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Morbilliviruses are highly contagious pathogens and are responsible for various outbreaks in
unexposed populations (Pfeffermann et al., 2018). They belong to the order Mononegavirales and
family Paramyxoviridae and are characterized by a non-segmented, linear, negative-stranded RNA
genome (Lamb and Parks, 2013). Morbilliviruses are distinguished for causing moderate-to-severe
respiratory, gastrointestinal, immunosuppression, and/or neurological diseases in a wide range
of hosts, including humans (measles virus), carnivores (canine morbillivirus formerly canine
distemper virus), cattle (rinderpest virus), dolphins and porpoises, and other wildlife-endangered
species (Lamb and Parks, 2013; Martinez-Gutierrez and Ruiz-Saenz, 2016).

Measles virus (MeV) and canine morbillivirus (CDV) are considered the most contagious
viruses among this family (De Vries et al., 2015), and due to the high transmission potential of CDV
as well as its cross-species transmission potential, the global health, and conservationist authorities
are greatly concerned about role of CDV on endangered species conservation and the possible
“jump” from animals to humans (Terio and Craft, 2013; Ohishi et al., 2014). Domestic dogs are the
main host for CDV and could also be considered as a reservoir for other mammals (Suzuki et al.,
2015; Duque-valencia et al., 2019); however, based on the biology of CDV, humans could also turn
into a potential target (Cosby and Weir, 2018; Rendon-Marin et al., 2019).

Trying to understand the potential risk of transmission of CDV to humans, it is necessary to
gather all the existing evidence; and the study of the origin and dissemination of this agent in the
canine population could present an important key to understanding this process. Recently, a paper
published in the International Journal of Paleopathology invited to a discussion on the evolutionary
origin of CDV. It concludes that CDV originated as a pandemic pathogen in South America
following the infection and adaptation of MeV to dogs during the South American colonization
period. This result was obtained via an interdisciplinary approach adopted by synthesizing a
paleopathological analysis of 96 pre-Columbian dogs (750–1470 CE) from the Weyanoke Old
Town, Virginia site, with historical reports, molecular analysis, andmorbilliviral epidemiology (Uhl
et al., 2019).

Notably, native dog populations from America almost disappeared after the colonization
period, and European and Eurasian dogs were introduced to the continent, leaving little genetic
background of its American predecessors (Ni Leathlobhair et al., 2018). Another important factor
worth considering is that “unknown” diseases could have also been introduced, making it harder
to track the origin of new pathogens. Moreover, artificial selection pressure over domestic dogs and
even human populations, particularly during the colonization period, could have enhanced disease
incidence, thereby limiting genetic variation (Ostrander et al., 2017), which in turn could mean less
effective response against pathogens.

Among these “new” pathogens/diseases, CDV was first described by Antonio de Ulloa y de
la Torre-Giral in 1746 as a disease affecting dogs in the Quito region and the other parts of
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South America, and it was reported soon afterward in Europe.
CDV was recorded in Spain in 1760, with 900 deaths occurring
in a single day in Madrid, and 3 years later, i.e., by 1764 and 1770,
it had reached Great Britain and Italy, respectively (Blancou,
2004). Virus transmissibility and greater susceptibility of puppies
compared with adult dogs were later reported by Edward Jenner
in the early 1800s. He compared their transmissibility with that
of MeV and discovered that survivors were protected from
subsequent infection (Jenner, 1809; Nambulli et al., 2016).

Briefly, after the arrival of European pioneers in the fifteenth
century, novel infectious diseases arguably became the most
devastating consequence of colonization because the indigenous
American populations had no prior exposure to pathogens
that had become common in Europe (Walker et al., 2015).
Multiple measles epidemics, therefore, devastated the indigenous
American populations (Walker et al., 2015; Nambulli et al.,
2016). Uhl et al. via a mixed approach of paleopathological,
historical, molecular, and epidemiological evidence, reported that
severe MeV epidemics in the indigenous American populations
facilitated the jump of MeV to large domestic dog populations
of urban environments in South America and the adaptation
of the virus as endemic CDV (Uhl et al., 2019). Also, historical
records could prove that few years after that adaptation to South
American dogs, CDV was transported to Europe in 1760, where
it initially induced widespread epidemics with high mortality
before becoming endemic (Jenner, 1809).

However, molecular phylogeography related to evolutionary
predictions and the time to the most recent common ancestor
(tMRCA) were calculated for the CDV origin in the United States
in the 1880s (95% highest posterior density, 1858–1913) (Panzera
et al., 2015), which clearly contradicts the description of the virus

FIGURE 1 | Schematic representation of the possible canine morbillivirus (CDV) evolutionary transmission route. See text for references.

in Europe in the eighteenth century. Sequence analyses that led
to this hypothesis must be carefully examined because of the
bias and the limited availability of sequences that were used in
this molecular phylogeography reconstruction. Moreover, many
original ancestral sequences have been lost due to the lability of
the viral RNA genome of the CDV and other morbilliviruses.
These factors have given rise to the questioning of the utility
of current tMRCA calculations for RNA viruses (Sharp and
Simmonds, 2011; Nambulli et al., 2016).

According to Uhl et al., morbillivirus could have originated
from cattle around 376 BC in the “old continent” (Figure 1),
and animal domestication may have had a significant influence
on cross-species events, probably tracing a starting point in
MeV emergence to approximately 900 AC (Uhl et al., 2019).
Contrary to the current CDV phylogenetic reconstructions,
MeV divergence is strongly supported by the relaxed clock
Bayesian phylogenetic analysis. The divergence time between
MeV and the rinderpest virus had been shown to have
occurred in approximately the eleventh to twelfth centuries
(Furuse et al., 2010). Other molecular data, such as the
presence of a new morbillivirus (closely related to CDV and
PDV) circulating in bats from Brazil (DrMV), allows the
speculation that CDV and DrMV might share a common South
American ancestor (Drexler et al., 2012), thereby indirectly
supporting the idea of the early South American Origin
of CDV.

