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Bacteria control the expression of specific genes by Quorum Sensing (QS). This works

using small signaling molecules called Autoinducers (AIs), for example, the Autoinducer-2

(AI-2). In this work, we present a mathematical model that represents the AI-2 dynamics

on Escherichia coli, which is linked to the cell growth and the lsr operon expression.

The model is adjusted using experimental data. Our results suggest that the extracellular

AI-2 activity level depends on the cell growth rate, and this activity depends on the cell

exponential growth phase. The model was adapted to simulate the interference of QS

mechanisms in a co-culture of two E. coli strains: a wild type strain and a knock out strain

that detects AI-2 but does not produce it. Co-culture simulations unveiled two conditions

to avoid the QS on the wild strain: when the knock out takes control of the growthmedium

and overcomes the wild strain, or when is pre-cultured to its mid-exponential phase and

then added to the wild strain culture. Model simulations unveiled new insights about the

interference of bacterial communication and offer new tools for QS control.

Keywords: AI-2, quorum sensing, cell growth, interference model, E. coli, lsr operon, LuxS protein, mathematical

modeling

1. INTRODUCTION

Quorum sensing (QS) is a bacterial communication mechanism used to coordinate cooperative
behaviors by producing, releasing, and sensing small signaling molecules called Autoinducers
(AIs). Bacteria use these AIs to synchronize specific gene expression within a population (Waters
and Bassler, 2005). The QS mechanisms are classified according to the type of AIs, the two of
most studied are: the Acyl-homoserine lactone and oligopeptides, produced by Gram-negative and
Gram-positive bacteria, respectively (Novick and Geisinger, 2008; Rutherford and Bassler, 2012).
These AIs are highly specific, each AI has a cognate receptor in a specific bacterium, and cannot be
sensed by other types of bacteria. There is a third type of AIs, the Autoinducer-2 (AI-2), which is
produced and sensed by different types of bacteria (Pereira et al., 2013), such characteristic makes
them susceptible to interfere in the communication between bacteria that use them as AIs (Xavier
and Bassler, 2005a; Laganenka and Sourjik, 2017).

The AI-2 is produced by the LuxS protein, an enzyme involved in the Activated Methyl Cycle
(AMC) (De Keersmaecker et al., 2006). Although not all AIs-producing bacteria use them as QS
signaling molecules, all the AIs are produced by the LuxS enzyme (Pereira et al., 2013). Despite
AIs-2 are produced in the same way in all bacteria by the LuxS enzyme, the signal transduction
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varies according to each species. Among the bacteria detected so
far that use the AI-2 as a signaling molecule, the Escherichia coli
has attracted the attention of most genetic engineering research.
Some E. coli pathogenic strains use the AI-2 to regulate two of

FIGURE 1 | QS in E. coli. (A) Initially, the AI-2 (black dots) are transported out of the cell, while inside of the bacteria the lsr operon is repressed by the LsrR protein.

(B) The AI-2 accumulation outside of the bacteria increases and the PTS begins the AI-2 uptake. Once back inside of the bacteria, the AI-2 is phosphorylated (green

dots) by the LsrK protein and binds to the LsrR protein to de-repress the lsr operon. (C) The LsrACDB proteins internalize the AI-2 leading a quick depletion of the

extracellular AI-2 accumulation. This is a modification from a figure in Pereira et al. (2013).

