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Aedes spp. are a major public health concern due to their ability to be efficient
vectors of dengue, Chikungunya, Zika, and other arboviruses. With limited vaccines
available and no effective therapeutic treatments against arboviruses, the control of
Aedes spp. populations is currently the only strategy to prevent disease transmission.
Host-associated microbes (i.e., microbiota) recently emerged as a promising field to
be explored for novel environmentally friendly vector control strategies. In particular,
gut microbiota is revealing its impact on multiple aspects of Aedes spp. biology,
including vector competence, thus being a promising target for manipulation. Here we
describe the technological advances, which are currently expanding our understanding
of microbiota composition, abundance, variability, and function in the two main arboviral
vectors, the mosquitoes Aedes aegypti and Aedes albopictus. Aedes spp. microbiota is
described in light of its tight connections with the environment, with which mosquitoes
interact during their various developmental stages. Unraveling the dynamic interactions
among the ecology of the habitat, the mosquito and the microbiota have the potential
to uncover novel physiological interdependencies and provide a novel perspective for
mosquito control.
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INTRODUCTION

Dengue is the most rapidly spreading vector-borne disease in the world with 2.5 billion people at
risk and approximately 500,000 people developing severe dengue cases annually (World Health
Organization [WHO], 2012). The increasing negative impact of dengue viruses on humans is
partly associated with the range expansions of their primary vectors, Aedes aegypti and Aedes
albopictus. Besides dengue viruses, Ae. aegypti and Ae. albopictus are also efficient vectors of
Chikungunya, Zika, and other arboviruses, as well as dog heartworm and filarial nematodes
(Bonizzoni et al., 2013).

Currently, control of mosquito populations is the only available strategy to prevent arboviral
diseases because there are no therapeutic treatments for arboviruses and vaccines are limited.

Mosquitoes are holometabolous organisms with a life cycle involving two different types of
habitats: larvae and pupae live in aquatic habitats, hereafter called “breeding sites,” and adults are
subaerial (Clements, 2000). Only adult females transmit arboviruses, but controlling the juvenile
stages is effective because significant reduction of larvae results in a decreased number of adults,
thus reducing not only chances of disease transmission, but also nuisance. Consequently, a number
of strategies have been developed to control larvae, including environmental sanitation, the use of
insecticides or biological agents (McGraw and O’Neill, 2013). These conventional vector control
methods are facing challenges because of their sustainability and organizational complexity. For
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instance, the Region Plan that was established in the Italian
region of Emilia Romagna after the 2007 Chikungunya outbreak
involved 280 municipalities and had a cost of 5.3 million euros
over 3 years (Canali et al., 2017). Additionally, resistance to
insecticides is emerging in natural Ae. albopictus populations and
is widespread in Ae. aegypti, challenging the sustainability of this
control measure (Xu et al., 2016; Moyes et al., 2017; Pichler et al.,
2018). Thus, the development of novel, eco-friendly and easy to
manage products or systems for vector control is urgently needed
to complement traditional mosquito control methods.

Manipulation of mosquito microbiota is emerging as a
promising field to develop novel vector control strategies.
Examples that are already being implemented in the field
include the use of entomopathogenic fungi such as Beauveria
bassiana, which can be found on the water surface of breeding
sites and kills larvae and adults of a number of mosquito
species (Scholte et al., 2007; Farenhorst et al., 2009), and some
strains of the alpha-proteobacteria Wolbachia, which induces
cytoplasmic incompatibility and, when introduced into its not-
natural host Ae. aegypti, it negatively impacts mosquito vector
competence to dengue viruses (Saridaki and Bourtzis, 2010;
Mohanty et al., 2016; O’Neill, 2018). Additional strategies
aim at identifying natural symbionts of mosquitoes and either
alter them genetically to express anti-pathogen effectors or
disrupt their natural symbiosis with the insect host (Coutinho-
Abreu et al., 2010; Ramirez et al., 2014; Kean et al., 2015;
Saraiva et al., 2018a,b).

Here we provide an overview of the current knowledge
on the composition, structure and function of Aedes spp.
symbionts, with a focus on gut microbiota. We also highlight
the technological progresses that are shaping our knowledge
of mosquito microbiota and the exploitation of microbiota for
vector control. The literature describing mosquito microbiota is
ample and, in certain cases, controversial. The present review
provides a summary of the available knowledge and may
inadvertently omit some information. For these omissions, the
authors apologize. For those interested in expanding on the topic,
a number of helpful reviews have been published also in this
Research Topic (see for example Minard et al., 2013a; Jupatanakul
et al., 2014; Hegde et al., 2015; Wilke and Marrelli, 2015; Guégan
et al., 2018b; Strand, 2018).

METHODOLOGICAL APPROACHES TO
STUDY THE MICROBIOTA OF Aedes spp.

The workflow for the study of Aedes spp. microbiota is
organized in three main phases, i.e., data generation, analysis and
exploitation, as summarized in Figure 1.

Methods to Describe the Composition
and Abundance of Microbiota in Aedes
spp. Mosquitoes
The first paper that described the microbiota of Ae. aegypti was
published in 2001 (Luxananil et al., 2001). In this study, the
authors used a culture-dependent approach including isolation

of Ae. aegypti guts of larvae collected from natural breeding
sites in Thailand, plating of the homogenates onto Luria-Bertani
(LB) agar plates and analysis of resulting colonies. Colonies
were differentiated by morphology, as well as Gram-staining and
standard biochemical assays (Koneman et al., 1992). In this first
study, two strains of Bacillus cereus were identified as particularly
abundant and, given the identified stable association with Ae.
aegypti, authors suggested their potential exploitation for the
development of mosquito larvicidal systems (Luxananil et al.,
2001). A similar approach was adopted in a subsequent work
focused on the characterization of the bacterial symbionts from
Ae. aegypti crop (Gusmão et al., 2007). Besides identification of
bacteria by morphology and biochemical approaches, authors
also extracted the DNA and Sanger-sequenced their 16S rRNA
gene to characterize them. Serratia sp. were the predominant
bacteria in this tissue, and also Bacillus sp. and Bacillus subtilis
were identified.

