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Globally, the bacterial genus Campylobacter is one of the leading causes of human

gastroenteritis, with its primary route of infection being through poultry meat. The

application of biosecurity measures is currently limited by a lack of understanding of the

transmission dynamics within a flock. Our work is the first to undertake a mathematical

modeling approach to Campylobacter population dynamics within a flock of broilers

(chickens bred specifically for meat). A system of stochastic differential equations is

used to model the routes of infection between co-housed birds. The presented model

displays the strong correlation between housing density and Campylobacter prevalence,

and shows how stochastic variation is the driving factor determining which strains of

Campylobacter will emerge first within a flock. The model also shows how the system will

rapidly select for phenotypic advantages, to quickly eliminate demographically-weaker

strains. A global sensitivity analysis is performed, highlighting that the growth and

death rate of other native bacterial species likely contributes the greatest to preventing

flock outbreaks, presenting a promising approach to hypothesizing new methods of

combatting disease transmission.

Keywords: Campylobacter, mathematical modeling, stochastic differential equations, bacterial population

dynamics, microbiome

1. INTRODUCTION

Campylobacter is recognized as the leading cause of human gastroenteritis in the developed world
(Ghareeb et al., 2013). While several transmission routes have been noted over the years (Nauta
et al., 2005), poultry meat has been overwhelmingly attributed as the leading route of ingestion
for humans [EFSA Panel on Biological Hazards (BIOHAZ), 2011]. An ongoing study by Public
Health England has highlighted the extent to which Campylobacter spp. have dominated our
commercial poultry. Seventy-three percent of supermarket chicken carcasses were found to contain
Campylobacter and 7% of the outer packaging was similarly contaminated (Jorgensen et al., 2015).
An estimated 450,000 people across the United Kingdom are infected every year, with 10% of
these infections resulting in hospitalization (Strachan and Forbes, 2010). The immediate impact
of infection is rarely fatal in the developed world, characterized by stomach cramps and diarrhea,
however the resulting sequelae, while rare, are far more serious. Campylobacteriosis leaves the host
∼100 times more likely to develop the auto-immune disorder Guillain-Barré syndrome (McCarthy
and Giesecke, 2001).
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While the bacteria provoke an aggressive response in human
hosts, the most common species, Campylobacter jejuni, is
considered commensal within its most common host, broiler
chickens. The term “broiler” refers to any chicken bred and raised
specifically for meat production. Once Campylobacter is present
in a flock, full colonization of all birds occurs very rapidly (Evans
and Sayers, 2000). From the introduction of one infected bird,
it can take only a single week for an entire flock to become
infected (Stern N.J. et al., 2001). The bacteria are spread via
the fecal-oral route. After becoming infected, the newly-infected
host broiler spends a brief period in a non-infectious incubation
period, before excreting the bacteria in its fecal and cecal matter.
Surrounding susceptible broilers are then exposed to this by
ingesting the surrounding feed and water (Shanker et al., 1990).
While the direct cause of introduction to the flock is uncertain,
an exhaustive review by Adkin et al. (2006) considered that
horizontal transmission is by far the most likely route, primarily
being brought into a susceptible flock from some other source
on the farm, such as the enclosures of other farm animals.
This is as opposed to vertical transmission from breeder flocks,
which are themselves often fully colonized byCampylobacter spp.
Nevertheless, there may be a combination of both routes of entry
into a flock, which deserves greater consideration.

Campylobacter is very rarely observed to colonize the gut of
very young chickens (0–2 weeks of age) (Newell and Wagenaar,
2000). This is theorized to be the result of a supply of innate
maternal antibodies acquired during a pre-laying period. This
immunity has been shown to have significant bactericidal
properties (Sahin et al., 2001).

Despite numerous intervention measures being trialed and
employed on farms, little impact has been seen in reducing
outbreak incidence (Hermans et al., 2011). This is due in part
to the aggressive rate of proliferation once Campylobacter has
entered a flock, coupled with persisting uncertainty in the exact
route of primary infection. Specifically designed prevention
methods are also marred by genetic variation and plasticity of
Campylobacter spp. (Tresse et al., 2017).

Of increasing concern is the growing trend of antimicrobial
resistance in campylobacteriosis outbreaks. Roughly 90% of the
antibiotics applied in agriculture are used only to promote
growth or as prophylactic agents, as opposed to being used to
treat infection (Khachatourians, 1998). This overzealous use has
been a major contributing factor to the continuing spread of
antibiotic resistance. Ge et al. (2003) conducted a study showing
that 94% of tested raw chicken samples were resistant to at
least one of seven antibiotics being tested, 54% of which showed
resistance to erythromycin, the antibiotic most commonly used
to treat campylobacteriosis. These antimicrobial-resistant strains
cause more prolonged and severe illness in humans (Travers and
Michael, 2002) and create a scenario where in-vitro susceptibility
testing may be necessary before any drugs may be prescribed.

Despite a wealth of empirical investigations, there is
a lack of knowledge synthesizing these empirical findings
through theoretical modeling frameworks. Only two studies
have considered a theoretical approach to understanding
Campylobacter spp. outbreaks; Hartnett et al. (2001) and
Van Gerwe et al. (2005), who built a basic susceptible-infected

(SI) model and a probabilistic model, respectively. Both
frameworks only consider a model on the scale of a flock through
basic susceptible-infected interactions. These approaches are not
sophisticated enough to develop any meaningful theories on
Campylobacter dynamics, as they do not represent or convey any
specific interbacterial actions by Campylobacter populations. The
lack of modeling approaches is likely due in part to the inherent
challenges of mathematically simulating a gut microbiome. Over
100 different bacterial genera have been isolated from the
intestines of chickens (Pan and Yu, 2014), all with a range of
individual ecological interactions with one-another. Questions
must then be asked regarding how to simulate the temporal
and spatial impact of gut motility on the development of
a microbial community. Despite these challenges, simplified
models of stochastic differential equations have proved effective
in capturing the often frenetic bacterial population dynamics
within the gut (Wiles et al., 2016).

Here, we introduce a framework of stochastic differential
equations that captures the basic interactions that are known
to be observed within the broiler gut. Using this framework we
simulate the propagation of multiple strains of Campylobacter
through multiple birds in a flock. In the analysis presented
below we observe key dynamical behavior commonly observed
through experimentation, which can now be mechanistically
explained using this theoretical framework. The theoretical
insights derived from this model can be used to refine current
hypotheses regarding Campylobacter transmission and inform
future experimental and control efforts. The model will likely
be of use to experimentalists and risk assessors in theorizing
the impact of potential new disease prevention methods on the
bacterial transmission dynamics.