the most studied phenotypes related to QS: virulence and biofilm
formation (Anand and Griffiths, 2003; Li et al., 2007). Other
phenotypes that E. coli regulates using AI-2 are motility and cell
division (Sperandio et al., 2001; González Barrios et al., 2006).
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The QS system in E. coli has been well characterized
(Xavier and Bassler, 2005a,b; Li et al., 2007; Pereira et al.,
2012), and is resumed in Figure 1. AIs-2 are produced as
part of the AMC, where the LuxS enzyme catalyzes the
4,5-dihydroxy-2,3-pentanedione and homocysteine. Then, the
4,5-dihydroxy-2,3-pentanedione is spontaneously rearranged
into AI-2 (De Keersmaecker et al., 2006) and exported outside of
the cells by the membrane protein YdgG. The AI-2 accumulates
in the extracellular space until reaches a concentration threshold
in a late-exponential growth phase. The phosphoenolpyruvate
phosphotransferase system (PTS), a common carbon uptake
system in bacteria, was identified as the initial AI-2 consumption
pathway and an essential system for the lsr operon activation
(Pereira et al., 2012). When the AI-2 is internalized back into
the cell, it is phosphorylated (AI-2-P) by the kinase LsrK coded
in the lsrK gene. The AI-2-P binds and represses the repressor
protein LsrR, coded on the lsrR gene, creating positive feedback
and allowing the lsr operon expression. Once activated the
operon, the AI-2 consumption increases due to the membrane
proteins LsrACDB, coded on lsrACDB genes, which decrease the
extracellular AI-2 concentration. Additionally to the Lsr operon
activation, E. coli uses the AI-2 to trigger a set of phenotypes
of interest.

Previous works have highlighted the importance of AI-2
dynamics on E. coli QS system, including its synthesis, uptake,
phosphorylation, and role in lsr operon expression (Xavier and
Bassler, 2005b; De Keersmaecker et al., 2006; Pereira et al.,
2012). In the first E. coli QS model, Li et al. developed
a stochastic approach to investigate the AI-2 biosynthesis,
suggesting additional AI-2 synthesis pathways (Li et al., 2006).
Later, Gonzalez Barrios and Achenie (2010) modeled the positive
regulation of AI-2 uptake by lsr operon activation, keeping the
attention on the LsrR protein and its function as lsr operon
repressor. The idea of the LsrR protein as a “switch” of AI-
2 uptake mechanism was presented by Hooshangi and Bentley
(2011), they combined their model with experimental data using
synthetic AI-2. Additionally, it was modeled the lsrACDB genes
knockout, and experimental evidence suggested the existence of a
regulatory element parallel to the LsrR protein. Graff and Bentley
(2016) presented a detailedmodel of lsr operon expression, which
included the molecular interactions between LsrR protein and its
binding sites, like the Hooshangi’s model, they modeled the LsrR
repressor as a “switch” of the QS mechanism.

The AI-2 dynamics could be divided into two main modules
for the QS system: the synthesis and the transduction module.
The synthesis module is linked with the LuxS enzyme part of
the AMC, crucial for the bacterial metabolism. The other module
involves the uptake of extracellular AI-2 and the genetic response
once the QS is activated. This modularity offers the possibility
to develop new approaches of QS control by creating knock
out strains that could produce AI-2 without consuming them
or consume AI-2 without producing them. In co-cultures with
other strains, these knock out strains could lead to overexpression
or repression of the lsr operon in a wild strain, regulating the
QS-related phenotype (Xavier and Bassler, 2005a; Hooshangi and
Bentley, 2011; Laganenka and Sourjik, 2017).

In this paper, we propose a mathematical model to capture the
AI-2 dynamics on the E. coliQS, once adjusted with experimental

data, we explore different configurations to simulate the QS
interference in co-cultures using two strains: a wild type strain,
and a LuxS knock out strain that does not produce AI-2, but sense
it (LuxS−). Our model is based on three variables used on most
experimental works: the Vibrio harveyi bacterium as a reporter
bacterium tomeasure the extracellular AI-2 activity (Bassler et al.,
1993), the lsr operon expression measured by β-galactosidase (β-
gal) unit (Koop et al., 1987), and the cell growth. Due to the
LuxS protein and the PTS are an inherent part of the bacteria
metabolism, the AI-2 and lsr operon expression dynamics are
modeled as dependent on bacterial growth (Pereira et al., 2012,
2013; Niu et al., 2013). The proposed model describes the AI-
2 synthesis, its initial uptake by the PTS, and its uptake after
the expression of the LsrACDB proteins. The activation of the
lsr operon by the PTS and their repression by the LsrR protein
are also modeled. Experimental data from Xavier and Bassler
(2005a) are used to estimate and evaluate the model parameters.
Interference model is a rearrangement of the original model that
describes the co-culture of E. coli wild type and LuxS− strains.
Different configurations of this model were analyzed to exploit
the AI-2 consumption rate of the LuxS− in its exponential growth
phase, depleting the AI-2 from the extracellular space to avoid
the lsr operon expression in the wild type strain. Simulation
results unveiled key insights about the QS interference, and could
lead to investigations of new QS control strategies based on
bacterial co-cultures.

