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Aspergillus fumigatus is considered a common causative agent of human fungal
infections. A restricted number of virulence factors have been described, and none of
them lead to a differentiation in the virulence level among different strains. Variations
in the virulence phenotype depending on the isolate origin, measured as survival
percentage in animal infection models, have been previously reported. In this study,
we analyzed the whole-genome sequence of A. fumigatus isolates from clinical and
environmental origins to determine their virulence genetic content. The sample included
four isolates sequenced at the University Medical Center Groningen (UMCG), three
clinical (two of them isolated from the same patient) and the experimental strain B5233,
and the draft genomes of one reference strain, two environmental and two clinical
isolates obtained from a public database. The fungal genomes were screened for the
presence of virulence-related genes (VRGs) using an in-house database of 244 genes
related to thermotolerance, resistance to immune responses, cell wall formation, nutrient
uptake, signaling and regulation, and production of toxins and secondary metabolites
and allergens. In addition, we performed a variant calling analysis to compare the
isolates sequenced at the UMCG and investigated their genetic relatedness using
the TRESP (Tandem Repeats located within Exons of Surface Protein coding genes)
genotyping method. We neither observed a difference in the virulence genetic content
between the clinical isolates causing an invasive infection and a colonizing clinical
isolate nor between isolates from the clinical and environmental origin. The four novel
A. fumigatus sequences had a different TRESP genotype and a total number of genetic
variants ranging from 48,590 to 68,352. In addition, a comparative genomics analysis
showed the presence of single nucleotide polymorphisms in VRGs and repetitive genetic
elements located next to VRG groups, which could influence the regulation of these
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genes. In conclusion, our genomic analysis revealed a high genetic diversity between
environmental and clinical A. fumigatus isolates, as well as between clinical isolates
from the same patient, indicating an infection with a mixed-population in the latter
case. However, all isolates had a similar virulence genetic content, demonstrating their
pathogenic potential at least at the genomic level.

Keywords: Aspergillus fumigatus, virulence, whole-genome sequencing, clinical and environmental isolates,
gene database

INTRODUCTION

Aspergillus fumigatus is an opportunistic fungal pathogen that
poses major threats to immunocompromised individuals in
clinical settings. High-risk patients include neutropenic patients,
hematopoietic stem cell transplant recipients, patients receiving
prolonged steroid treatment, and critically-ill patients in the
intensive care unit (ICU) with chronic obstructive pulmonary
disease (COPD), liver cirrhosis, viral infections, or microbial
sepsis (Hohl and Feldmesser, 2007; Taccone et al., 2015; Kale
et al., 2017). In an individual with an impaired immune
function, inhaled airborne spores of A. fumigatus will not be
effectively eliminated and will remain in the airways, causing
a range of infections that include allergic bronchopulmonary
aspergillosis (ABPA), aspergilloma (chronic aspergillosis), and
invasive aspergillosis (IA) (Hohl and Feldmesser, 2007; Van
De Veerdonk et al., 2017). Invasive aspergillosis is the most
serious infection, with a global prevalence of 250,000 cases
per year and mortality rate up to 90–95% (Lin et al., 2001;
Maschmeyer et al., 2007).

In addition to the increasing burden of patients with impaired
immunity (Hohl and Feldmesser, 2007), another major challenge
is the treatment ofAspergillus infections due to triazole resistance,
the most commonly indicated drugs to treat these infections.
Azole resistance occurs due to the presence of the point mutation
L98H in the azole target Cyp51A and a 34-base pair (bp) tandem
repeat (TR34) in its promoter region (Snelders et al., 2009). The
most likely accepted cause for the development of azole resistance
is the widespread azole-based fungicide use against fungal plant
pathogens in agricultural practice (Snelders et al., 2009; Hagiwara
et al., 2016; Meis et al., 2016).

Multiple factors drive virulence in A. fumigatus, and
understanding the mechanisms of host adaptation and
evolution of the fungus that promote the establishment of
an infection, could help develop novel therapeutic strategies to
treat these fungal infections (Askew, 2008). Whole-genome
and transcriptome analysis have allowed the discovery
and study of new components of A. fumigatus biology and
pathogenesis. Genomic analyses have identified that A. fumigatus
contains 8.5% of lineage-specific genes with accessory functions
for carbohydrate and amino acid metabolism, transport,
detoxification, or secondary metabolite biosynthesis, suggesting
that this microorganism has particular genetic determinants that
can facilitate an in vivo infection (Fedorova et al., 2008).