2. MODELING FRAMEWORKS

2.1. Deterministic Model
Before presenting the stochastic differential equation framework,
we begin by introducing the underlying deterministic core of
the framework and the particular interactions modeled. Consider
four variables to describe the bacterial populations within a
broiler’s digestive tract. C, the proportion of a single bird’s gut
flora made up of Campylobacter. B, the proportion of the gut
flora made up of other bacterial species competing for space and
resources. P, the proportion of the gut containing host defense
peptides (HDPs) (this may also be interpreted as other plausible
forms of host autoimmune response). Lastly, M, the proportion
of the gut containing innate maternal antibodies. These all take
values ranging such that 0 ≤ C,B, P,M ≤ 1. The set of ODEs
describing the dynamics follows:

dC

dt
= r1C

(

1− (C + α1B)
)

− γCP − d1C − βCB− σCM,

(1)

dB

dt
= r2B

(

1− (B+ α2C)
)

− d2B, (2)

dP

dt
= ξCP(1− P)− d3P, (3)
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dM

dt
= −d4M. (4)

All rate constants are defined below in Table 1.
Model boundedness is shown in Appendix S1
(Supplementary Material). The first term

(

r1C
(

1− (C + α1B)
))

in Equation (1) describes the logistic growth of Campylobacter to
a relative carrying capacity of 1, while in competition with other
bacteria B. Competition for resources is the key to success within
the gut. Campylobacter is known to be an effective colonizer
(Stahl et al., 2012), as it is very effective at drawing zinc and
iron from its environment (Gielda and DiRita, 2012; Raines
et al., 2016). The second term (γCP) in Equation (1) models the
inhibitory effect of host defense peptides, P. These peptides are
created in response to challenge by Campylobacter, as shown
by Cawthraw et al. (1994). The third term (d1C) of Equation
(1) simply describes the natural death rate of Campylobacter.
The fourth term (βCB) simulates an important interbacterial
interaction; that some of the most abundant competing bacteria
in the microbiome have an inhibitory effect on Campylobacter
(Schoeni and Doyle, 1992). The final term (σCM) of Equation
(1) represents the strong bactericidal abilities of the bird’s
maternal antibodies. All chickens hatch with an initial supply
of antibodies that depletes over time, gone by about 3 weeks of
age (Sahin et al., 2001) (most broilers are slaughtered at 5 or 6
weeks of age, however some organic and free-range flocks are

slaughtered at approximately 8 weeks). These antibodies have
a strong inhibitory effect on Campylobacter, and many studies
are unable to detect Campylobacter (by culture methods) in
birds under 2 weeks of age under commercial conditions (Sahin
et al., 2015). However, forced inoculation of high-quantities of
Campylobacter soon after hatching can still result in expression
of the bacteria (Welkos, 1984).

Equations (2), (3), and (4) follow a similar logic to Equation
(1). Other bacteria, B, grow in competition with Campylobacter
to a carrying capacity. Defense peptides, P, grow in response
to Campylobacter expression (not in competition for resources),
and the population of maternal antibodies, M, does not
grow. All variables decay at a rate proportional to their
respective populations.

Note that the above model could be reduced by amalgamating
terms in Equations (1) and (2), however we choose to keep these
separate to (i) keep biological processes clearly defined, and (ii)
make further model development and sensitivity analyses clearer.

Ignoring the trivial cases of complete domination by either C
or B, the basic dynamical behavior observed for this simplified
model is illustrated in Figure 1. Notably, Campylobacter is absent
from the microbiome until the maternal antibody population has
been exhausted. At this point a sudden, temporary, surge in the
population of Campylobacter is observed. This phenomena is due
to the very low population of HDPs, caused by the strong effect of
the initial maternal antibodies. The HDP population then quickly

TABLE 1 | Model parameters and baseline values.

Expression Description Value

rCj Growth rate for Campylobacter strain j. 0.3009

r2 Growth rate for other bacteria (B). 0.1407

α1 Campylobacter competition coefficient. 0.9744

α2 Other bacteria competition coefficient. 1

γCj
Rate of inhibition by host defense peptides (P) on Campylobacter strain j. 0.6358

ξj Rate of host defense peptide growth in response to Campylobacter strain j. 0.7411

b Rate of broiler shedding Campylobacter into the environment, Ej . 10

� Total environmental carrying capacity of Campylobacter. 200, 000∗

dCj Death rate of Campylobacter strain j. 0.0185

d2 Death rate of other bacteria. 0.0212

d3 Decay rate of host defense peptides. 0.0463

d4 Decay rate of maternal antibodies. 0.0046

d5 Death rate of Campylobacter in the environment. 0.05

βCj
Rate of inhibition by other bacteria on Campylobacter strain j. 0.0276

σCj
Rate of inhibition by maternal antibodies on Campylobacter strain j. 0.0661

ηCj
Scaling factor applied to stochastic Campylobacter growth in the gut. 0.01

ηBCj
Scaling factor applied to stochastic Campylobacter inhibition by other competing bacteria. 0.0847

η2 Scaling factor applied to stochastic competing bacteria (B) growth. 0.01

η3 Scaling factor applied to stochastic host defense peptide (P) growth. 0.01

η4 Scaling factor applied to stochastic maternal antibody (M) decay. 0.01

η5 Scaling factor applied to stochastic Campylobacter growth in the environment. 0.01

Descriptions for all parameter values appearing in the final stochastic model, Equations (14–18). Baseline values are given, used for model validation and simulation case studies.

Values were calculated by using simulated annealing to identify a parameter set that best fits the experimental data of Achen et al. (1998) (Figure 2). See Appendix S2 in

Supplementary Material for an explanation of simulated annealing. ∗Ω value is dependent on the experiment specifics for model validation, but flock case studies consider a flock of

400 chickens, and an Ω value of 200,000.