2. MATERIALS AND METHODS

Quorum Sensing Model in Escherichia coli
The proposed model is developed based on the layout displayed
in Figure 2. Our model has three variables: the cell growth

FIGURE 2 | The three key elements involved in the E. coli QS mechanism.

Bacteria produce and release AI-2 (µA) and internalize them through the PTS

(µXA). Once the lsr operon is active by the PTS (µL), the LsrACDB proteins

internalize the AI-2 (µLA), and the AI-2 positively regulates the lsrACDB genes

expression (µAL). The LsrR protein coded in the lsr operon represses the

operon expression (µR).
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(X), the lsr operon expression (L), and the extracellular AI-
2 accumulation (A). The AIs-2 are produced by X and we
considered that all are exported outside of the cells, and are
internalized by the PTS (Pereira et al., 2012; Niu et al., 2013).
L is positively regulated by X and A (Pereira et al., 2012,
2013). Due to AI-2 need to be phosphorylated to activate the
lsr operon, it is considered that all the extracellular AI-2 are
internalized, and phosphorylated back to the bacteria. According

to the assumptions above, the mathematical model is composed
of the following Ordinary Differential Equations (ODEs):

X(t) = X0 + C e−e−B(t−M)
(1)

dA(t)

dt
= µA − µXA − µLA (2)

dL(t)

dt
= µL + µAL − µR (3)

FIGURE 3 | Profile likelihood. Parameter identifiability is analyzed using the profile likelihood. A parameter is identifiable if there is a parameter value that minimizes the

cost function, the concave shape in graphics shows that the cost function can be minimized. The vertical red line represents the best parameters value.
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Equation (1) describes the cell growth dynamic, and is
represented by a Gompertz function (Zwietering et al., 1990),
where X0 is the initial cell growth, C is the asymptote of the
function and represents the maximum cell growth, B is the
slope of the function which represents the growth rate, and M
is the inflection time. Equation (2) describes the dynamics of
A. The AI-2 are produced by the cells at rate µA, here, we
considered that all the AI-2 produced are exported out of the

cells. The consumption of A by the cells (PTS) is represented by
µXA. Once the lsr operon is expressed, the A is depleted
by the LsrACDB proteins consumption, this is represented
by µLA.

The production of the AI-2 depends on the LuxS enzyme as
part of the AMC, due to this as an inherent part of themetabolism
of the cells, is considered that the AI-2 are produced by the cells.
The AI-2 production and extracellular AI-2 accumulation (A) is

FIGURE 4 | Profile likelihood. After fixing parameters Xδ and n3, parameter identifiability is re-analyzed for the remaining parameters using the profile likelihood. The

vertical red line represents the best parameters value.
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represented by the following Michaelis-Menten function:

µA = kA

(

X(t)n1

X(t)n1 + km1
n1

)

(4)

where kA is the A production velocity, and km1 is the cell density
at which kA = kA/2. Initially, the cells consume A at a basal rate
by the PTS, this is modeled using a Monod function as follows:

µXA = kXA

(

X(t)n2

X(t)n2 + km2
n2

)

A(t) (5)

where kXA is the PTS uptake rate, and km2 is the cell growth
at half of the maximal PTS consumption rate. When A reaches
a threshold in a late-exponential growth phase, the lsr operon
expression is activated leading an increase in the A consumption:

µLA = kLA

(

X(t)

Xδ

)

A(t) L(t) (6)

where kLA is the A uptake rate by the LsrACDB proteins and
Xδ is the required cell growth for the increment on the A
consumption. The Equation (3) represents the expression of
the lsr operon, initially expressed by the PTS consumption
and triggered by the LsrACDB proteins that increase the A

TABLE 1 | Parameters values.