Virulence of A. fumigatus previously assessed in murine
infection models using two reference strains Af293 and CEA10,
showed a high variability depending on the stimuli used

to compromise the immune system (Keller, 2017). However,
conclusions of A. fumigatus pathogenicity based exclusively
on observations from these two reference strains may be
biased (Keller, 2017). We categorized A. fumigatus isolates into
three different groups depending on the source of isolation:
(1) environmental, e.g., obtained from decaying vegetation,
air samples, or crops; (2) clinical, initially found in patient
samples and; (3) experimental, which refers to isolates that
were first obtained from a clinical setting, and now used as
reference strains (i.e., Af293 or CEA10). Several studies have
reported differences in virulence between A. fumigatus clinical
and environmental isolates, as well as among isogenic isolates,
determined by survival tests in animal infection models (Mondon
et al., 1996; Alshareef and Robson, 2014; Amarsaikhan et al.,
2014; Knox et al., 2016; Ballard et al., 2018). These observations
highlight the need to recognize the intraspecies genotypic
and phenotypic variation among A. fumigatus populations
for determining the progression and outcome of the diseases
produced by this fungus.

We hypothesized that strains from different sources could
possess a different virulence genetic content. To test this
hypothesis, we investigated the virulence-related genes (VRGs)
of nine A. fumigatus isolates, represented by two experimental,
five clinical, and two environmental isolates. We screened
the genomes of the nine isolates using a database containing
244 A. fumigatus VRGs selected from studied literature. As a
secondary objective, we analyzed the whole-genome sequences
of three clinical isolates, two isolated from the same patient
with a fatal IA infection and the other one, a colonizing
isolate from another patient, and one experimental strain B5233,
generated at the University Medical Center Groningen (UMCG)
to identify genomic differences between them. Unlike other
studies that define the virulence of A. fumigatus using animal
infection models, this study uses genomic analysis to assess its
virulence potential.

MATERIALS AND METHODS

Background of A. fumigatus Isolates
Aspergillus fumigatus samples evaluated in this study are
summarized in Table 1. Four clinical isolates were included:
three isolates (P1MS, P1MR, and P2CS) obtained from the
UMCG, Groningen, Netherlands and the strain B5233, kindly
provided by the Institute for Disease Control and Prevention
of the Academy of Military Medical Sciences, Beijing, China.
B5233 is a clinical isolate that demonstrated high virulence in
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TABLE 1 | Characteristics of A. fumigatus isolates investigated in this study.

Isolate Country Source Resistance Resistance mutation References

B5233 United States Clinical/Experimental Susceptible − Sugui et al., 2007; Jackson et al., 2009

P1MR Netherlands Clinical (UMCG) Resistant TR34/L98H This study

P1MS Netherlands Clinical (UMCG) Susceptible - This study

P2CS Netherlands Clinical (UMCG) Susceptible - This study

Af293 reference Unknown Clinical/Experimental Susceptible − Abdolrasouli et al., 2015

12-7505054 United Kingdom Clinical Susceptible − Abdolrasouli et al., 2015

08-12-12-13 Netherlands Clinical Resistant TR34/L98H Abdolrasouli et al., 2015

08-19-02-30 Netherlands Environmental Susceptible − Abdolrasouli et al., 2015

08-19-02-46 Netherlands Environmental Resistant TR34/L98H Abdolrasouli et al., 2015

FIGURE 1 | Timeline of the influenza A (H1N1) patient staying in the hospital and the course of infection. A total of seven Aspergillus fumigatus isolates were
obtained from sputum samples, five susceptible (S) and two resistant (R). The patient remained in the hospital for a period of 21 days until the time of death. Isolates
P1MS and P1MR used in this study are indicated in the figure.

murine infection studies, and it has been used as an experimental
strain in A. fumigatus pathogenicity studies (Sugui et al., 2007;
Jackson et al., 2009). The four isolates were initially identified
as A. fumigatus by microscopic morphological description and
sequencing of the internal transcribed spacer (ITS) region using
Sanger sequencing.

P1MS and P1MR, originally isolated from the sputum of
the same patient at different time points during a complicated
Influenza A (H1N1) virus infection, were considered as mixed-
infection isolates, one susceptible and one azole-resistant isolate
(Figure 1). This patient was diagnosed with Influenza A
(H1N1) virus upon admission and had no other relevant
underlying disease. Two days after admission, a positive
sputum culture of A. fumigatus prompted the initiation of
treatment with voriconazole. The patient developed IA at day
5 after admission and passed away 16 days after the diagnosis
of the fungal infection. Throughout the course of the IA
infection (21 days), a total of seven A. fumigatus isolates
were recovered, the first five isolates were susceptible to azole
treatment and the last two were resistant. We selected the first
susceptible and the first resistant isolate to determine their
genetic relatedness.