Frontiers in Microbiology | www.frontiersin.org 3 August 2019 | Volume 10 | Article 1940

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Rawson et al. Mathematical Modeling of Campylobacter

FIGURE 1 | Deterministic model for one chicken. An example of the typical dynamical behavior observed for simulations of Equations (1–4). Parameters defined in

Table 1.

rises to meet this sudden challenge, bringing the Campylobacter
population back to a lower level in an oscillating manner, where
it eventually reaches a steady-state equilibrium. This behavior is
commonly observed in experimental studies (Achen et al., 1998;
Newell and Fearnley, 2003).

From this simple core of four equations we adapt the model
to allow for N unique strains of Campylobacter, by describing
each strain as a separate variable. Equation (1) is repeated for
each individual strain, while altering the growth rate terms to
reflect the fact that all strains will also be in competition with
one another. This alteration is represented by the following set
of ODEs:

dCj

dt
=rCjCj



1−





N
∑

j=1

Cj + α1B







 − γCjCjP − dCjCj

− βCjCjB− σCjCjM, (5)

dB

dt
=r2B



1−



B+ α2

N
∑

j=1

Cj







 − d2B, (6)

dP

dt
=

N
∑

j=1

ξjCjP(1− P)− d3P, (7)

dM

dt
=− d4M. (8)

Here Cj represents the jth strain of Campylobacter, where
j ∈ {1, 2, ...,N}, and N is the total number of strains. As
such this adjusted model is composed of N + 3 variables.
The next alteration is to allow for multiple birds and the
ability for Campylobacter to move from one bird to another.
This is done by repeating the N + 3 equations presented in
Equations (5)–(8) for each bird, and introducing new variables

to display the saturation of Campylobacter strains in the shared
living space.

As such, the newly adjusted model to describe the population
dynamics of N strains of Campylobacter within L broilers, is
written as,

dCij

dt
=rCjCij



1−





N
∑

j=1

Cij + α1Bi







 − γCjCijPi − dCjCij

− βCjCijBi − σCjCijMi + a
Ej

�
, (9)

dBi

dt
=r2Bi



1−



Bi + α2

N
∑

j=1

Cij







 − d2Bi, (10)

dPi

dt
=

N
∑

j=1

ξjCijPi(1− Pi)− d3Pi, (11)

dMi

dt
=− d4Mi, (12)

dEj

dt
=

L
∑

i=1

bCij

(

1−
Ej

�

)

− d5Ej. (13)

Here then, Cij represents the proportion of the ith broiler’s
gut bacteria which is composed of Campylobacter strain j. Bi
is the proportion of the ith broiler’s gut bacteria made up of
other bacterial species competing for space and resources. Pi,
the proportion of the ith broiler’s gut containing host defense
peptides. Mi is the proportion of the ith broiler’s gut containing
innate maternal antibodies. Here i ∈ {1, 2, ..., L}, where L
is the total number of broilers. Ej represents the amount of
Campylobacter strain j that is currently in the flock’s enclosed
living space. We assume a living space of fixed size shared by
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all broilers. As such, � represents this total size, or carrying
capacity for strains. The first term in Equation (13) shows that
the amount of strain j in the environment is increased by being
shed from birds that are already infected with strain j at a

rate b. Note from the final term
(

a
Ej
�

)

in Equation (9) that

birds may then ingest strain j from the environment at a rate
a

�
. This route of infection simulates the fecal-oral route of

infection, but may be interpreted as some other intermittent
transmission stage between birds. As such we do not remove
Campylobacter from the environment (Ej) upon an ingestion
event, as the possibility of further environmental contamination
is not yet understood and may indeed depend on the specific
route of infection. The model is now composed of L(N +

3) + N equations, for N strains of Campylobacter, and L
individual broilers.

2.2. Stochastic Model
While several important biological phenomena can be
discovered and better understood with the model in its
current, deterministic, form, there are key reasons to pursue
a stochastic framework. First, having one variable alone
to represent the multitudes of bacterial species that make
up the constantly-evolving gut microbiome is, of course, a
significant simplification. In practice, these other bacterial
species competing with Campylobacter will be constantly
changing, both in resurgences of population and in how they
interact with Campylobacter. Adding stochastic elements to
these populations and interactions is a small step toward
capturing some of this more unpredictable behavior. Indeed
the biomass of Campylobacter measurable in fecal and cecal
matter has been observed to fluctuate widely (Morishita et al.,
1997; Achen et al., 1998). Secondly, the density dependent
assumptions made when formulating the initial deterministic
model, that is that interaction rates are directly proportional to
the variable populations, are assumptions that break down for
smaller populations. The simulations undertaken often display
bacterial populations at very small quantities, especially in the
initial period dominated by maternal antibodies. A stochastic
system behaves very differently under these circumstances and
means that the model is more likely to display cases of strain
extinction, a phenomena that the deterministic model cannot
capture. Indeed, the very nature of Campylobacter infections is
one that is often described in the language of probability. The
all-or-nothing nature of flock infections means that we often
must ask what measures can reduce the likelihoods of infections,
rather than the magnitude. Through a stochastic framework
we explore multiple realizations of potential outcomes, and
investigate reducing the likelihood of outbreaks in a flock
of broilers. The case studies presented below highlight the
need for a stochastic modeling approach to accurately capture
the multi-strain dynamics of Campylobacter within the gut.
This approach allows for the simulation of turn-over and
resurgence of dominant strains, an experimentally observed
behavior (Colles and Maiden, 2014) that cannot be captured by
a deterministic system.

For the stochastic framework, Equations (9–13) are adjusted
to the following set of stochastic differential equations,

dCij =



rCjCij



1−





N
∑

j=1

Cij + α1Bi







 − γCjCijPi − dCjCij

− βCjCijBi − σCjCijMi + a(Ej)

]

dt

+
[

ηCjCij + λj(t)− ηBCjCijBi
]

dWt , (14)

dBi =



r2Bi



1−



Bi + α2

N
∑

j=1

Cij







 − d2Bi



 dt

+ [η2Bi] dWt , (15)

dPi =





N
∑

j=1

ξjCijPi(1− Pi)− d3Pi



 dt + [η3Pi] dWt , (16)

dMi =
[

−d4Mi

]

dt + [η4Mi] dWt , (17)

dEj =

[

L
∑

i=1

bCij

(

1−
Ej

�

)

− d5Ej

]

dt +
[

η5Ej
]

dWt , (18)

where λj(t) is defined by;

λj(t) =

{

0, if Cij(t) = 0.