Parameter Best fit Confidence

interval

Description

X0* (OD600) 0.064 Initial cell concentration

C* (OD600) 5.8828 Maximum bacterial

concentration

B (t−1) 0.6384 Cell growth rate

M (t) 3.2823 Cell growth inflection time

kA (
OD490

t ) 1, 561.68 1, 000− 2, 000 AI-2 velocity production

km1 (OD600) 1.5793 0.8491− 10 the cell growth at half of kA

Xδ ** (OD600) 5.7953 Bacterial concentration at the

stationary phase

kXA (t−1) 343.98 400− 500 AI-2 uptake rate by PTS

km2 (OD600) 5.8205 4.4554− 5.8211 Cell growth at half of kXA

kLA (β − gal · t−1) 0.0044 0.0001− 0.0999 AI-2 uptake rate by LsrACDB

proteins

km3 (OD600) 3.9128 0.001− 10 Cell growth at half of kL

kL ( β−gal
OD490·t

) 0.5825 0.1− 5 Operon expression rate

kAL ((OD490 · t)−1) 0.0028 0.0001− 1 lsrACDB genes expression

rate

kR (t−1) 0.1037 0.001− 5 lsrR gene expression rate

n1 2.9302 0.8096− 10 Exponent for adjusting curves

n2 8.9542 2.0857− 9 Exponent for adjusting curves

n3** 0.0017 Exponent for adjusting curves

The symbol *means that parameters were fixed according to data in Xavier and Bassler

(2005a). Symbol **means that parameters were fixed based on the profile likelihood

graphics. The confidence interval after 500 bootstrap repetitions was calculated within

2.5 and 97.5% quantiles, the confidence interval for parameters in Equation (1) were

not calculated.

consumption. Additionally, the lsr operon expression is repressed
by the LsrR protein. In a similar way that in Equation (5), the lsr
operon is regulated because the consumption of A by the bacteria
and is represented by a Monod function as follows:

µL = kL

(

X(t)n3

X(t)n3 + km3
n3

)

A(t) (7)

where kL is the operon expression rate. km3 is the cell growth at
half of the maximal PTS consumption rate. The expression of the
lsr operon is triggered by the LsrACDB proteins, this dynamic is
presented as follows:

µAL = kAL

(

X(t)

Xδ

)

A(t) L(t) (8)

where kAL is the lsr operon expression rate. Finally, the lsr operon
is repressed by the LsrR protein at rate kR, hence:

µR = kR L(t). (9)

2.1. Parameter Estimation
Parametric estimation of mathematical models can be
understood as the search of values for the parameters set θ

that minimize the difference between the model outcome ȳi and
the experimental data yi as close to zero as possible. The Sum
of the Square of Weighed Residues (SSWR) has been used in
other works as cost function (Patwardhan and Srivastava, 2004;
Khanna and Srivastava, 2006; Torres-Cerna et al., 2017). This
function allows evaluating the difference of all variables in the
same function, adding weights to normalize them. It is defined
as follows:

SSWR(θ) =

m
∑

j=1

n
∑

i=1

(

y
j
i − ȳ

j
i

max(yj)

)2

(10)

where j and i represents the number of variables and
experimental data points, respectively, y is the set of experimental
data points, and ȳ is the model outcome. Since the ODE
integration routine requires dense data sets at different times
depending on an adaptive stepsize, the inputs for each estimation
are approximated by linear interpolation. The minimization of
Equation (10) implies a non-linear optimization problem with
several variables that can be solved using a global optimization
algorithm. In this work, we use the Differential Evolution (DE)
algorithm (Storn and Price, 1997) to estimate the best parameter
values set.

2.2. Parameter Identifiability
Parameter identifiability plays an important role in mathematical
modeling, the identifiability analysis of unknown parameters of
a non-linear mathematical model is not a trivial task (Miao
et al., 2011). To analyze the identifiability of each parameter
in Equations (1–3), we use the profile likelihood method
proposed by Raue et al. (2009), that additionally explores
the structural identifiability. Briefly, the method consists of
defining a set of values centered at the optimized value for each
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parameter, and minimize the SSWR re-optimizing the remaining
parameters. Further details of parameter fitting procedures
and identifiability can be found in Nguyen et al. (2016) and
Hernandez-Vargas (2019).