The P2CS isolate was recovered from an individual diagnosed
with human immunodeficiency virus (HIV) infection and
COPD. The A. fumigatus was cultured during a COPD

exacerbation event. Doctors discarded chronic pulmonary
aspergillosis after a chest imaging study, which did not
show the radiological characteristics of pulmonary aspergillosis.
Since no indicative symptoms of aspergillosis were identified,
the patient was considered as colonized by this strain.
The patient was under treatment with antiviral therapy
ODEFSEY (emtricitabine/tenofovir alafenamide/rilpitvirine) and
treatment for COPD with fluticason, cotrimoxazol, formeterol,
and ipratropium.

In addition, the raw sequencing data of five unrelated Dutch
and English A. fumigatus isolates of environmental and clinical
origins (Abdolrasouli et al., 2015), were downloaded from
the European Nucleotide Archive (ENA) and included in the
study (Table 1).

Antifungal Susceptibility Testing
The in vitro susceptibility of isolates B5233 and P1MS to
triazole antifungal drugs was determined using an E-test (AB
BIODISK, Solna, Sweden), the agar-based gradient technique
for quantitative antifungal susceptibility. The agar-based method
VIPcheckTM test (Nijmegen, Netherlands) was used for isolate
P2CS, and the susceptibility of P1MR was determined with
the in vitro broth microdilution reference method from the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST) (EUCAST, 2019).
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DNA Isolation
Isolates were grown on Potato Dextrose Agar for 7 days at
35◦C. The DNA extraction was performed using the DNeasy
UltraClean Microbial Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s protocol, with some modifications in the
initial steps. The initial fungal starting material was obtained
using a pre-wetted sterile swab rubbed against the sporulating
colony that was dissolved in 700 µl sterile saline solution.
The suspension was centrifuged at 10,000 rcf for 4 min. The
supernatant was discarded, and the pellet was resuspended in
300 µl of Power Bead solution. This suspension was added
to a second pellet of the same sample. The final concentrated
suspension was transferred to a Pathogen Lysis Tube L containing
beads (Qiagen, Hilden, Germany), 50 µl of solution SL, and
200 µl of sterile saline solution for homogenization. Disruption
was carried out in a Tissue Homogenizer Precellys 24 (Bertin,
Montigny-le-Bretonneux, France), set to three times at 5,000 rpm
for 30 s, and separated by 30 s. The disruption preps were
heated to 65◦C, as suggested in the Troubleshooting Guide of the
protocol, to increase the final DNA yield.

Library Preparation and Whole-Genome
Sequencing
The procedure was performed according to the manufacturer’s
protocol (Illumina, San Diego, CA, United States). The
fungal genomic DNA (gDNA; 1 ng) of each specimen was
used as input DNA for library preparation with NexteraXT
DNA Library Prep Kit. Library quality was determined by
measuring the fragment size on a 2200 TapeStation System
with D5000 Screen tape (Agilent Technologies) and quantified
with Qubit 2.0 Fluorometer using Qubit dsDNA HS Assay Kit
(Life Technologies, Thermo Fisher Scientific, Waltham, MA,
United States). NexteraXT libraries were denatured and diluted
to the required molarity for the Illumina sequencing platform
and then, two pools were made containing each two libraries.
Whole-genome sequencing was performed in two separate runs
using the MiSeq Reagent Kit v2 500-cycles Paired-End on a MiSeq
Sequencer (Illumina).

Quality Control and de novo Assembly
The raw sequencing reads were quality trimmed using the CLC
Genomics Workbench software v10.1.1 with default settings,
except for the modification where ‘trim using quality scores
was set to 0.01.’ The quality of the nine A. fumigatus genome
assemblies is shown in Supplementary Table 1. De novo assembly
produced acceptable results that surpassed >100 coverage with
>90% of reads used.

Identification of Virulence-Related Genes
We considered the review on genes and molecules involved in
IA by Abad et al. (2010), the online gene database AspGD1,
and bioactive secondary metabolite genes encoding Biosynthetic
Gene Clusters (BGCs) 3, 5, 6, 14, 15, and 25, as part of
the pathogenic arsenal of this fungus (Bignell et al., 2016;

1http://www.aspgd.org/

Kjaerbølling et al., 2018) to build a comprehensive database.
The 244 VRGs included in the database could be categorized
into seven groups according to their involvement in processes,
such as thermotolerance, resistance to immune responses, cell
wall formation, nutrient uptake, signaling and regulation, and
production of toxins and secondary metabolites and allergens
(Supplementary Table 2). The de novo assemblies of the
clinical UMCG isolates and strain B5233 were screened with
the ABRicate v0.3 software tool2 to detect the presence or
absence of VRGs included in the database. The thresholds were
set to >90% coverage and >90% identity to determine the
presence of a VRG.

