed and the community
composition seems to be biased after sequencing with the Nextera
XT kit. When further analysis as genome assembly is required,
the lack of performance with this kit is even more obvious
as it dramatically reduces the genome recovery for some of
the bacteria species. The analysis of the genome coverage of
the F. tularensis subsp. holarctica genome with similar amount
of input reads show that over 8% of the genome is lacking
with the Nextera XT kit compared to the other three library
kits. We could show that these observed shortcomings after
library preparation with the Nextera XT kit probably stem from
a GC bias towards genome regions with higher GC-contents
and might result from the transposase insertion bias as it was

proposed for HLA genotype calling (Lan et al., 2015). It is
however, a new finding that this transposase insertion bias can
be apparently completely suppressed in metagenomics samples
by the application of bead linked transposases that bind DNA
and likely force the cleavage reaction as in the Nextera DNA
flex kit (Bruinsma et al., 2018).When comparing the amount
of all detected species in the game meat sample, most species
are detected with the Nextera DNA Flex and the ThruPLEX,
whereas more than 900 species less can be detected with the
Nextera XT kit, which affects the domain of prokaryotes in
particular. This suggests that the choice of the library kit not
only affects the genome coverage, but might lead to an under-
or overestimation of species richness in metagenomics studies.
Interestingly, mutually- exclusive species ranging from 6 to 8% of
all detected species can be observed with all kits.

In order to detect pathogens in foodstuffs by metagenomics
we recommend using shotgun sequencing as it is universally-
applicable for the detection of microorganisms from all domains
of life and allows further characterization of the detected species.
The resulting data facilitate resolution to species and subspecies
level and can therefore be applied for outbreak investigations.
The results produced by taxonomic classification however, need
to be reviewed because of false-positive classifications. With our
workflow, false-positive results are removed and the complexity
of vast species lists is reduced to relevant information for
microbial risk assessment. Moreover, the inclusion of pathogen
characterization by virulence factor analysis and subspecies
estimation opens the door for avoiding long isolation procedure
for infectious agents by using metagenomics in food safety.
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