2.873× 10−4, otherwise.

and where a(Ej) is defined by;

a(Ej) =

{

0.015, if X <
Ej
�
for random variable X ∼ U(0, 1).

0, otherwise.

Here Wt denotes a Wiener process (standard Brownian motion
process). These stochastic increments are scaled by the respective
population size and constants η2 through to η5. These constants
dictate the variance of their respectiveWiener processes, defining
the range of stochasticity attributed to the growth rate of
their respective variables. The changes and additions shown in
Equation (14) warrant further explanation. The sixth term (a(Ej))
in Equation (14) (the last of the deterministic terms), has been
changed from a constant rate of ingestion from the environment,
as seen in Equation (9), to instead have ingestion modeled by a
chance to ingest Campylobacter depending on the amount of that
strain in the environment, Ej. The greater Ej is, the more likely it
is for ingestion to occur.

The eighth term [λj(t)] in Equation (14) is a stochastic term
independent of the population of Cij. This is introduced to allow
for the possibility of extinction events, should the population of
Cij reach a particularly low threshold. This threshold is decided
by the value taken by λj(t), in this case 2.873 × 10−4. As with
all other parameter values displayed in Table 1, the values used
in the expressions λj(t) and a(Ej) are calculated through model
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validation against the studies presented below in section 2.3.
Finally, the ninth term of Equation (14) considers stochasticity
surrounding the interactions between Cij and the competing
bacteria Bi. This term allows for instances when the particular
biodiversity and spatial structure of the gut microbiome may
be more inhibitory toward Campylobacter, or perhaps actually
assisting its growth instead.

Several interesting dynamical behaviors can be observed
using this model, which are highlighted through some specific
question-led case studies. Table 1 defines all parameters
presented in the final stochastic model [(14–18)] as well as a
baseline of parameter values that were used in model validation
against real world data sets (presented below). The model is
constructed to an arbitrary timescale, however the parameter
values given in Table 1 ensure that multiple oscillations in
the Campylobacter population can be observed in the below
case studies, a phenomena observed in the lifespan of broilers
(Morishita et al., 1997).

Note that throughout we have chosen to use a Campylobacter
competition coefficient of α1 = 0.9744 < 1. This choice
is justified in that bacterial populations can inhabit multiple
intestinal niches that cannot be colonized by other competing
bacteria. Indeed competitive exclusion therapies have been far
less effective in tackling Campylobacter compared to other
foodborne illnesses such as Salmonella (Stern N. et al., 2001).
The deterministic model is solved using the ode45 solver, a fifth-
order Runge-Kutta method in Matlab. The stochastic model is
solved numerically using the Euler-Maruyama method (Higham,
2001) with N = 214 timesteps, also programmed in Matlab.
The code used to produce all figures presented is available at:
https://osf.io/b3duc/.

We also note that while the model is general enough that it is
not specific to any one species of Campylobacter, two of the three
datasets that were used to tune our model parameter values were
from studies unique to the most common species, Campylobacter
jejuni (Achen et al., 1998; Stern N.J. et al., 2001). As such we
may expect slightly different parameter values to be applicable for
other species ofCampylobacter. However, from testing themodel,
the results we present below are ones that are generally observed
for a range of parameter values, and as such are relevant findings
to the whole genus.

2.3. Model Validation
We test our model by comparing its predictions against three
experimental studies on Campylobacter expression and spread.
Firstly, we consider the work of Achen et al. (1998). Achen et al.
performed an experiment with 24 broilers, who were kept in
individual, isolated wire-bottomed cages. Birds were confirmed
as free of Campylobacter before being inoculated with a C. jejuni
suspension. A cloacal swab was then obtained from each bird
every day for 42 days, to monitor whether or not each bird
was shedding Campylobacter. Figure 2 shows their experimental
results alongside the predictions made by our model.

Specifically, the blue line represents the modal value of
the percentage of the 24 birds shedding across a thousand
simulations, with error bars depicting the standard deviation
across these simulations. Achen et al. (1998) also reports how
most birds would shift from phases of positive shedding to

negative shedding, a phenomena also captured by the oscillating
behavior displayed by the model. Sampling via culture methods
like those performed in this experiment is prone to false-negative
results for samples with very low quantities of Campylobacter
(Acke et al., 2009). Therefore, for this model validation, we
considered a broiler as being clear of Campylobacter if its
proportion of Campylobacter (variable C) was below 0.005. This
was considered a more accurate measure to correspond with
the experimental data. While our model was constructed to an
arbitrary timescale, comparing to this real-world data set it was
found that our time axis is best rescaled by a factor of 0.021
to align with the measure of days used in these studies. This
corrected timescale is used for all subsequent case studies within
this paper.

Secondly, we consider the experiment conducted by Stern
N.J. et al. (2001). Multiple separate pens were prepared,
each containing 70 broilers, all free of Campylobacter. A
Campylobacter-positive seeder bird was then added to the flock.
Different pens had seeder birds introduced at different points
in time. Three, five, and seven days after a seeder bird was
introduced, a sample of chickens were tested for Campylobacter
to estimate the percentage of the flock that was currently
Campylobacter-positive. We plot our model predictions against
Stern et al.’s experimental data below in Figure 3. To match the
housing density of the experiment, a value of � = 45, 369 was
used for the model. An error band is plotted around our model
prediction displaying the standard deviation of values across
100 simulations.

Lastly we simulated the experiment performed by Van Gerwe
et al. (2005). Four flocks of 400 birds were set up in individual
enclosures from day of hatch. Four birds in each flock were then
inoculated with a Campylobacter suspension and returned to
the flock. Birds were then sampled from each flock throughout
the next few weeks to record the percentage of flock infection.
Figure 4 plots their experimental data against our model
prediction. For the experiments shown in Figures 4A,B, the
four seeder birds were inoculated at day of hatch, and chickens
were sampled by cloacal swabbing. For the experiments shown
in Figures 4C,D, the seeder birds were inoculated one day
after hatch, and the flock was analyzed by collecting fresh
fecal samples.

3. SIMULATIONS

We now use a series of (simulated) case studies to investigate key
dynamical behaviors and predictions from the model.