TRESP Genotyping
This method is based on hypervariable tandem repeats located
within exons of surface protein coding genes (TRESP) related
to cell wall or plasma membrane proteins (Garcia-Rubio et al.,
2016). The allele sequence repeats of three TRESP targets, an MP-
2 antigenic galactomannan protein (MP2), a hypothetical protein
with a CFEM (common in several fungal extracellular membrane
proteins) domain (CFEM), and a cell surface protein A (CSP)
are combined to assign a specific genotype (Garcia-Rubio et al.,
2016). The previously described allele repeats of these proteins
were used to Create a Task Template by Allele Libraries in
SeqSphere+ software v5.1.0 (Ridom GmbH, Münster, Germany)
with import option: use as reference sequence ‘best matching
allele’ that enabled a dynamic reference sequence. The assembled
genomes were imported into SeqSphere + and the specific target
repetitive sequences of each protein were analyzed for each
UMCG isolate using the ‘find in sequence’ tool to identify the
specific allele combination.

Comparative Genomics
Genome assemblies of UMCG isolates and B5233 were aligned
using blast + v2.6 (Camacho et al., 2009), and reads were
mapped to the eight reference chromosomal genomes of Af293
(Accession No. NC_007194 -NC_007201) using bowtie2 v2.2.5
(Langmead and Salzberg, 2012). For each contig, local alignment
coordinates were extended to their whole length by using
the highest bitscore with an in-house script. Mean coverage
was calculated every 5 kb using bedtools v2.17 (Quinlan and
Hall, 2010). The location of VRGs was determined by local
alignment, and GC percentage was calculated every 100 bp
with a script3. Location and frame of coding sequences were
extracted from the reference sequence GenBank files. All gathered
information was represented in a circular image using circos
v0.69-3 (Krzywinski et al., 2009).

Identification of Genetic Variants
The variant analysis was performed for the three UMCG
isolates, B5233 strain, and two Dutch environmental isolates
named 08-19-02-30 and 08-19-02-46. Variants were called
against the reference genome A. fumigatus Af293 (release 37,
FungiDB) using the web-based platform EuPathDB Galaxy

2https://github.com/tseemann/abricate
3https://github.com/DamienFr/GC-content-in-sliding-window-
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Site4 (Giardine et al., 2005). The quality control of the raw
reads was performed with FastQC (version 0.11.3, Babraham
Institute) and trimmed with Sickle (Galaxy version 070113).
Trimmed-reads were aligned with the reference using Bowtie2
(Align version 2.1.0 64) (Langmead et al., 2009) and the
‘very sensitive’ alignment default setting. The BAM files were
sorted with SAMtools, and variant calling was performed with
Freebayes (v0.9.21-19-gc003c1e) and SAMtools (Li et al., 2009).
The resulting variants were annotated using SnpEff to predict
the impact of a variant on the gene function, classifying them
into different categories: high, moderate, low, and modifier5

(Cingolani et al., 2012). High impact variants are predicted
to have a disruptive effect on the protein (e.g., frameshift
variants, inversion), moderate impact variants could change
protein effectiveness (e.g., missense variant, in-frame deletion),
low impact variants are not expected to have a significant impact
on protein function (e.g., synonymous variant), and finally,
modifier variants are non-coding changes where predictions
are difficult, or there is no evidence of impact (e.g., exon
variant, downstream gene variant). SnpSift was used to extract
the variants with moderate and high impact by filtering
the resulting variant call format (VCF) files from SnpEff
(Supplementary Material 5–10).

In addition, identification of single nucleotide polymorphisms
(SNPs) present in VRGs of UMCG isolates and B5233 strain
was performed using CLC Genomics Workbench software
v11.0.1. For this purpose, trimmed-reads of each genome
were mapped to a concatenated sequence consisting of
244 VRG genes (Supplementary Table 2). The SNPs were
called with a minimum read coverage of 10 and with a
minimum frequency of 90%. The VRG sequences used to
create the concatenated sequence belonged to the reference
A. fumigatus Af293.

Snippy v. 4.3.56 was used to determine the number of variants
between P1MS and P1MR isolates. The trimmed-reads of P1MR
were aligned to the assembly of P1MS for variant calling. In
this case, the P1MS draft genome assembly, which is used as the
reference, is not annotated, and therefore, a functional prediction
of the determined variants was not possible. Accordingly, we only
presented a quantitative analysis of the latter.