2.3. Parameter Uncertainty
Data variability is an inherent characteristic of the biological
system because of their stochastic nature. Furthermore, the

measuring methods can generally add noise to the experimental
data. A statistic method to measure parameters accuracy is the
weighted bootstrap method (Xue et al., 2010). This method
assigns a vector of exponentially distributed random weights,
withmean and variance one, to the cost function. After bootstrap,
95% of the confidence interval of each parameter was computed
using the 2.5 and 97.5% quantiles. Furthermore, the parameter
dependency can be analyzed based on the bootstrap results.

FIGURE 5 | Parameter distribution. After 500 weighted bootstrap repetitions, the distribution of parameters is depicted.
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2.4. Interference Model
The use of mutant strains of E. coli is a common practice to
understand the QS mechanism and identify the key elements
(Wang et al., 2005; Xavier and Bassler, 2005b; Hooshangi and
Bentley, 2011; Pereira et al., 2012). In this work, we simulated
the co-culture of two strains of E. coli: a wild type strain and
a luxS knock out strain (luxS−), this strain does not produce
AIs but can sense them by the PTS and the LsrACDB proteins.
Because the bacteria in co-culture sharing the growth medium,
neither wild or knock out strains can grow at the maximum
bacterial concentration (C). Instead, assuming that C is the
highest possible bacterial concentration, it is considered that both
bacteria share it. Different values of maximum concentration for
both strains are simulated in order to understand the effects of
co-cultures of wild and knock out strains. For these simulations,
the model was modified adding a second growth function for the
LuxS− strain.

Xko(t) = X0 + Cko e
−e−B(t−M)

(11)

where Cko is the maximum bacterial concentration for the LuxS−

strain, and represents a percentage of C. Additionally, the growth
function for the wild strain is a modification of (1) as follows:

X(t) = X0 + Cw e−e−B(t−M)
(12)

where Cw is the maximum bacterial concentration for the wild
strain, and represents a percentage of C, then Cko +Cw = C. The
consumption of AI-2 by the LuxS− is also added to the model, by
modifying (2) as follows.

dA(t)

dt
= µA − (µXA + µXAko

+ µLA + µLAko
) (13)

where µXAko
and µLAko

are modifications of (5) and (6),
respectively. This writes as follows:

µXAko
= kXA

(

Xko(t)
n2

Xko(t)n2 + km2
n2

)

A(t) (14)

µLAko
= kLA

(

Xko(t)

Xδ

)

A(t) L(t) (15)

FIGURE 6 | Model simulation. The experimental data are represented by close circles and model outcome in a continuous line.
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3. RESULTS

Parameter fitting was assessed using the experimental data in
the work of Xavier and Bassler (2005a), from this work we can
use the three variables that we consider important in the E.
coli QS dynamics: the extracellular AI-2 activity, the lsr operon
expression, and the cell growth. The extracellular AI-2 activity on
E. coli was analyzed indirectly by measuring the bioluminescence
produced by the reporter bacterium Vibrio harveyi (Bassler et al.,
1993), the lsr operon expression was analyzed by measuring

the β-galactosidase units (Koop et al., 1987), and the cell

growth is measured by the optical density. The bacterial growth,

extracellular AI-2 activity, and lsr operon expression data were
obtained from figures using the Plot Digitizer software (Huwaldt
and Steinhorst, 2013). The number of experimental data points
for cell growth and extracellular AI-2 accumulation are the same,
unlike the lsr operon expression which has fewer data points.
Since the minimization of SSWR requires the same number
of experimental data points for each variable, the experimental

values were approximated by linear interpolation. Additionally,
due to the growth function is independent on others equations,
the parameters in Equation (1) were estimated separately and
their best-estimated values were fixed for parameter estimations
of Equations (2) and (3), reducing the model complexity and
computational time. The best-estimated values of parameters
were used to analyze the profile likelihood.