3.1. Staggered Strain Infection
In this first example, the deterministic model for multiple
strains in one broiler (Equations 5–8) is considered. Five strains
of Campylobacter within one chicken are simulated, all with
the exact same respective rate constants as shown in Table 1.
Figure 5A shows the results when all five strains are introduced
at t = 0 days, with the same initial inoculation amount
of Ci(0) = 0.0001. Figure 5B shows instead when each
strain is introduced in intervals of t = 5 days. Therefore,
only strain 1 is introduced at t = 0 days, strain 2 is
introduced at t = 5 days and so on until finally strain
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FIGURE 2 | Model validation against data of Achen et al. (1998). The percentage of a group of isolated broilers shedding Campylobacter across several weeks

following inoculation.

FIGURE 3 | Model validation against data of Stern N.J. et al. (2001). The percentage of a flock of broilers shedding Campylobacter across several weeks after

introduction of a Campylobacter-positive seeder bird at (A) 7 days, (B) 14 days, (C) 21 days, (D) 28 days.
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FIGURE 4 | Model validation against data of Van Gerwe et al. (2005). The percentage of a flock of broilers shedding Campylobacter across several weeks after

introduction of a Campylobacter-positive seeder bird. (A,B) Seeder bird introduced at day of hatch, samples collected via cloacal swab, (C,D) seeder bird introduced

one day after hatch, samples collected via fresh fecal droppings.

5 is introduced at t = 20 days. In both cases the other
three variables are initialized at B(0) = 0.4, P(0) = 0.01,
andM(0) = 0.5.

While the maternal antibodies (M) are not plotted on these
figures, they approach 0 at approximately t = 20 days, as can
be seen by the following surge in Campylobacter populations
following this point in Figure 5. While, unsurprisingly, all strains

perform identically in Figure 5A (where strains are initialized at

the same point in time), a more curious dynamic is observed
in Figure 5B. The strain that performs best and exists at the

highest proportion in the staggered release example is strain
2, the second strain to be introduced. The reason for this is

that strain 1, present at t = 0 days, is initially suppressed by
the maternal antibodies (parameterM), reducing the proportion
of strain 1. As a result, when strain 2 is introduced, it is
able to capitalize on the severely reduced amount of strain
1, and the reduced amount of maternal antibodies, to quickly
grow and dominate the competitive space. Strain 2’s increased
presence then puts future strains at a disadvantage as it has
already had the opportunity to establish itself within the gut.
These results suggest that dominant Campylobacter strains can
prevent new strains from taking hold. Moreover, there is an
optimal point in time for inoculation to occur for a strain
to become dominant, as shown in Figure 5B where strain 2
is consistently occupying a higher proportion of the gut than
other strains.

3.2. Stochastic Model—One Strain in One
Broiler
The stochastic model (Equations 14–17) is run to simulate one
strain of Campylobacter within one broiler. In this scenario, we
ignore the environmental variable E (Equation 18), as its input
is negligible for only one broiler. The rate constants are kept
at the same values as used previously, defined in Table 1, with
the additions of the stochastic variance scaling rate constants,
parameters that limit the variance of the stochastic additions.
These are set as ηCj = η2 = η3 = η4 = 0.01, and
ηBCj = 0.0847. ηBCj is set higher than the other stochastic rate
constants to capture the greater unpredictability surrounding
these bacterial interactions. Four different realizations of this
model are presented in Figure 6, all initialized at C(0) = 0.02,
B(0) = 0.4, P(0) = 0.01,M(0) = 0.5.

Empirical studies measuring the amount of Campylobacter
in the fecal matter of isolated broilers have shown a spectrum
of results. Some broilers display sustained high populations,
others express initial peaks followed by great reduction and
potentially later resurgence, and sometimes extinction cases are
observed (Achen et al., 1998). All these dynamical behaviors can
be observed in different realizations of this model (Figure 6).
Figure 6A shows an instance where a broiler is consistently
infected and shedding into the environment, unable to effectively
clear theCampylobacter from its system. Figure 6B instead shows
an instance where a broiler has multiple periods of high infection
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FIGURE 5 | Simulations of multiple Campylobacter strains within one broiler. Population growth of five strains of Campylobacter within one broiler that are (A) all

introduced at t = 0 days (B) introduced in intervals of t = 5 days. Strains are initialized at Cj (t) = 0.0001 at their respective time of introduction. Other variables are

initialized at B(0) = 0.4, P(0) = 0.01, and M(0) = 0.5. Note that the single green line in Figure 5A is due to overlap, all five strains exhibit the exact same dynamical

behavior, as would be expected.

and shedding, before being able to clear the infection. Figure 6C
shows an instance where after one initial peak in Campylobacter
expression, a broiler is able to quickly clear infection. Finally,
Figure 6D shows an instance where the broiler successfully
clears Campylobacter at the initial point of inoculation. All these
realizations are run with the same parameters given in Table 1,
demonstrating the benefit of a stochastic framework being able
to better capture the more diverse range of possible events. This
broad array of dynamical profiles is not observed in commercial
broiler flocks, a phenomena that is demonstrated in the following
case study.

3.3. Stochastic Model—One Strain in
Multiple Broilers
The previous scenario is now extended to consider multiple
broilers. Figure 7 presents the results for one Campylobacter

strain in a flock of 400 broilers. We use the parameter values
stated in Table 1. The total size of the enclosure, or the carrying
capacity of E, is set at � = 200, 000. This value is considered
in cm2, and so with 400 broilers, translates to 500 cm2 per
broiler. EU directive 2007/43/CE states that broilers may never
be stocked at more than 42 kg/m2 (Council of European Union,
2007). Assuming a targeted bird weight of 1.5 kg, this translates
to 357 cm2 per bird. This simulation models slightly more
space allowed to each bird than the limit. The death rate of
Campylobacter in the environment is set at d5 = 0.05, higher
than the death rate within a broiler as, despite their many survival
mechanisms (Murphy et al., 2006) Campylobacter is susceptible
to many exterior environmental stresses (Park, 2002) and is
exceptionally fragile outside of its host. The simulation began
with no Campylobacter in the surrounding environment [E(0) =
0] and the other initial conditions are set the same as for the
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FIGURE 6 | Stochastic simulations of one Campylobacter strain within one broiler. (A–D) Four different realizations of a stochastic model simulating one strain of

Campylobacter within one isolated broiler.

previous example, with the exception that two of the 400 broilers
start with an initial condition of C1(0) = C2(0) = 0.02, while the
others are initialized without any Campylobacter. These results
are shown in Figure 7.