Culture-dependent methods were increasingly adopted in the
following years based on different media and isolation techniques
to investigate the composition and diversity of the microbiota
in both Ae. aegypti and Ae. albopictus (Zouache et al., 2009;
Chouaia et al., 2010; Gusmão et al., 2010; Apte-Deshpande et al.,
2012; Ramirez et al., 2012; Valiente Moro et al., 2013; Minard
et al., 2013b; Yadav et al., 2015, 2016; Charan et al., 2016).
Culture-independent methods were also developed to overcome
difficulties in recreating the physiological conditions necessary
to cultivate bacteria. Culture-independent approaches include
low-throughput techniques such as Denaturating Gradient Gel
Electrophoresis (DGGE) (Chouaia et al., 2010; Zouache et al.,
2011), taxonomic microarray hybridizations (Zouache et al.,
2012), as well as more recent molecular strategies based on
High Throughput DNA Sequencing technologies (HTS), such as
DNA metabarcoding (or 16S rDNA amplicon sequencing) and
metagenomics (Caporaso et al., 2010; Taberlet et al., 2012). These
approaches allow researchers to achieve a more comprehensive
and informative culture-independent picture of the bacterial
communities that reside in mosquitoes (Osei-Poku et al., 2012;
Minard et al., 2014; Pike et al., 2017; Guégan et al., 2018b).

The protocol for the amplification of 16S rDNA became a
universal tool for determining the phylogenetic relationships
among bacteria since its development in the early nineties
(Weisburg et al., 1991; Patel, 2001). Nowadays, DNA
metabarcoding is the most common sequencing approach
to characterize the microbial community in a sample (Pollock
et al., 2018). This method is based on the amplification and
sequencing of hypervariable region(s) of the 16S rDNA,
nowadays most-frequently using Illumina technology, primarily
the MiSeq system, to achieve the most accurate longest reads
with high throughput. Variability of the 16S rDNA is usually
high enough to allow accurate taxa characterization but may not
always allow unambiguous identification at a lower classification
level such as genus or species. DNA metabarcoding has been
applied to both Ae. aegypti and Ae. albopictus (Table 1), allowing
to analyze samples in a very cost-efficient manner.

More recently, Shotgun Metagenomic Sequencing (SMS) was
implemented through HTS. This approach does not rely on an
initial PCR step with universal primers (for instance targeting
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FIGURE 1 | Workflow for microbiota analyses: data generation, analysis and exploitation.

bacterial 16S rDNAs), thus allowing to extend the analyses of
insect microbiota beyond bacteria to fungi and viruses and
allowing bacteria identification beyond the 16S rRNA genes
(Warnecke et al., 2007; Runckel et al., 2011; Engel et al.,
2012). SMS was initially applied to identify viruses infecting

wild mosquitoes, including those of the Culex, Anopheles,
Ochlerotatus, and Aedes genera (Ma et al., 2011; Ng et al., 2011;
Cook et al., 2013; Chandler et al., 2014, 2015; Xia et al., 2018).
SMS was used to analyze Ae. aegypti and Ae. albopictus strains
artificially infected with dengue virus type 1 and 3 (DENV-1
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TABLE 1 | Studies analyzing Aedes aegypti and Ae. albopictus microbiota using 16S rRNA gene metabarcoding approaches.

Mosquito species Mosquito origin1 Dev. stage Tissue Methodological approach2 References

Aedes aegypti

Kilifi (Kenya) AF M V3 of 16S rRNA gene/Roche
454 FLX

Osei-Poku et al., 2012

UGAL strain L; BS; AF;
ConR/STR

WB V1-V2 of 16S rRNA
gene/Roche 454 GS-J

Coon et al., 2014

Vila Valqueire (Brazil) strain AF M V3-V5 of 16S rRNA
gene/Roche 454 GS-J

David et al., 2016

Jacksonville (FL, United States)
UGAL strain

L WB V3-V4 of 16S rRNA
gene/Illumina MiSeq

Coon et al., 2016b

Babinda (Australia)
Wolbachia-infected wMel line

AF WB V3-V4 of 16S rRNA
gene/illumina MiSeq

Audsley et al., 2017

Gabon (Africa) BS; AF M V5-V6 of 16S rRNA
gene/Illumina MiSeq

Dickson et al., 2017

Houston (TX, United States)
Galveston strain

SF-AF WB V3-V4 of 16S rRNA
gene/Illumina MiSeq

Hegde et al., 2018

Cairns (Australia); Phnom Penh
(Cambodia); Cayenne (French
Guiana); Bakoumba (Gabon);
Saint Francois (Guadaloupe);
Zika (Uganda)