RESULTS

Screening of Virulence-Related Genes
We screened the genome sequences of nine A. fumigatus isolates
(Table 1) for the presence of particular VRGs using our in-house
database (Supplementary Table 2). We identified the presence of
all 244 VRGs (>90% coverage and >90% identity) in the genome
of seven isolates: P1MR, P1MS, P2CS, Af293, 12-7505054, 08-
19-02-30, and 08-19-02-46. In addition, 243 genes were present
in the genomes of B5233 and 08-12-12-13, and both isolates
lacked the Afu5g12720 gene. This gene codes for a putative

4https://eupathdb.globusgenomics.org/
5http://snpeff.sourceforge.net/SnpEff_manual.html
6https://github.com/tseemann/snippy

ABC transporter and is a member of the BGC17, consisting of
10 genes (Bignell et al., 2016). The product of this BGC is a
non-ribosomal peptide synthetase, thought to have a structural
function (O’Hanlon et al., 2011). However, no clear link between
this ABC transporter and the function of this peptide has been
described before. Therefore, it is unknown how its absence could
affect the overall function of this cluster and its specific role in
mediating virulence.

TRESP Genotyping
We used the TRESP genotyping method to determine if the
A. fumigatus isolates were genetically related. This is especially
interesting in the two isolates obtained at different time
points from the same patient suffering from an influenza A
(H1N1) infection with IA (Figure 1). We wondered whether
the susceptible P1MS isolate and the resistant P1MR isolate
with 9 days of isolation difference were isogenic, and whether
the resistant phenotype developed after azole treatment. The
UMCG isolates and B5233 strain presented different allelic
combinations, and thus, different TRESP genotypes: P1MS and
P1MR having t03m1.1c08A and t11m1.1c09 TRESP genotypes,
respectively. In this study, CSP alleles best differentiated the
isolates (Table 2).

Comparative Genomics
We compared the genomes of our UMCG isolates and
B5233 strain with the A. fumigatus Af293 chromosomes. The
comparison of the genomic sequences of the eight chromosomes
is shown in Figure 2; the researched VRGs locations are
highlighted in yellow. We observed small deletions (100 kbp)
at the end of chromosomes 5 and 6, and large deletions
(>300 kbp) at the beginning of chromosome 1 and at the end of
chromosome 7. Multiple small deletions and large-scale deletions
in A. fumigatus genomes have been reported, and particularly, the
large-scale deletions were previously described in chromosome
1 (Abdolrasouli et al., 2015; Garcia-Rubio et al., 2018) and
chromosome 7 (Garcia-Rubio et al., 2018). A region with a high
dissimilarly, ranging from 1,698 to 2,058 kbp, compared to the
reference Af293 is observed in chromosome 7 for all the isolates,
except for P2CS that had a certain degree of similarity (Figure 2).
Sequence gaps with no assigned CDS represent: (i) putative
centromeres in all chromosomes (indicated by a red line in
Figure 2), and (ii) a region of ribosomal DNA in the chromosome
4 (indicated by a dark blue line in Figure 2) (Fedorova et al.,
2008). We observed repeat-rich sequences in chromosomes 1, 2,
4, 6, and 8, represented by the alignment of many small contigs
that coincides with a low GC content (Figure 2). In the case

TABLE 2 | TRESP genotype based on repetitive sequences in the exons of
surface proteins CSP, MP2, and CFEM.

Sample Allele CSP Allele MP2 Allele CFEM TRESP genotype

B5233 t02 M1.2 c09 t02m1.1c09

P1MR t11 M1.1 c09 t11m1.1c09

P1MS t03 M1.1 c08A t03m1.1c08A

P2CS t02 M1.1 c19 t02m1.1c19
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of chromosome 4, a group of VRGs appears to be flanked by
these repetitive regions on both sides, whereas some groups are
only flanked on one side as depicted in chromosomes 6 and
8 (Figure 2).

Genomic Variability Among the Fungal
Genomes
Variant calling using the A. fumigatus Af293 genome as reference
identified a total number of 68,352; 48,590; 56,362; and 56,422