Beyond the epistemological and/or scientific meaning of
the geographical origin and date of CDV divergence, there are
important clues that must be clarified to better understand
the current impact of CDVs on interspecies transmission,
animal conservation, and zoonotic potential (Figure 1). It
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is clear that unlike the MeV infection, which is maintained
by a single host (humans), CDV has been widely proved
to be a promiscuous pathogen-causing infection/disease in
a vast array of carnivorous and non-carnivorous species
(Martinez-Gutierrez and Ruiz-Saenz, 2016). This promiscuity
has been attributed to not only the capacity of the CDV
hemagglutinin (H) to interact with host cellular receptors, such
as SLAM in mononuclear cells and nectin-4 in epithelial cells,
but also the similarity among species sequences of the receptors
mentioned above (Rendon-Marin et al., 2019). The amino acid
similarity among mammal SLAM receptors, including marine
mammals, is >80% (Ohishi et al., 2014), thereby supporting the
results of cross-species transmission. In addition, there is a lack
of species-related variation in the nectin-4 sequences among
humans, mice, and dogs because human nectin-4 could function
as an in vitro receptor for CDV (Noyce et al., 2011).

Natural CDV outbreaks in different non-human primates
have raised a concern regarding the possible transmission of
CDV to humans (Yoshikawa et al., 1989; Sun et al., 2010;
Qiu et al., 2011; Sakai et al., 2013a). There are reports that
CDV monkey strains have the intrinsic ability to use human
nectin-4 for virus entry and that those monkey CDVs easily
adapt to use the human CD150 (SLAM) receptor following
minimal amino acid changes to the viral H protein (Bieringer
et al., 2013; Sakai et al., 2013b). However, based on the in vivo
experimental CDV infection of Cynomolgus macaques (Macaca
fascicularis) in the presence of MeV immunity, macaques were
partially cross protected from the CDV challenge (De Vries
et al., 2014). This suggests that although CDV can readily
infect primates, MeV immunity is protective and that CDV
infection could be self-limiting. Transferring this result to
humans, there is a potential risk of CDV infection in people
who lack cross-protectiveMeV immunity due to non-vaccination
and vaccine failures (Haralambieva et al., 2015) or due to
the absence of vaccination in the possible post-eradication
era (Holzmann et al., 2016).

“Emerging viruses” could reportedly arise via the cross-species
transmission of viruses from animals into humans (Wolfe et al.,
2007). Novel studies, both structural and bioinformatic, suggest
that just a single amino acid change in a protein sequence could
be enough to overcome the restriction in using cellular receptors
among two different hosts, such as humans and ruminants
(Abdullah et al., 2018). A unique mutation in the CDVH protein
in vitro enables this pathogen to infect cells expressing the human
SLAM receptor (Otsuki et al., 2013). Moreover, if we embrace the
hypothesis that CDV evolved fromMeV, it could be possible that

a CDV descendant could be able to re-infect humans because
of the continuous evolution of both the virus and humans, as

has been previously suggested in other models even though the

ancestral “jumper virus” had disappeared from earth time ago
(Emerman and Malik, 2010).

Furthermore, one of the most interesting results presented by
Uhl et al. is the optimization of both the CDV and MeV genes
to human codon usage bias (CUB), suggesting that CDV codon
usage is closer to human CUB than canine CUB because the
virus or its progenitor, most likely MeV, was initially adapted

to humans (Uhl et al., 2019). CUB refers to the phenomenon
wherein some synonymous codons are used more often than
others and how this preference varies within and among species
(Behura and Severson, 2013). In RNA viruses, codon usage is
under selection because the viruses are completely dependent on
host tRNAs and the bias results from viruses matching the codon
usage of their hosts (Jenkins and Holmes, 2003). Evolution can
sometimes favor viruses that match their host codon usage to
promote the replication speed and adaptation to the host as has
been reported in other RNA viruses (Goni et al., 2012; Lauring
et al., 2012; Di Paola et al., 2018; Freire et al., 2018).

Finally, we would like to argue that some other factors must
be considered in the possible zoonotic scenario of CDV. Cross
neutralization between MeV and CDV has been recognized since
many years (Brown and Mccarthy, 1974), and this premise has
existed for more than half a century when the MeV vaccine
was used to protect pups against CDV at an age when passive
maternal immunity often interfered with CDV vaccination
(Baker et al., 1966; Brown et al., 1972). Nevertheless, the use
of a commercial dual CDV/MeV vaccine is still recommended
for vaccination in the presence of maternal immunity, and
the vaccine has been useful against clinical measles disease in
non-human primates (Christe et al., 2019). Hence, one may
speculate that MeV herd immunity avoids CDV jump and
possible readaptation to humans via transmission through dogs
or wildlife animals.

CONCLUDING REMARKS

The evolution and origin of viral pathogens cannot be easily
studied; hereafter, a multidisciplinary approach is necessary
to understand and perhaps predict new possible viral threats
to humans. Due to their peculiar biology, viral pathogens
such as CDV represent a unique model for understanding
interspecies jumping and zoonotic potential of viral agents
very close to the human population. Besides the traditional
molecular phylogenetic studies and the paleopathology works,
researchers must adopt different approaches to study CDV
origin and current viral and host requirements for interspecies
jumping. The introduction of computational methods, such as
structural bioinformatics and paleovirology studies, could help
in the prediction and prevention or at least provide a better
understanding of this emerging, and perhaps, zoonotic disease
from a different perspective considering not only sequencing data
but also structures and functions as key information to this aim.
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