AF M V5-V6 of 16S rRNA
gene/Illumina MiSeq

Dickson et al., 2018

Cairns (Australia) AF; L WB 16S rRNA gene/Illumina MiSeq Audsley et al., 2018

Rockefeller strain AF M V3-V4 of 16S rRNA
gene/Illumina MiSeq

Muturi et al., 2019

PP-Campos (Brazilian strain) AF WB V3-V4 of 16S rRNA
gene/Illumina MiSeq

Villegas et al., 2018

New Orleans, LA 2011 strain SF-AF; AM Fo + M; SG;
RO

V4 of 16S rRNA gene/Illumina
MiSeq

Mancini et al., 2018

Nakhon Nayok (Thailand) AF WB V3 of 16S rRNA gene and 18S
rRNA Roche 454 FLX

Thongsripong et al.,
2017

Aedes albopictus

Toamasina (Madagascar) NBF-AF WB V5-V6 of 16S rRNA Roche 454
FLX Titanium

Minard et al., 2014

Ho Chi Minh City, Binh Du’o’ng,
Vung Tau City, Bu Gia Map
(Vietnam); Saint-Priest,
Portes-Lès-Valence, Nice
(France)

AF M V5-V6 of 16S rRNA
gene/Illumina MiSeq

Minard et al., 2015

Athens (GA, United States)
CDC strain

L WB V3-V4 of 16S rRNA
gene/Illumina MiSeq

Coon et al., 2016b

Champaign County (IL,
United States)

AF M V3-V5 of 16S rRNA
gene/Illumina MiSeq

Muturi et al., 2017

Guangzhou (China) Foshan
strain

BS, L (3rd
instar), P, A

WB V4 of 16S rRNA gene/Illumina
MiSeq

Wang et al., 2018

Houston (TX, United States)
Galveston strain

SF-AF WB V3-V4 of 16S rRNA
gene/Illumina MiSeq

Hegde et al., 2018

Trento (Italy) AF M V5-V6 of 16S rRNA
gene/Illumina MiSeq

Rosso et al., 2018

MRA-804 strain SF-AF; AM Fo + M; SG;
RO

V4 of 16S rRNA gene/Illumina
MiSeq

Mancini et al., 2018

Nakhon Nayok (Thailand) AF WB V3 of 16S rRNA gene and 18S
rRNA Roche 454 FLX

Thongsripong et al.,
2017

AF, adult females; L, 4th instar larvae; BS, breeding site water; ConR, eggs laid by conventionally-reared females; STR, eggs laid by blood fed females emerging from
surface-sterilized pupae; SF, sugar fed; AM, adult males; NBF, non-blood fed; P, pupae; A, adults; M, midgut; WB, whole body; Fo, foreguts; SG, salivary glands; RO,
reproductive organs. 1When field mosquitoes were used, sampling site is cited. 2rDNA region amplified and Sequencing Platform.

and DENV-3), chikungunya (CHIKV), or yellow fever (YFV)
viruses (Bishop-Lilly et al., 2010; Hall-Mendelin et al., 2013). The
results of these studies showed that SMS has the potential to be
integrated in the framework of arbovirus surveillance programs,

with the advantages of obviating the need for culture-based
approaches and prior knowledge of etiologic agents (Bishop-Lilly
et al., 2010). This is possible since DNA and RNA viruses can
be detected in mosquito blood meal for up to 24 h after initial
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ingestion (Grubaugh et al., 2015). Despite the power of SMS, this
technique has not been extensively applied to Aedes spp.

Culturomics recently emerged as a novel tool to discover still
unknown microbes (Lagier et al., 2018). This method consists
in the combination of multiple culture conditions using a high-
throughput approach (i.e., use of different selective and/or
enrichment culture conditions) followed by matrix-assisted
laser desorption/ionization-time of flight (MALDI-TOF) or 16S
rDNA amplification and sequencing to identify the growing
colonies. This method was applied to Anopheles gambiae, Culex
quinquefasciatus, and Ae. albopictus to characterize the bacterial
diversity of mosquito midguts (Tandina et al., 2016). With
this approach, 17 previously unknown bacterial species were
identified in An. gambiae, suggesting the potential of culturomics
for expanding our knowledge of the microbiota composition. The
advantages provided by culturomics include the ability to detect
minor community members, the capacity to provide information
about the viability of the detected symbionts, and the potential
for further improvements due to innovations in automation and
miniaturization (Greub, 2012).

Protocols to produce axenic individuals (i.e., bacteria-free)
or gnotobiotic larvae (i.e., larvae colonized by a single bacterial
species or a simplified bacterial community) were generated to
study the physiological impact of the microbiota. Early studies
on the functions of microbiota in Ae. aegypti were based on the
use of sterile conditions and diet supplementation with vitamins
and nutrients (Lang et al., 1972). More recent studies used a
combination of ethanol and bleach to sterilize the egg surface
and standard larval food, previously sterilized by irradiation
(Coon et al., 2014, 2016a). Gnotobiotic larvae are generated
by inoculation of a given bacterial isolate in flasks containing
sterile water, sterilized standard diet and the axenic first instar
larvae (Coon et al., 2014, 2016a). Interestingly, despite the use of
antibiotic treatments to manipulate insect bacterial communities,
a recent study clearly indicated that several antibiotics failed
in achieving the full elimination of bacteria in Ae. aegypti
(UGAL strain) and showed adverse effects on the fitness of first
instars larvae (Coon et al., 2016b). An alternative approach to
rear axenic adult mosquitoes was recently described based on
maintaining larvae hatched from surface-sterilized eggs on agar
plugs containing yeast and liver extract (Correa et al., 2018). This
method was also used for the production of adult mosquitoes
with simplified microbiota (i.e., from one to three symbiont
species) (Correa et al., 2018).