While birds who are not initialized with Campylobacter
become infected at a slightly later time, the dynamical behavior is
very similar across all birds in the flock. Multiple realizations do
not display the broader spectrum of behavior observed in the one
broiler case (Figure 6). The implication is that housing a greater
number of birds causes more homogeneous dynamical behavior,
and indeed the wide variety of Campylobacter expression seen
in the isolated bird experiments of Achen et al. (1998) is not
so commonly observed in experiments with group-housed birds
(Van Gerwe et al., 2005).

3.4. Stochastic Model—Five Strains in
Multiple Broilers
We extend the previous scenario to investigate dynamics of
multiple strains. Five strains of competing Campylobacter are
modeled within the same flock of 400 birds. The same constants
are used as in the previous scenario, with each strain having

identical rate constants. One key difference is that all broilers are
initialized without any Campylobacter, instead an initial amount
is present in the environment. Each strain of Campylobacter in
the environment is initialized at E1(0) = E2(0) = E3(0) =

E4(0) = E5(0) = 100. The results of this simulation are shown
in Figure 8.

On average, all strains perform equally well across the flock,
as shown in Figure 8E. All strains slowly converge to roughly
equal amounts in the environment, reflecting an equal presence
on average across all birds in the flock. However, when observing
the Campylobacter proportions within individual broilers, one
or two strains will tend to dominate early on in colonizing
a broiler’s gut, which can in turn prevent other strains from
taking hold (seen most clearly in Figure 8D). This dynamical
behavior was first observed in our deterministic simulations (see
Figure 5B), however unlike in the deterministic case, stochastic
events can cause dominant Campylobacter strains to reduce in
population, presenting an opportunity for a different strain to
establish itself.

This phenomena is more clearly seen if the timescale
of the simulation is extended, as illustrated in Figure 9.
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FIGURE 7 | Stochastic simulations of one Campylobacter strain within multiple broilers. The proportion of a broiler’s gut containing Campylobacter for (A) a broiler in

the flock initialized with a small proportion of Campylobacter (B) a broiler in the flock initialized with no Campylobacter. (C) Shows how much of the environment (total

size of 200,000) contains Campylobacter. This is variable E in the model.

Although the average population of strains across the flock
is equal, the stochastic model shows that a single strain of
Campylobacter tends to dominate the gut of individual broilers
at any one time. Although there are brief periods where
strains exist in equal amounts, eventually the balance shifts
again to longer periods of dominance by one or perhaps
two strains.

Disadvantaged strains of Campylobacter are quickly
eliminated. Figure 10 shows the results for a simulation
where strain 4’s growth rate, rC4 , is reduced from 0.3009 to 0.295,
and strain 5’s growth rate, rC5 , is reduced to 0.29. Strains 1, 2, and
3 are kept with a growth rate of 0.3009. As Figure 10 shows, the
weaker strains are unable to outcompete the other three and are
quickly eliminated. Changing other demographic parameters of
a strain achieve a similar result of driving a strain to extinction,
the phenomenon is not unique to only altering the growth rate.
Making only very small reductions to the growth rate can result
in a strain surviving at a lower average population size, although
this may only be due to the time needed for extinction to occur
being too long to observe in these simulations.

4. SENSITIVITY ANALYSIS

A powerful use of this model is to conduct a robust sensitivity
analysis to identify the parameters of greatest impact in driving
outbreaks of Campylobacter. We adopt a variance-based analysis
of the model, and investigate the likelihood of flocks remaining
free of Campylobacter based on a random assignment of
parameter values.

We consider the case of a flock of broilers infected with a
single strain of Campylobacter, the scenario shown in section
2.3. Model parameters are sampled randomly from a uniform
range, and the model is run multiple times for these values.
We then record how many of these stochastic runs resulted
in the flock successfully eliminating Campylobacter infections,
before drawing a new random sample of parameters values and
repeating as necessary. Eventually we finish with a final data set
which we display an example of below in Figure 11.

As such, the most “important” parameters will be the ones
which exhibit a strong trend in their scatter plot. A seemingly
randomly distributed scatter plot would indicate a parameter
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FIGURE 8 | Stochastic simulations of multiple Campylobacter strains within multiple broilers. (A–D) The proportion of four different broilers’ microbiomes that contain

five strains of Campylobacter. All birds are within the same flock. (E) Shows how much of the environment (total size of 200,000) contains the five strains of

Campylobacter. These are variables Ej in the model.

value which has little impact on our output. To report more
accurately this measure we use the first-order sensitivity index,
Si, and the total effect index, STi , defined as:

Si =
VXi (EX∼i (Y|Xi))

V(Y)
, STi =

E(V(Y|X∼i))

V(Y)
,

where Xi denotes parameter i, and Y denotes the model output.
X∼i denotes the vector of all factors but Xi. V(·) denotes the
variance, and E(·) the expectation. Specifically E(A|B) denotes the
expectation of variable A when B is held fixed. In short Si will
measure the changes observed in the output when parameterXi is
kept fixed, while STi measures the changes to the output when all
other parameters are kept fixed. A full derivation and explanation
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FIGURE 9 | Stochastic simulations of multiple Campylobacter strains within multiple broilers across a greater timescale. (A,B) The proportion of two different broilers’

microbiomes that contain five identical strains of Campylobacter.

can be found in Saltelli et al. (2008). In short, both are values that
range from zero to one, that explain the impact of a parameter
on the model output. The higher the value, the more “important”
the parameter is. STi is considered a stronger metric, as it also
considers the higher-order impact of a parameter, whereas Si only
considers the immediate first-order impact. As such Si would be
a sufficient measure for a linear model, but for a more complex
model such as the one presented in this paper, STi can better
reveal the impact that each parameter plays. An initial sensitivity
analysis was run for 20 parameters with 2, 000 parameter set
samples, drawn from a quasi-random Sobol set (Saltelli et al.,
2008). The results of this analysis are displayed in Table 2, and
the code used to produce them is available to access at: https://
osf.io/b3duc/.

Specifically, our objective function will run the stochastic
model for a flock of chickens with the random parameter
set drawn. If this model run results in no Campylobacter
being present in the flock, it is considered to have
successfully eliminated infection. The model is run 20
times with this parameter set, and the proportion of these
20 runs that results in an elimination of Campylobacter

is the final output value, the “probability of flock
clearing infection.”