Before an exhaustive estimation of the model parameters, we
analyzed the parameter identifiability using the profile likelihood
method (Raue et al., 2009). The results in Figure 3 shows a
concave shape in most of parameter graphics, denoting a finite
set of values which canminimize the SSWR, but some parameters
show a flattens profile. The profile likelihood graphic of Xδ tends
to flatten to the right, biologically, the lsr operon expression
increases as the cell growth approaches to Xδ , this value must
be close to the cell growth in the late-exponential phase. The
likelihood graphic for parameter n3 tends to flatten close to zero,
which means that can take any value arbitrary small and do
not enhance the model fit. According with the profile likelihood

FIGURE 7 | Model outcome at different growth rates. Parameter B was modified to change the bacterial growth behavior by multiplying the optimal value B = 0.63 by

different factors.
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FIGURE 8 | Model outcome with different inflection time in growth. Parameter M was modified to change the bacterial growth behavior, by increasing or decreasing its

optimal value M = 3.28.

graphics, parameters n3 and Xδ are practically non-identifiable
(Raue et al., 2009).

In order to enhance the model fit and considering the profile
likelihood graphics, additional estimations were made fixing
parameters n3 and Xδ . Based on the profile likelihood graphics,
the parameter n3 was fixed at n3 = 0.001722, and based on the
profile likelihood and the biological restrictions due to Xδ should
be below the maximum cell growth and close to the growth at
late-exponential growth phase, was fixed at Xδ = 5.7953. These
values were taken from the set of parameters used to analyze
the profile likelihood. After fixing these parameters, the profile
likelihood for the remaining parameters was analyzed again in
order to identify changes on their identifiability. Despite of the
parameter identifiability changed after fixing n3 and Xδ , the
profile likelihood plots in Figure 4 show that fixing parameters
km3 and Xδ , the remaining parameters are still identifiable. The
profile likelihood plot of km3 shows that it has a small influence
on the model fitness, this could imply that the PTS consume of
AI-2 has a weak effect on the lsr operon expression.

Statistical insights of the parameter fitting can be acquired
from the bootstrap method (Xue et al., 2010). After 500 bootstrap
reproductions, the 95% confidence interval for each parameter
was calculated using the 2.5 and 97.5% quantiles, the confidence
interval can be seen in Table 1. The parameters distribution are
depicted in Figure 5. After fixing parameters n3 and Xδ , the
model outcome is presented in Figure 6, the experimental data
(Xavier and Bassler, 2005a) is presented in close circles and the
model outcome in continuous line, the set of model parameters
are presented in Table 1.

The model dependency on cell growth is analyzed using
different growth rates and inflection time in simulations, the
results are depicted in Figures 7, 8, respectively. The simulations
reveal that the cell growth at an initial exponential phase (X ≈

0.7) could trigger an exponential increase in the extracellular AI-
2 accumulation. The cell growth rate also affects the maximal
extracellular AI-2 accumulation (Figure 7), which reaches its
maximum in the half-exponential growth phase, this means
that the exponential growth phase is where the AI-2 has its
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FIGURE 9 | Model outcome with values for km1. Parameter km1 was modified to change the bacterial growth behavior, changing the bacterial concentration for

trigger the AI-2 extracellular concentration.

maximum production. When the cell growth rate is large,
the exponential growth phase is brief, then the time of AI-2
maximum production is also of short duration. Additionally,
the lsr operon expression depends on the extracellular AI-2
accumulation. The inflection time does not affect the extracellular
AI-2 accumulation (Figure 8), but this affects the time of
maximal production and depletion. In both figures, the cell
growth that triggers the extracellular AI-2 accumulation is the
same. Furthermore, the cell density at the extracellular AI-2
accumulation increases exponentially is controlled by km1, this
can be seen in Figure 9, where the time of the exponential growth
phase was modified by changing the parameter km1. In a similar
way like increasing the growth rate, increasing km1 decreases
the maximum extracellular AI-2 accumulation, also due to the
window of cell maximum production is shorter.