Methods to Describe the Composition
and Abundance of Microbiota of Aedes
spp. Breeding Sites
Concerns about the microbial quality of drinking water
together with the increasingly recognized importance of free-
living and host-associated microbes to the function of both
the ecosystems and living organisms greatly stimulated the
development of protocols for the analysis of the microbiota
in aquatic environments (Jackrel et al., 2017). The complexity
of aquatic environments requires the adoption of integrated
analytic systems in which stringent water filtration methods, HTS

technologies and bioinformatics are combined to cope with the
low concentrations of organisms in aquatic environments (Bruno
et al., 2017) and with the ultrasmall cell size of some aquatic
bacteria (Brown et al., 2015; Luef et al., 2015). Such integrated
approaches began to be applied to isolate and characterize the
bacteria present in Aedes spp. larval breeding sites, showing
that a substantial fraction of the microbiota in mosquitoes is
acquired through larval feeding in breeding sites (Coon et al.,
2014, 2016b; Dada et al., 2014; Dickson et al., 2017; Wang
et al., 2018). Most analyses involve water filtration allowing to
retain microorganisms >0.2 µm in size (Bruno et al., 2018).
Recently, novel and more stringent protocols were developed,
which, through serial water filtration with membrane filters
of decreasing pore sizes, allow to collect and concentrate the
bacterial samples in the water. Such methods make use of
tangential flow filtration (TFF) systems combined with filtration
modules able to retain particles <0.1 µm in size, thus allowing
to physically separate macro-organisms from micro-organisms
and viruses. DNA extracted from these water samples is then
sequenced using HTS approaches (Bruno et al., 2016, 2017,
2018). Studies in Anopheles spp. mosquitoes (Gimonneau et al.,
2014) showed that the depth in which breeding site water is
sampled may influence the composition of bacteria. Aedes spp.
mosquitoes tend to breed in small, often human-made and
not stable breeding sites, for which there should be no depth
differences (Dickson et al., 2017).

THE MICROBIOTA OF Aedes
MOSQUITOES: ORIGIN AND
COMPOSITION

Microbiota and Mosquito Habitat
Depending on their life-stage, mosquitoes interact with
microbiota differently. At the larval stage, Aedes spp. microbiota
is acquired primarily through feeding in breeding site water. In
both Ae. aegypti and Ae. albopictus, the composition of larval
microbiota represents a subset of the Operational Taxonomic
Units (OTUs) found in the breeding site water (Coon et al.,
2016b). The lower abundance of bacterial taxa in the larvae as
compared to what found in breeding site water suggests that
bacteria that establish symbiosis early during larval development
may inhibit the colonization by additional taxa (Ponnusamy
et al., 2008; Dada et al., 2014). The composition of larval
microbiota varies greatly among sites, but strong similarities are
found among larvae of different species that breed in the same
site (Coon et al., 2016b). These data support the relevance of
larval habitat in shaping Aedes spp. microbiota. Distinct bacterial
communities were identified between domestic and sylvatic
Ae. aegypti habitats further supporting the important effect
of the ecological context of the breeding sites in defining the
composition of mosquito microbiota (Dickson et al., 2017).

Adults can acquire bacteria from their breeding water while
they emerge from their pupal cases, as shown for An. gambiae
(Lindh et al., 2008). In addition, mosquitoes have been proposed
to be able to transmit symbionts back to the breeding sites
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while laying eggs, thus affecting the microbial community
which larvae are exposed to, and supporting a certain level of
vertical transmission (Coon et al., 2016b). This is particularly
important for Ae. aegypti and Ae. albopictus, which are able to
exploit small and temporary water containers as larval breeding
sites. In these conditions, water biogeochemical properties such
as pH and concentration of ions, temperature, food sources
and microorganism abundance may undergo sharp and rapid
variations, which affect microbial composition. For instance, in
microcosm-based experiments performed with Ae. triseriatus,
the presence of larvae in the water was shown to contribute to
create enriched and anoxic conditions which favored the growth
of Enterobacteriaceae (Kaufman et al., 1999). Besides influencing
the composition of larval gut microbiota, the microbiota of
the breeding site also plays a role in mediating attraction and
oviposition responses of mated Aedes spp. females. For example,
Bacillus cereus and Pseudomonas aeruginosa elicit oviposition
responses in Ae. aegypti (Hasselschwert and Rockett, 1988).
Similarly, Ae. aegypti females were shown to be significantly
induced to oviposit in water containing a suspended solution
of Acinetobacter calcoaceticus (Benzon and Apperson, 1988). In
Ae. albopictus, Psychrobacter immobilis isolated from the water
of larval breeding sites elicited higher oviposition responses from
gravid females than did water deprived of that bacterial species
(Trexler et al., 2003).

The variable nature of aquatic environments, including
fluctuations in temperature, pH and oxygen content that
impact microbial growth, prevents mosquitoes from reliably
encountering particular and standard bacterial species and
support the hypothesis of a dynamic host-symbiont interaction
(Zouache et al., 2011; Osei-Poku et al., 2012; Minard et al., 2013a;
Valiente Moro et al., 2013; Coon et al., 2016b).