Note that some of the values in Table 2 are negative, despite
Si and STi being limited to being between zero and one. This is
due to the computational error in estimating the value, however
the ordering of parameters for these particular runs will not be
affected by this error. Table 2 shows that the STi values associated
with most parameters ranges between 0 and 0.1. The “most
important” parameters however have a wider spread of associated
STi values.

The main result from this analysis is that the growth, death
and inhibition rates of the other bacteria present in a broiler’s gut
(parameters r2, d2, and βC) collectively carry the largest impact in
eliminating Campylobacter from a flock. As such, we can begin to
consider which preventative methods could best take advantage
of this heightened sensitivity.

5. DISCUSSION

Here, we have investigated the dynamics of Campylobacter
across a range of model applications. Our framework reveals
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FIGURE 10 | Stochastic simulations of multiple Campylobacter strains, differing in growth rates, within multiple broilers. (A–D) The proportion of four different broilers’

microbiomes that contain five strains of Campylobacter. Strain 4 has had it’s growth rate reduced from 0.3009 to 0.295 and strain 5 has had its growth rate reduced

to 0.29. Strains 1, 2, and 3 have a growth rate of 0.3009. (E) Shows how much of the environment (total size of 200,000) contains the five strains of Campylobacter.

These are variables Ej in the model.

several key dynamics of microbial interaction that explain many
experimentally observed phenomena. This presents promising
new approaches to understanding and tackling this bacteria.

First, the most apparent prediction is that the Campylobacter
population is successfully suppressed by the innate maternal
antibodies (an experimentally observed phenomenon;

Connerton et al., 2018), until these antibodies are eventually
removed from the system. At this point an initial surge in the
population of Campylobacter is observed, before it comes to
rest at a lower level, reaching an equilibrium with the broiler’s
immune-response. This can be seen in all of the above figures, but
most clearly in Figure 1. This initial surge creates an interesting
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FIGURE 11 | Scatter plots displaying probability of a flock clearing Campylobacter infection against randomly sampled parameter values. Each scatter plot depicts

the results for a specific parameter value. Probability is calculated by running the model for a sampled parameter set 20 times, and recording how many of those runs

resulted in the flock not becoming infected with Campylobacter.

opportunity for certain strains of Campylobacter to emerge as
an early dominating strain. Figure 5B shows that, due to the
antibacterial properties of a broiler’s maternal antibodies, any
strains that infect a broiler early on in its lifespan will be heavily
inhibited. This creates a brief window at the point in which
maternal antibodies have depleted, whereby any new strain
introduced is observed to quickly colonize and dominate the gut
flora, suppressing other strains (see Figure 10C). This hypothesis
has been verified experimentally (Connerton et al., 2018).

The proposition of damped oscillations between
Campylobacter population size and the host’s immune-response
is better reinforced by observations that host antibody
populations will also oscillate in birds infected with

Campylobacter (Cawthraw et al., 1994). This basic interaction
has been experimentally observed by Achen et al. (1998), with
a high degree of variability between birds. This variability is
better captured by the stochastic model, as shown in Figure 6.
Indeed, many birds in Achen et al.’s study are shown to clear
Campylobacter successfully from their system, a result rarely
observed on commercial broiler farms. Likewise this result
was only observed in the model case of individual, isolated
broilers (see Figure 6D).

Most important is themechanism observed in Figure 7, where
the broad spectrum of oscillatory behavior observed within a
broiler is greatly reduced in a large flock of birds. Indeed the
vast examples of individual dynamics observed in Figure 6, large
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TABLE 2 | Sensitivity analysis of parameters in a stochastic model for one

Campylobacter strain in a flock of broilers.

Si Parameter STi Parameter

−0.0112 η3 −0.0031 σC

−0.0054 ηBC −0.0026 η4

−0.0051 a −0.0016 η5

−0.0017 ηC −0.0011 d4

−0.0011 η2 0.0056 b

0.0009 η5 0.0065 a

0.0020 d4 0.0114 γC

0.0025 b 0.0122 ξ

0.0038 η4 0.0224 ηC

0.0054 ξ 0.0228 ηBC

0.0062 σC 0.0378 η3

0.0077 γC 0.0389 �

0.0085 � 0.0417 η2

0.0096 d5 0.0543 d5

0.0125 βC 0.1380 dC

0.0441 dC 0.1925 βC

0.0459 rC 0.2088 rC

0.1131 d3 0.3117 d3

0.1622 r2 0.4418 d2

0.1900 d2 0.4789 r2

The first-order sensitivity index and total effect index is given for a sensitivity analysis

of 2,000 runs for 20 parameters. The output function considered is the probability of

Campylobacter going extinct within the flock based on the given parameter set.

oscillations and perhaps extinctions, are completely replaced
by the same, homogenized dynamics seen within flock-reared
birds in Figures 7A,B, as the populations of Campylobacter
within each bird are consistently reinforced by the amount of
Campylobacter in the environment. The wealth of experiments
in monitoring flock Campylobacter expression for varying flock
sizes means this effect can be observed taking place across
multiple experiments of different flock magnitudes and densities.
Morishita et al. (1997) measured the amount of Campylobacter
in a flock of thirty birds in a sizeable pen. This flock was
small enough to observe oscillating behavior in the prevalence
of Campylobacter, and yet there do not appear to be any clear
cases of birds being able to clear the bacteria from their system.
Stern N.J. et al. (2001) experimented with flocks of 70 birds at
a density of 15.4 birds/m2. A small cyclic pattern is observable
in their results but there are clearly far higher incidence rates.
Lastly, Van Gerwe et al. (2005) studied flocks of 400 birds housed
at 20 birds/m2 (the same density considered in the above flock
modeling), where now no cyclic patterns can be observed, and all
birds quickly reach a constant state of Campylobacter expression.
This effect is seen in Figure 7, and almost always observed in
commercial farms (Stern et al., 1995; Evans and Sayers, 2000).
Our work presented here is the first, to our knowledge, to be
able to propose amechanistic explanation for this observed effect,
namely that the housing density of reared flocks is correlated to
Campylobacter prevalence.