FIGURE 2 | Continued
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FIGURE 2 | Graphical representation of assemblies and reads of B5233 (green), P1MR (blue), P1MS (orange), and P2CS (purple) isolates aligned to Af293 reference
chromosomes: I, II, III, IV (A); V, VI, VII, VIII (B). Outer track indicates all CDS in forward (dark gray) or reverse (light gray) strand. Two different tracks are represented
per isolate: one corresponding to the mapping coverage and another one corresponding to contig alignment (minimum ID 85%). The complete contigs are
represented with transparency in accordance to the local alignment identity. Genes related to virulence are highlighted in yellow with its names in the innermost track.
GC% is represented every 100 bp. Red lines indicate putative centromeres and the dark blue line (chromosome 4) represents the ribosomal DNA.
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variants in the genome of B5233, P1MS, P1MR, and P2CS
isolates, respectively (Table 3). High and moderate impact
variants were retrieved, and their predicted effect is displayed
in Supplementary Table 3. Among the predicted moderate- and
high-impact variations, a high number of missense variants
ranging from 9,804 to 12,067 were identified that could affect
the gene function (Supplementary Table 3). The SNP analysis
in VRGs with respect to the reference Af293 strain revealed the
presence of SNPs in the range of 1,015–1,122 in all the analyzed
isolates (Table 3). Examples of some variants present in the VRGs
are listed in Table 4, and a more detailed description is given in
Supplementary Table 4. We did not observe any distinct pattern
of variant distribution among the VRGs, and thus, we could not
assign a particular variant profile based on the origin of the isolate
(Table 4). Instead, we observed some cases where all the isolates
had the same SNPs in the same gene as demonstrated for thtA,
sidC, and msdS genes. Genes associated with resistance to the
immune response, such as rodB, cat1, and afpmt2 had only one
or no variants, suggesting that they are highly conserved genes.
The gliZ gene, required for the regulation of gliotoxin and the
gli cluster, as well as the sidC gene, with an essential role in iron
acquisition, are examples of genes with different variants in the
studied isolates.

Additionally, we performed a comparative analysis between
P1MS and P1MR isolates from the same patient and detected
45,335 variants, corresponding to 38,319 SNPs; 868 multiple
nucleotide polymorphisms (MNPs); 1,768 insertions; 1,842
deletions; and 2,538 complex mutations (a combination
of SNPs and MNPs).

DISCUSSION

Aspergillus fumigatus is a major fungal pathogen capable of
causing chronic and deadly invasive infections. Here, we
performed a genomic analysis to investigate the virulence
potential of this pathogen at the genomic level. We hypothesized
that A. fumigatus isolates recovered from a patient who died
after infection with influenza A (H1N1) and IA, and an
isolate from a patient with HIV and COPD with no reported
Aspergillus infection would reveal a distinct virulence genomic
content. In addition to our clinical isolates, we studied the
known virulent A. fumigatus experimental strain B5233 and
the genomes of five unrelated isolates available in a public
database, their source of isolation being different (Table 1).

TABLE 3 | Variant analysis of the novel A. fumigatus isolates against reference
A. fumigatus Af293.

SnpEff
SnpSift filter SNPs present in the

Total number virulence genes (CLC
Isolates of variants Moderate High Genomics Workbench)

B5233 68,352 12,085 884 1122

P1MS 48,590 10,109 752 1107

P1MR 56,362 11,718 870 1015

P2CS 56,422 12,085 884 1158

Our analysis identified 244 VRGs in all tested A. fumigatus
isolates, with the exception of Afu5g12720 gene in B5233 and
08-12-12-13 genomes, indicating that all the studied isolates
had the genetic information for virulence. These results suggest
that differences in the A. fumigatus virulence capacity may
not be determined by the presence or absence of virulence
factors at the genomic level. This finding is in concordance
with the development of an Aspergillus infection depending
primarily on the alteration of the host immune status. Moreover,
the high variability in the studied A. fumigatus genomes
reflects the enormous capacity of the fungus to adapt to
different environments.

Amongst the 244 VRGs included in our in-house database,
the Afu5g12720 gene was the only gene that was undetected in
B5233 and 08-12-12-13 isolates. This gene was reported to be
absent in 21 out of 66 A. fumigatus samples in a population
genomics study that investigated the genomic variation of
secondary metabolites in this species (Lind et al., 2017). This
gene is a member of the BGC17, and its absence could have
a functional impact on the synthesis of the final product
of this cluster, a non-ribosomal peptide synthetase, which is
thought to have a structural function (O’Hanlon et al., 2011).
The Afu5g12720, coding for an ABC transporter is located
in the BGC17 along with other nine genes (Bignell et al.,
2016) and was absent in B5233, an experimental strain that
has been described as highly virulent. It would be interesting
to further study the link between the lack of this gene and
a possible increase in virulence, since disruption of another
gene member of BGC17, pes3, resulted in a hypervirulent strain
(O’Hanlon et al., 2011).

The comparative genomic analysis provided additional
information about changes in the genome structure of our
isolates. We observed an absence of segments at the beginning
of chromosome 1 and at the end of chromosomes 5, 6, and
7 in isolates B5233, P1MS, and P1MR when compared with
the reference strain Af293. Fedorova et al. (2008) described
these segments as subtelomeric regions enriched for the presence
of pseudogenes, transposons, and other repetitive elements.
Previous reports have suggested that these genes have most likely
evolved from big duplication and diversification events and not
from horizontal gene transfer (Fedorova et al., 2008). Likely,
these segments are insertion-prone regions that contribute to the
diversification of the species.