Despite habitat-related differences in the composition of
larval microbiota were observed, a number of bacterial taxa
have been consistently found in all tested Aedes spp. and have
been proposed to constitute the ‘core microbiota’ of mosquitoes
(Walker et al., 1991; Ponnusamy et al., 2008; Yee et al., 2012;
Dada et al., 2014; Dickson et al., 2017; Guégan et al., 2018b). Aedes
spp. microbiota is composed primarily by Gram-negative aerobic
and facultative-anaerobic bacteria, as generally occurring in other
mosquito species (Wang et al., 2011; Boissière et al., 2012; Osei-
Poku et al., 2012; Coon et al., 2014, 2016a,b; Gimonneau et al.,
2014; Duguma et al., 2015; Muturi et al., 2016b; Valzania et al.,
2018). Only two obligate anaerobe taxa have been detected in
Aedes spp. so far. These anaerobe taxa are Clostridium, found
in Ae. aegypti (Coon et al., 2014), and Blautia, detected in
Ae. albopictus (Minard et al., 2014). Members of the Blautia
genus were previously isolated from mammalian gut and were
suggested to play a role in nutrient assimilation (Bernalier et al.,
1996; Gagen et al., 2010; Eren et al., 2015).

Microbiota of Different Mosquito
Developmental Stages
Microbiota composition changes during the development from
larvae to adults (Thiery et al., 1991; Vazquez-Martinez et al.,
2002; Rani et al., 2009; Dinparast Djadid et al., 2011; Wang

et al., 2011; Chavshin et al., 2012). Adults eliminate larval midgut
bacteria during metamorphosis, for instance Ae. aegypti expel
more than 90% of the bacterial species during molting and
metamorphosis (Moll et al., 2001; Moncayo et al., 2005; Wang
et al., 2018), similarly to what is observed in other insects (Wang
et al., 2011; Martinson et al., 2012; Junqueira et al., 2017).
Nevertheless, several bacteria are trans-stadially transmitted and
bacteria may be acquired also during blood feeding, as reported
for the arboviral vector Culicoides imicola (Moll et al., 2001; Coon
et al., 2014; Díaz-Sánchez et al., 2018).

Actinobacteria and Bacteroidetes, members of Proteobacteria,
were found to be consistently present in 4th instar larvae
of both Ae. aegypti and Ae. albopictus (Coon et al., 2014,
2016a,b; Audsley et al., 2017; Wang et al., 2018). Other
genera that are frequently found in the gut of larvae include
Chryseobacterium, Elizabethkingia, Pseudomonas, Nisseria, and
Enterobacter (DeMaio et al., 1996; Dong et al., 2009; Chouaia
et al., 2010; Cirimotich et al., 2011; Dinparast Djadid et al.,
2011; Oliveira et al., 2011; Wang et al., 2011; Osei-Poku et al.,
2012; Bahia et al., 2014). The Actinobacteria Leucobacter and
Microbacterium, both belonging to Microbacteriaceae family, are
abundant in Ae. aegypti larvae, but nearly absent in adults (Coon
et al., 2014). In contrast, Chryseobacterium (Flavobacteriaceae)
was a common component of mosquito microbiota at all life-
stages (Coon et al., 2014).

In the case of adult mosquitoes, Proteobacteria, Bacteroides,
Firmicutes, and Actinobacteria are the phyla grouping more than
99% of the total microbiota community components (Mancini
et al., 2018). More specifically, members of Enterobacteriaceae
(e.g., Enterobacter, Klebsiella, Kluyvera), Erwiniaceae (e.g.,
Pantoea), Yersiniaceae (e.g., Serratia), Acetobacteraceae (e.g.,
Asaia), Enterococcaceae (e.g., Enterococcus), and of Bacillaceae
(e.g., Bacillus) are the most-frequently described bacteria from
the gut of adult Aedes spp. (DeMaio et al., 1996; Pumpuni et al.,
1996; Straif et al., 1998; Fouda et al., 2001; Gonzalez-Ceron
et al., 2003; Lindh et al., 2005; Favia et al., 2007; Terenius et al.,
2008; Crotti et al., 2009; Dong et al., 2009; Rani et al., 2009;
Gusmão et al., 2010). Characterization of microbiota is biased
by the technique used and the level of variability within the 16S
rRNA genes. Thus, while higher taxa assignment is certain, lower
classification may be problematic and lead to contrasting results.

Microbiota of Different Body Tissues
Most studies focus on the microbiota of the gut because of
its direct implications with mosquito vector biology (Dharne
et al., 2006). However, microorganisms can colonize other
organs, including reproductive tissues and salivary glands, both
in Anopheles (Sharma et al., 2014; Tchioffo et al., 2016) and
Aedes spp. mosquitoes (Mancini et al., 2018). An overview of the
bacterial genera so far identified in Aedes spp. tissues is reported
in Figure 2.

In both Ae. aegypti and Ae. albopictus adults of different
laboratory strains, the phylum Proteobacteria is dominant in
gut, ovaries, salivary glands, testes and male accessory glands,
with tissue-specific tropism being detected (Mancini et al., 2018).
For instance, the microbiota of reproductive organs of both
sexes appears more diverse than that colonizing either the
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FIGURE 2 | Scheme showing the tissue localization of bacterial genera so far identified in Aedes spp. mosquitoes. O, ovaries; T, testes.

gut or salivary glands. Inter-specific differences in the tissue
distribution of the microbiota were also detected. For instance,
while Alphaproteobacteria represent the 97% of female and the
73% of male total microbiota in reproductive tissues of Ae.
albopictus, they constitute about 30% of the total bacteria in
reproductive tissues of Ae. aegypti. Wolbachia dominates in
Ae. albopictus ovaries (94%), while it co-exists with bacteria
of the genera Sphingomonas, Cupriavidus, and Serratia in
testes. Gammaproteobacteria are the dominant taxon in salivary
glands of female Ae. albopictus, while the microbiota of Ae.
aegypti salivary glands is richer and includes representatives of
the genera Serratia, Escherichia–Shigella, Pantoea, Acetobacter,
Sphingomonas, Burkholderia, and Cupriavidus.