This dynamic, whereby broilers are consistently infected
with Campylobacter due to highly contaminated living space,

can also explain the observed phenomena whereby broiler
breeder flocks (flocks kept for the breeding of meat birds)
display a consistently lower Campylobacter prevalence rate than
commercial broiler flocks (Colles et al., 2011). Breeder birds will
regularly move between periods of testing positive and negative
for Campylobacter, inconsistently with the state of other birds
in the flock, unlike the much younger birds grown for meat
which remain consistently positive. Our case studies suggest
that this may be due to the lower stocking density afforded to
breeder birds, as it would appear the route of infection between
breeder birds is weaker than that between broilers. Our sensitivity
analysis however also highlighted that the gut flora can have a
strong impact on the survival of Campylobacter. The differences
in diet and management practice for breeder birds likely results
in a different variety of bacterial colonies to broilers, which could
also be a cause of the differences seen between breeders and
broilers in Campylobacter expression.

Additionally, we note that over these case studies we have
seen that the outbreak dynamics are unaffected by the initial
method of inoculation. There is no clear consensus yet on
whether flocks are initially infected through horizontal or vertical
transmission, and our model predictions show that this may
not be possible to determine from flock infection dynamics.
Case studies showed no difference between initialization with an
infected environment, or an infected number of broilers. More
specifically, Figure 7 shows clearly how the dynamic profile of a
broiler that is initialized with Campylobacter, is not significantly
different from that of a bird which is infected through the
environment, representing the effect of vertical and horizontal
transmission respectively.

Over time, our model shows strains of equal fitness will tend
to settle at equal levels of prevalence on average across a flock
(Figure 8E), a result that has also been shown experimentally
(Colles and Maiden, 2014; Colles et al., 2015). However, it is
very common for an individual broiler to have only one or two
dominant strains against far smaller proportions of other strains
(Colles et al., 2019), as our model represents in Figures 8A–D, 9.
Our results show that this effect is most prominently seen early
on in the chicken’s lifespan, where usually only one strain will
be present during the initial population surge of Campylobacter.
Colles et al. (2019) shows that a greater diversity of strains are
observable later on in a broiler’s lifespan, but usually at a far lower
prevalence compared to a dominating strain. Evidently, when
one strain is already well-established within a chicken’s gut, it is
difficult for new competing strains to grow. This is due to the
broiler already having a heightened level of immune response (P)
due to the currently present strain. In the deterministic case, later
strains would never be able to establish themselves as much as
strains that were earlier to arrive (Figure 5B). However, in the
stochastic model, there is the potential for a stochastic event to
reduce the population of the currently dominating strain, and
increase the population of a less-established strain.

Across the whole flock, weaker strains can be quickly
outcompeted by other strains. Figure 10 shows two weaker
strains (strains with lower growth rates) attempting to survive
within a flock, even having a slight population peak at the optimal
point of strain introduction, before eventually being forced to
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extinction by the other three strains. Parameter variation showed
that reducing a strain’s demographic parameters by a very small
amount can allow it to persist still in the flock at a smaller average
population than the others, but the majority of realizations would
always end with weaker strains becoming extinct. Clearly this
shows an environment where genetic dominance is very quickly
selected for.

These results have considerable implications for biosecurity.
While smaller flocks may have a very real opportunity to
be protected from Campylobacter invasions, Campylobacter
prevalence is far more stable in larger commercial flocks, and
our model shows it to be exceptionally difficult to remove.
Efforts can be made to prevent initial inoculations, but once a
bacterial presence is established, it may be all but impossible to
remove from a flock. Considerable improvements to biosecurity
have been made in recent years, but very little impact has
been observed in this having reduced Campylobacter incidence
(Hermans et al., 2011). These measures do not reduce the speed
of proliferation of the bacteria, and our results suggest that better
attention to bird health is likely to have a greater effect on
preventing flock infection.

This model’s greatest strength is its lack of overarching
assumptions. We model only the most basic bacterial
interactions, all supported and verified through experimental
work. Our stochastic system is capable of exhibiting a plethora
of interesting dynamical interactions based on just a few known
biological interactions. In moving forward with this work, the
model can be used to theorize optimal methods by which to
decrease the likelihood of Campylobacter outbreaks, and begin
collaborative efforts in better explaining the evolving genetic
diversity of this bacteria.

One area in which the model is admittedly lacking currently,
is that it does not represent the physiological changes that occur
as a bird grows. Broilers have been genetically selected over
the many decades to grow excessively fast, which has been
shown to have numerous concerning implications for their health
(Buzała et al., 2015). This is likely to then result in differences
to their auto-immune capabilities over time. More pertinently,
the gut flora of a chicken is known to change and develop as
the birds age (Lu et al., 2003), suggesting varying degrees of
inter-bacterial uncertainty.

Our sensitivity analysis gives great insight into the optimal
routes of infection prevention. Table 2 clearly shows that
bolstering the growth rate and inhibition capabilities of the
other bacteria populating a broiler’s gut is the best way to force
extinction of Campylobacter, primarily through suppressing
Campylobacter at its initial appearance in a system, before
it has the opportunity to propagate. As such, the sensitivity
analysis suggests further exploration and experimentation into
the impact of factors which would affect the gut flora of a
broiler. Probiotics are a clear way of impacting the microflora
(Mountzouris et al., 2007) and have shown some effect in studies
into their impact on Campylobacter expression (Santini et al.,
2010). Equally, the stressors linked with stocking density have
been shown to affect the gut microflora by Guardia et al. (2011).
Burkholder et al. (2008) have shown that feed withdrawal and
heat stress can considerably alter and limit the gut microflora.

These highlight that general bird health and welfare can be
equally strong factors in determining the values of r2, d2, and
βC; some of the parameters highlighted as most “important”
by the sensitivity analysis. Table 2 also however highlights the
importance of parameter d3, the death rate of host defense
peptides. This parameter has been shown to be strongly affected
by stressors such as overcrowding (Gomes et al., 2014). As such,
this result would lend further support to giving greater care to
the health and welfare of broilers, as the resulting improvement
to host defense peptide production would have a positive impact
on helping prevent Campylobacter outbreaks.

These caveats notwithstanding, the model presented is
capable of explaining a wealth of experimentally observed
Campylobacter population dynamics, further elucidating an
urgent public health risk. We have used our framework to
investigate multiple strain interactions, to understand better
the spread of genotypes across a flock. Finally, we were able
to use the model to highlight the factors most responsible
for causing outbreaks of infection. Looking forward, this work
can be used to understand better observed differences in
outbreak dynamics between different farms and indeed countries,
and further our goal of minimizing public exposure to this
dangerous pathogen.
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