Results of the interference simulations are shown in
Figures 11, 12. In former figure, we simulate a wild strain
maximum concentration of 10, 30, 50, 70, and 90% of C, and
LuxS− strain maximum concentration of 90, 70, 50, 30, and 10%
of C, respectively. When both strains grow equally (50/50%),

the operon expression of wild strain is three times bigger than
in culture alone. Considering that both strains grow equally,
Figure 12 presents the knock out strain was pre-culture with
different times and added to the co-culture with the wild strain.
In the mid-exponential phase (from the hour three or after),
the consumption of AI-2 by the PTS is enough to deplete the
extracellular AI-2 and avoid the lsr operon expression.

4. DISCUSSION

The identifiability analysis shows that parameter km3 has a small
influence on the model fitness, this could be attributed to the
effect of the initial uptake by the PTS has on the extracellular AI-
2 accumulation is not significant in comparison with the effect
of the LsrACDB proteins on the lsr operon expression. Despite
the PTS is important to the lsr operon expression (Pereira et al.,
2012), its influence is not included in the mathematical models
of E. coli QS, and when is included its influence is not significant
(Hooshangi and Bentley, 2011).
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FIGURE 10 | Extracellular AI-2 activity. Time of the exponential growth of the

extracellular AI-2 activity depends on the cell growth rate, this relation is

plotted using different cell growth rates, (A) B = 0.63, (B) B = 0.5, (C)

B = 1.26. The extracellular AI-2 activity grows exponentially during the cell

exponential growth phase, in a late-exponential growth phase the extracellular

accumulation is depleted due to the action of the LsrACDB proteins.

The AI-2 synthesis and PTS are two important elements
involved in the QS mechanism (De Keersmaecker et al., 2006;
Pereira et al., 2012), both elements are inherent to the bacteria
metabolism (Doherty et al., 2002; De Keersmaecker et al., 2006).
The role that bacterial growth plays for AI-2 synthesis was shown
by Wang et al. (2005) who unveiled that the AI-2 synthesis
and uptake by PTS are subject to the metabolite repression. In
addition, they proved that adding or removing glucose from
the growth medium affects the AI-2 synthesis. Additionally,
experimental works on E. coliQS system, show that the lsr operon
expression is triggered by the extracellular AI-2 concentration in
the late-exponential phase (Xavier and Bassler, 2005a,b; Li et al.,
2007; Pereira et al., 2012). There is a relation between the bacterial
concentration and the lsr operon expression, also linked to the
AI-2 accumulation.

According to the simulations, the dynamics of the proposed
model are dependent on the cell growth, which controls both, the
extracellular AI-2 accumulation and the lsr operon expression.
The former increases exponentially on the cell exponential

growth phase, and start to decrease in the late-exponential
growth phase. The cell growth rate has an effect on the
extracellular AI-2 accumulation and increases o decreases the
time of the exponential growth phase, the AI-2 accumulation is
proportional to the time that the cells spend on the exponential
growth phase before the AI-2 consumption rate may overcome
the AI-2 production rate (Figure 10). This occurs because of
the AI-2 de-repress the lsr operon, allowing the LsrACDB
genes expression when the cells reach a certain concentration,
increasing the AI-2 consumption (Pereira et al., 2013).

Furthermore, the lsr operon expression level is proportional
to the AI-2 extracellular accumulation at the activation moment,
the more AI-2 activity there is in the extracellular environment,
the greater the expression of the lsr operon, and the AI-2
consumption. As some experiments have shown, E. coli can
increase its QS-related phenotypes when they are grown in co-
cultures with bacteria that produces AI-2 (Xavier and Bassler,
2005a; Laganenka and Sourjik, 2017). The lsr operon give to E.
coli the advantage to increase the consumption of extracellular
AI-2, and therefore promote the phenotypes related to the QS,
like biofilm formation or virulence.

Previous experiments have shown the importance of the
culture in the AI-2 production, like the type (Jackson et al., 2002;
Kim et al., 2015), and the carbon availability (Surette et al., 1999;
DeLisa et al., 2001; Wang et al., 2005), and how this affects
the phenotypes related to the QS (Oh et al., 2007; Yoon and
Sofos, 2008; Niu et al., 2013). Approaches to reduce or inhibit
the QS-related phenotypes add agents that antagonize the QS
activity, some of these agents are: lactobacillus (Park et al., 2014),
cannabinoids (Soni et al., 2015), lactic acids (Almasoud et al.,
2016), and honey (Lee et al., 2011). These numerical results could
lead the motivation for the study of a new approach for QS
control based on the growth media.