In the gut of both Aedes species, Alpha-, Beta- and
Gammaproteobacteria are equally represented, with
Sphingomonas, Asaia, Cupriavidus, Escherichia-Shigella,
Pseudomonas and Serratia being the most-frequent taxa.
Sex differences in the composition of the microbiota are
detected, with the dominance of Alphaproteobacteria in male
guts (Mancini et al., 2018). Whether the composition of Aedes
spp. microbiota is richer than what is found in other species is
still controversial (Dickson et al., 2018; Mancini et al., 2018).
A number of factors, such as the number of generations in the
insectary, the age and the genetic background of the species

studied, along with the rearing conditions may influence
microbiota composition.

Microbiota of Wild and Laboratory
Mosquitoes
Microbiota composition was analyzed in both laboratory
strains and wild populations. Laboratory strains include UGAL,
Galveston, Rockefeller and MOYO for Ae. aegypti and CDC,
Foshan and Galveston for Ae. albopictus (Charan et al., 2013)
(see Table 1). Field mosquitoes were sampled across the global
distribution of both species (Kamal et al., 2018). Most of the
studies were performed on adult female midguts, followed by 4th
instar larvae and their breeding site water.

Upon laboratory colonization, the composition of adult
midgut microbiota among different strains derived from distinct
Ae. aegypti geographic populations was highly similar at the
phylum level (Dickson et al., 2018). The landscape of the overall
microbiota across strains does not change even in presence
of differences in the abundance of specific taxa within each
phylum (Charan et al., 2013; Short et al., 2017). These results
pose the challenging question of whether preferential associations
between Aedes spp. genotypes and specific bacterial taxa exist or
are selected for during laboratory colonization.
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Aedes spp. sampled in different areas showed a limited
diversity within bacterial communities at high taxonomic
levels (i.e., phylum and family) (Valiente Moro et al., 2013;
Minard et al., 2014; Thongsripong et al., 2017), similarly
to data reported for field-collected Anopheles spp. (Boissière
et al., 2012; Osei-Poku et al., 2012). Micrococcus of the
Actinobacteria phylum, Staphylococcus of the Firmicutes phylum,
and primarily members of the Proteobacteria phylum, such
as Comamonas, Acinetobacter, Enterobacter, and Pseudomonas
genera, are consistently present in wild mosquitoes (Ramirez
et al., 2012; Audsley et al., 2017, 2018). Proteobacteria
include Gram-negative bacteria that have been suggested to
be abundant in insects due to a more effective capacity to
invade and proliferate within new hosts and/or their active
recruiting by insects (Jones et al., 2013). Similarly, Ae. albopictus
samples from Northern Italy (Trentino region) display a lower
degree of microbial diversity when compared to French and
Vietnamese populations (Rosso et al., 2018). Whether this
result is dependent on differences in breeding sites water
or the fact that populations from Italy and France are new
populations is an open question. The absence of a relation
between population genetic origin and midgut microbiota was
recently shown in two Ae. albopictus populations from tropical
(La Réunion) and temperate (Montpellier, Continental France)
regions reared under controlled laboratory conditions (Minard
et al., 2018). These contrasting data highlight the need to continue
investigating the impact of Aedes spp. population dynamics on
microbiota composition.

One common trait revealed by several studies is the high
inter-individual variability in the composition of the microbiota,
especially at a lower classification level (Boissière et al., 2012).
Specific OTUs may be found exclusively in one specimen, and
individual OTUs may represent over 90% of the microbiota of
one mosquito (Wang et al., 2011; Osei-Poku et al., 2012; Rosso
et al., 2018). This aspect is particularly relevant since it may be
related to variations in vector competence as well as mate choice,
as occurring in the fruit fly Drosophila melanogaster, where
flies prefer mates sharing a similar bacterial gut community
(Sharon et al., 2010).

FACTORS THAT SHAPE Aedes spp.
MICROBIOTA

Habitat-related parameters affect bacterial communities, thus
impacting the composition of mosquito microbiota. For example,
increase of water temperature in breeding sites results in higher
abundance of Betaproteobacteria and this correlates with higher
abundance of Anopheles vs. Aedes spp. larvae (Hörtnagl et al.,
2010; Onchuru et al., 2016). Anthropogenic activities also impact
the bio-geochemical properties of breeding sites, and, in turn,
affect mosquito microbiota. Fertilizers containing ammonium
and phosphorous contaminating aquatic habitats are known to
affect the development and abundance of bacteria (Muturi et al.,
2016b), which are a nutrient source for Culicidae larvae (Merritt
et al., 1992). The increasing abundance of residual antibiotics in
the environment has been shown to impact the composition of

the microbiota to which mosquitoes are exposed. Antibiotics in
human blood disrupt gut microbiota of An. gambiae females and
enhance susceptibility to Plasmodium spp. infection (Gendrin
et al., 2015). In addition, larval ingestion of antibiotics alters
bacterial composition in Ae. albopictus adults, with reduction or
even elimination of specific taxa and concomitant proliferation
of Wolbachia and Dysgonomonas spp. (Guégan et al., 2018a).
Dysgonomonas spp. is abundant in Ae. albopictus populations and
is known to produce vitamin B12 in termites (Husseneder et al.,
2009; Minard et al., 2015). Whether this bacterium plays a similar
role in Ae. albopictus remains to be determined.