The nucleotide variant analysis of four isolates sequenced
at the UMCG identified 48,590 to 68,352 variations compared
with the reference strain Af293. This range is similar to
the previously reported genetic diversity for A. fumigatus
determined in 95 sequences, ranging from 36,000 to 72,000
SNPs (Knox et al., 2016). The large number of identified
variants and differences in the genome structure displays a
broad genetic diversity in the studied isolates. This diversity
is hypothesized to directly influence the virulence of the
fungus by allowing adaptation to the host environment, the
evasion of the host immune system, and the acquisition of
antifungal resistance (Rizzetto et al., 2013; Hagiwara et al.,
2014; Verweij et al., 2016; Ballard et al., 2018). The presence
of SNPs in the VRGs of the clinical isolates, particularly those
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TABLE 4 | Examples of shared and unique moderate and high impact variants in genes associated to thermotolerance, resistance to the immune response, cell wall formation, nutrient uptake, and production of toxins
and secondary metabolites and allergens.

Conserved

Per strain

Gene in all B5233 P1MR P1MS P2CS 08-19-02-30 08-19-02-46

thtA c.3698T > C
c.3458T > C

c.3277C > T –
c.2828C > T
c.2188C > T
c.1010G > T

c.3277C > T
c.-598G > A c.272C > A

c.2128C > T HIGH stop
gained p.Arg710*

–

pmt1 – – c.442G > A – – – –

rodB – – – – – – –

cat1 – – – – – – –

catA – – c.1385G > A
c.1385G > A
c.982G > A

– – –

afpmt2 – – – – – – –

laeA – – – c.189G > A HIGH stop codon
gained p.Trp63*
c.400C > T

– – –

gliZ – c.1177C > G
c.425_427delCAA
disruptive_in
frame_ deletion
p.Thr142del

c.79A > G
c.99_101dupTGC
c.388A > G
c.405_406insACAACAACAACA
c.406_409delGCAGinsACAA
c.464T > G
c.612C > T
c.718T > G
c.1087T > C

c.388A > G
c.464T > G
c.1087T > C
c.397_409delGCAGCAGCAGCA
GinsACAACAACAACAAAAACAA
missense_variant&disruptive
_inframe_insertion

c.388A > G
c.464T > G
c.1087T > C
c.99_101dupTGC disruptive_
inframe_insertion
c.411_412insGCAACAACA
c.412A > G

c.388A > G
c.464T > G
c.397_409delGCAGCAG
CAGCAGinsACAACAAC
AACAAAAA
missense_variant&disruptive_
inframe_insertion
c.1338_1340delCTC
disruptive_inframe_deletion
c.1435A > G

c.1177C > G
c.412A > G
c.406_411dupGCAGCA
c.415A > G
c.1404A > C

msdS c.295T > C
HIGH stop_lost
p.Ter99Glnext*?

c.328C > G
c.208T > A

c.328C > G
c.208T > A

c.328C > G
c.208T > A

c.328C > G
c.208T > A
c.1043C > T

sidC c.3391A > G
c.9598G > A
c.9727T > C
c.11935T > G
c.14222G > A

c.577A > G
c.1569C > G
c.2311G > A
c.3820A > G
c.7174A > G
c.11326A > G

c.577A > G
c.1569C > G
c.2311G > A
c.3820A > G
c.7174A > G
c.3401C > T
c.13019A > T

c.751C > G
c.13019A > T

c.878C > T
c.11341C > T
c.11935T > G

c.1781T > C
c.4771C > A
c.5798T > C

c.577A > G
c.1569C > G
c.2311G > A
c.3820A > G
c.7174A > G
c.9769C > A
c.13067A > C

∗ = Stop codon gained.
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predicting high impact variations, could be of major influence
in the virulence of these isolates. However, we could not link
the presence of nucleotide changes in VRGs with a specific
origin of isolation. In addition, some repetitive elements were
located on the sides of some groups of VRGs, as exemplified
by chromosomes 6 and 8. These repetitive sequences could
play a role in the expression of these genes since they
are recognized to shape fungal genomes (Muszewska et al.,
2017). Follow-up studies using RNA sequencing could help
elucidate the expression of these virulence genes as well as
determine the impact of genomic variations on expression levels.
Subsequent infection model studies in animals could be used
to correlate these genomic variations and changes with specific
pathogenic phenotypes.