The simulations of co-cultures of wild and LuxS− strains show
a reduction in the lsr operon expression due to the uptake of AI-
2 by the LuxS− strain. When the LuxS− strain levels overcome
the concentration of the wild strain (blue and orange lines in
Figure 11), there is not enough production of AI-2 to activate
the lsr operon. On the other hand, when both strains grow
equally, or the wild type levels overcome the concentration of
the LuxS−strain, the lsr operon expression is bigger than when
wild strain grows alone (Figure 6). This overexpression is mainly
due to the consumption by the PTS by the wild strain, because
the influence of the LsrACDB proteins is maximum when the
bacteria reach a value close to the concentration on the stationary
phase (C). Assuming that both strains growth equally in co-
culture, we simulated a pre-culture of the LuxS− strain that was
added to the wild strain culture, a pre-culture of LuxS− strain
increase its possibilities of consuming the AIs faster than the wild
strain and avoid the wild strain lsr operon expression. The results
depicted in Figure 12, show that a pre-culture starting at 3 h or
after of a LuxS− strain, added to a wild strain in a co-culture, can
mitigate its lsr operon expression.

The simulations of the interference model offer a new
alternative to control the phenotypes related to the QS in
co-cultures. Some studies have studied the variations on the
QS-related phenotypes when two bacteria grow in a co-culture
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FIGURE 11 | Simulations of E. coli co-culture. Simulation of co-cultures with E. coli wild and LuxS− strains, the percentages indicate the wild strain growth

percentage with respect to C, the growth of the LuxS− strain is complementary.

(Xavier and Bassler, 2005a; Roy et al., 2010; Laganenka and
Sourjik, 2017), others have studied the impact of gene knock out
in QS (Xavier and Bassler, 2005b; González Barrios et al., 2006;
Hooshangi and Bentley, 2011). According to our simulations,
using knock out bacteria that compete for the extracellular AIs
and avoid the expression of genes related to QS can be an
approach to control the QS-related phenotypes.

5. CONCLUSIONS

In this paper, we presented a mathematical model that
captures the relationship between AI-2 dynamics, the lsr operon
expression, and the cellular growth, three key elements involved
in E. coliQS system and variables normally used on experimental
works. The dependency of the extracellular AI-2 activity and
the lsr operon expression on the cell growth was highlighted,
drawing attention to the cellular growth rate and propose the
culture medium as an option to control the QS system on E. coli.
Our simulations suggest that cell growth controls the levels of

extracellular AI-2 concentration, and in turns, this controls the
levels of lsr operon expression.

The AI-2 synthesis and PTS are two important elements
involved in QS mechanism (De Keersmaecker et al., 2006;
Pereira et al., 2012), both elements are inherent to the bacteria
metabolism (Doherty et al., 2002; De Keersmaecker et al.,
2006). The role that bacterial growth plays for AI-2 synthesis
was shown by Wang et al. (2005) who unveiled that the AI-
2 synthesis and uptake by PTS are subject to the metabolite
repression. In addition, they proved that adding or removing
glucose from the growth medium affects the AI-2 synthesis.
Additionally, experimental studies on E. coliQS system show that
the lsr operon expression is triggered by the extracellular AI-2
accumulation in the late-exponential phase (Xavier and Bassler,
2005a,b; Li et al., 2007; Pereira et al., 2012).

The identifiability analysis of km3 may suggest that the
influence of the PTS system on the global QS response is
not significant. Nevertheless, additional simulations of the
interference model suggest the PTS influence is important in
the exponential growth phase. Our simulations suggest that
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FIGURE 12 | Simulations of E. coli co-culture. The LuxS− strain was simulated in a pre-culture and added to the culture with the wild strain at 0, 2, 3, 4, and 5 h of

pre-culture, and both strains share equally the growth medium.

its influence could avoid the expression of lsr operon, this
can lead to QS-related phenotypes not being expressed. These
observations could be performed in-vitro in order to confirm
the simulations and pave the road to new approaches for
QS control.
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