Host-related factors, including nutrition, development and
sex, also influence microbiota composition (Minard et al.,
2013a). For instance, blood-meal induces an overall decrease
of OTU numbers with an increase in relative abundance of
bacteria of the genera Chryseobacterium and Delftia in Ae.
aegypti, and blood- and sugar-fed females harbor distinct
bacterial communities (Oliveira et al., 2011; Wang et al.,
2011; Coon et al., 2014; Yadav et al., 2016). Changes in
the composition of the gut microbiota following a blood
meal may be due to the oxidative stress associated with the
catabolism of the blood meal, as proposed for An. gambiae
(Wang et al., 2011; Terenius et al., 2012). The two above-
mentioned dominant genera were also detected on the surface
of eggs, supporting the idea of vertical transmission (Coon
et al., 2014). The source of blood meal may also influence the
composition of the microbiota in mosquito midguts, similar to
what occurs in Ixodes pacificus ticks (Swei and Kwan, 2017;
Muturi et al., 2019). In particular, members of the genera
Leucobacter, Chryseobacterium, Elizabethkingia, and Serratia
were characteristic of either newly emerged Ae. aegypti or adults
fed on chicken, rabbit, and human blood, respectively (Muturi
et al., 2019). Sugar-fed mosquitoes displayed higher abundance
of Pseudomonas spp. and unclassified Acetobacteraceae, which
were previously found in associations with insects relying on
sugar-based diets (Crotti et al., 2010; Muturi et al., 2016a). While
blood directly goes to the midgut, sugar meals are stored in
the crop as food reserves (Clemens, 1992). The crop of Ae.
aegypti harbor bacteria including Serratia (Yersiniaceae) and
the yeast Pichia sp., which can be transferred to the midgut
along with food (Gusmão et al., 2007, 2010). Elizabethkingia spp.
(Flavobacteriaceae) was found only in sugar-fed females (David
et al., 2016), in agreement with findings in An. gambiae, where
Elizabethkingia spp. abundance was reduced after blood feeding
(Wang et al., 2011). The different nutritional behavior of male
and female mosquitoes may contribute in the observed sex-
related differences in the composition of microbiota (Zouache
et al., 2011; Minard et al., 2018). Such differences may also
relate to the different tropism of endosymbionts for female
and male reproductive organs, as observed in Anopheles spp.
(Segata et al., 2016).

The composition of microbiota also changes with mosquito
age, probably as the result of interspecific competition among
symbionts for sugar sources (Dong et al., 2009; Terenius et al.,
2012), or, as occurring in other insects, nutrient availability
in the gut or mosquito immunity (Hillyer et al., 2005;
Montagna et al., 2015).
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The importance of bacteria interactions, as well as potential
interaction with viruses, is becoming more and more evident as
a regulator of the composition and abundance of the microbiota
and has practical implications that we describe below. Microbiota
composition of Ae. aegypti adults changes following ZIKV
infection, with Rhodobacteraceae and Desulfuromonadaceae
emerging as biomarkers of ZIKV infection (Villegas et al., 2018).
When stable symbiosis is artificially established in Ae. aegypti,
Wolbachia dynamically interacts with other members of the
microbiota community but has minimal effects on microbiota
composition (Audsley et al., 2017).

PHYSIOLOGICAL IMPACTS OF THE
MICROBIOTA

Studies aiming at clarifying patterns of co-occurrence and
co-exclusion among the components of the microbiota are
being perused to decipher the physiological impact of the
microbiota and shed light on complex phenotypes. For
example, Serratia and Cedecea spp. displayed several co-
exclusionary relationships with dominant taxa such as members
of the genera Asaia, Pseudomonas, and Enterobacter in the
microbiota of Ae. aegypti, Ae. albopictus, and C. quinquefasciatus
from both the field and the laboratory (Hegde et al.,
2018). Additionally, the first whole genome metagenomic
analysis of An. albimanus revealed links between microbiota
and phenotypic resistance to the insecticide fenitrothion,
suggesting a role of microbiota in insecticide resistance
(Dada et al., 2018).

Aedes aegypti mosquitoes were initially thought to require
living bacteria for development, as axenic larvae die as first
instars differently than for Anopheles spp. (Chouaia et al., 2012).
This interaction did not appear to depend on a particular
bacterial species or community assemblage, as several different
bacterial species rescued development of gnotobiotic larvae
(Coon et al., 2014). In such gnotobiotic mosquitoes, each of
the individual bacteria tested proliferated in absence of other
community members, with the exception of Microbacterium and
Leucobacter spp. These last taxa require other bacteria to survive
in Ae. aegypti. Taken together, these results suggest that several
members of the larval gut microbiota support development and
egg production comparably to conventionally reared individuals
with a mixed bacterial community (Coon et al., 2016a).

As described above, survival of axenic larvae may be achieved
under specific conditions. In contrast to previous experiments,
Correa et al. (2018) managed to rear axenic larvae to adulthood by
providing high concentrations of liver and yeast extract in a semi-
solid form. Axenic larval developmental time was longer than
that of larvae with an unaltered microbiota. These data support
the idea that the primary symbiotic association between gut
bacteria and Ae. aegypti is essentially nutritional, as live bacteria
and fungi do not appear to be essential to mosquito development.

Adult gut microbiota affects blood meal digestion. Treatment
with antibiotics reduced the abundance of culturable gut
bacteria, resulting in slower digestion of the blood bolus and
statistically significant reductions in the number of laid eggs

(Gaio et al., 2011). Enterobacter and Serratia, in particular, are
involved in hemolytic activity (Coon et al., 2016a).