The genome sequence of isolates P1MS and P1MR differed
by 45,335 variants, and they had different TRESP genotypes,
indicating the presence of different A. fumigatus isolates with
different azole susceptibility profiles in the same patient. It is
unlikely that the susceptible isolate would have been able to
mutate and acquire azole resistance in a period of 9 days since
the median time of development of azole resistance has been
reported to be 4 months (Camps et al., 2012). Moreover, the
emergence of the resistant phenotype within the host is observed
in chronic infections, whereas the acquisition of resistance during
IA continues to be unreported (Verweij et al., 2016). However,
our current approach cannot determine if the resistant isolate co-
existed with the susceptible population since the beginning, or if
the resistant isolate was newly acquired during the hospital stay.

In a similar case of post-influenza aspergillosis, four
A. fumigatus isolates were obtained from a patient that received
an allogeneic stem cell transplant and developed IA after
the influenza virus infection, which was initially treated with
voriconazole (Talento et al., 2018). The first three isolates were
susceptible to azole treatment, while the last one exhibited
triazole resistance. The resistant isolate differed from the
initial isolates as confirmed by STRAf microsatellite genotyping
(Talento et al., 2018).

The most plausible hypothesis is that the resistantA. fumigatus
isolate, both in our study and the post-influenza study (Talento
et al., 2018), was of environmental origin and that it co-
existed with the susceptible isolates in a mixed population that
was not detected during the first sampling. Treatment with
voriconazole most probably eradicated the initial susceptible
strain, and through selective pressure, allowed the resistant
A. fumigatus strains to persist in the patient’s airways. The
possibility of an initial mixed population led to a change in the
method of A. fumigatus isolation at the diagnostics laboratory
at the UMCG; antifungal susceptibility testing is now applied
to at least five colonies obtained from a single respiratory
sample. Previous studies have reported that influenza infections
alter the host immune response, favoring an Aspergillus co-
infection (Lee et al., 2011; Ghoneim et al., 2013; Crum-Cianflone,
2016). Recently, influenza virus infection has been described
as a clear independent risk factor for invasive pulmonary
aspergillosis. Therefore, extreme care is advised for patients
admitted into the ICU with severe influenza virus infection
(Schauwvlieghe et al., 2018).

In this study, TRESP genotyping indicated that the isolates
were genetically unrelated. This genotyping method was
easy and accessible, and only required the whole-genome
sequence of the isolates in contrast to other traditional
typing methods, such as MLST, with a lower discriminatory
power (Vanhee et al., 2009), the laborious microsatellite
determination method (STRAf ) (Klaassen and Osherov,
2007), or the novel whole-genome SNP-based typing
method, which is highly dependent on the variant calling
parameters and selection of a genetically close reference strain
(Garcia-Rubio et al., 2018).

Our results are in agreement with the hypothesis that the
basis of A. fumigatus virulence is provided by the evolution of
the distinct mechanisms of stress resistance, but lacks dedicated
virulence factors, in contrast to bacterial pathogens (Mccormick
et al., 2010; Rizzetto et al., 2013). To define the virulence of
an A. fumigatus isolate, many researchers have characterized
different aspects of the fungus, such as the differences in the
colonial and spore color phenotype (Rizzetto et al., 2013), the
strain-dependent immunomodulatory properties induced in the
host (Rizzetto et al., 2013), the clinical or environmental source
of the isolate (Mondon et al., 1996; Rizzetto et al., 2013; Kowalski
et al., 2016), the ability to adapt and grow in stressful conditions
such as low oxygen microenvironments where hypoxia fitness
strongly correlated with an increase in virulence (Kowalski
et al., 2016), and the ability of the fungus to adjust its gene
expression to survive in different immunosuppressive conditions
inside the host (Kale et al., 2017). Further research on the
virulence of this microorganism should take into consideration
all these aspects to determine their infectivity. The results can
be used to explore the link between the virulent phenotype
and genotype to understand the mechanisms of infection
of this pathogen.

This study has some limitations to be considered. First,
the number of isolates was small, although three different
A. fumigatus population sources (clinical, environmental, and
experimental) were included. Nevertheless, our findings should
be investigated in a larger population to fully corroborate the
observation that all members of this species are potentially
pathogenic at the genetic level. Second, we included 244 genes
in our in-house database based on the current knowledge of
Aspergillus virulence, but we do not rule out the possibility that
other genes may be related to virulence.

CONCLUSION

We developed an in-house database with 244 VRGs and detected
all of them, except Afu5g12720, in the whole-genome sequence
of five clinical, two environmental, and two experimental
A. fumigatus isolates. We did not observe any association
between a virulence genetic content and an isolate of specific
origin. Moreover, a broad genomic variability and the convenient
location of transposable elements that are known to shape
the genome reflects the adaptability of A. fumigatus, which
challenges the development of effective treatments and specific
diagnostic tools. Understanding the expression mechanisms
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of the VRGs may ultimately explain the regulation of the
virulence of Aspergillus and help improve the handling of
A. fumigatus infections.
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