Exposure to bacteria during larval development affects adult
traits related to pathogen transmission, suggesting that a better
understanding of larval ecology has the potential to reveal
determinants of pathogen transmission by Aedes spp. (Dickson
et al., 2017). Earlier studies in Ae. aegypti showed that removal
of the gut microbiota with antibiotics increases mosquito
susceptibility to DENV-2 infection (Xi et al., 2008), and that
Serratia odorifera is able to enhance DENV-2 susceptibility (Apte-
Deshpande et al., 2012). The increase in DENV loads and
prevalence correlate with the presence of Serratia because Serratia
secretes SmEnhancin, a protein that cleaves off membrane-
bound mucins and weakens the peritrophic matrix favoring viral
dissemination out of the midgut (Wu et al., 2019). This effect on
viral dissemination was not observed when other 20 commensal
bacteria were tested, supporting the idea of a species-specific
effect of the microbiota on Ae. aegypti vector competence (Wu
et al., 2019). Serratia-positive mosquitoes were obtained from
DENV endemic regions, while Serratia-negative mosquitoes were
caught in non-DENV-endemic regions supporting the hypothesis
that microbiota composition may contribute to the observed
differences in vector competence across Ae. aegypti populations
(Souza-Neto et al., 2019).

BEYOND BACTERIA

The bacterial component of mosquito microbiota is by far
the most widely investigated. However, Aedes spp. microbiota
comprise also other entities such as non-pathogenic fungi,
pathogenic yeasts and viruses (Guégan et al., 2018b).

Less than five fungal species were identified in Ae. aegypti and
Ae. albopictus (Bozic et al., 2017). Whether this limited number
is indicative of a streamlined fungal community remains to be
determined. Penicillium was found in wild adults and larvae
based on the morphological analysis of fungal colonies (da Costa
and de Oliveira, 1998). Subsequently, a combination of culture-
dependent methods and PCR amplification of the 28S rRNA
gene (i.e., 28rRNA and 16rRNA amplification are analogous as
fungi do not have 16 rRNA) allowed the identification of Pichia
in the crop of newly emerged unfed females of the Rockefeller
strain (Gusmão et al., 2007). Members from the genus Pichia and
Candida were also found in the midgut and in midgut and ovaries
of Ae. aegypti mosquitoes, respectively (Frants and Mertvetsova,
1986; Gusmão et al., 2010). Pichia was isolated only from sugar-
fed females (Gusmão et al., 2010). By using culture-dependent
method, Candida parapsilosis and Meyerozyma guilliermondii
were identified in larvae, pupae and adults (in both gut and
gonads) of Ae. aegypti and Ae. albopictus laboratory strains and
wild-collected adults from Brazil, Bangladesh and Italy (Bozic
et al., 2017). Candida parapsilosis and Meyerozyma guilliermondii
can become opportunistic human pathogens under specific
physiological conditions (Singh and Parija, 2012; Tan et al., 2016).
The identification of these fungi in Aedes spp., which complete
their life cycle in anthropized environments, suggests these
mosquitoes could contribute to the dissemination of pathogenic
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yeasts, thus increasing their public health relevance (Bozic et al.,
2017). Meyerozyma guilliermondii colonizes the guts of insects
from several taxa (Stefanini, 2018); for instance, it is the dominant
species in the mycobiota of the leishmaniasis vector Phlebotomus
perniciosus where it was proposed to contribute in uric acid
degradation (Martin et al., 2018). Metabolic interactions between
members of the mycobiota and the mosquito host are being
discovered. As an example, a fungus from the Talaromyces
genus was identified to be naturally present in the midgut of
field-caught Ae. aegypti females from Puerto Rico (Angleró-
Rodríguez et al., 2017) using a combination of microscopy
and sequencing of the rRNA internal transcribed spacer (ITS)
(Schoch et al., 2012). Talaromyces was found to enhance DENV2
infection by transcriptional and enzymatic inhibition of trypsins
in the midgut, thus increasing mosquito vector competence
(Angleró-Rodríguez et al., 2017).

Mosquito virome includes arthropod-borne viruses (i.e.,
arboviruses) able to replicate in mosquitoes and vertebrates,
and recently identified insect-specific viruses (ISVs), which are
restricted to insects and do not replicate in vertebrates (Braack
et al., 2018; Öhlund et al., 2019).

Metagenomic approaches were initially used for discovery
and surveillance of specific viruses, such as DENV-1 and Phasi
Charoen-like virus (PCLV) in Ae. aegypti (Bishop-Lilly et al.,
2010; Chandler et al., 2014) and CHIKV, DENV-3 and YFV
in Ae. albopictus (Hall-Mendelin et al., 2013). The first study
using mosquito virus metagenomic sequencing to describe the
diversity of DNA viruses was performed on wild mosquitoes
from California (Ng et al., 2011). This study analyzed pools
of female mosquitoes from different species collected in three
geographical sites, comprising Culex erythrothorax as well as
other undetermined species. This study revealed that the viral
community was highly diverse across samples and most of its
members were uncharacterized. The identified viral sequences
showed similarity to members of the Anelloviridae, Circoviridae,
Herpesviridae, Poxviridae, and Papillomaviridae families, which
infect mammals and birds (Ng et al., 2011). This study also
showed for the first time that mosquito virome includes plant
viruses, such as Geminiviruses and Nanoviruses (Jones, 2003).

As described above, the SMS method significantly improves
the detection of viruses in mosquitoes (Carissimo et al., 2016;
Frey et al., 2016; Shi et al., 2018), allowing the identification
of previously unknown entities, and the characterization of
the virome of individual mosquitoes. Recent work supports
the conclusion that mosquito virome is frequently dominated
by specific ISVs. For instance, ISVs of the Flaviridae family
account for 88.5% of the virome of Culex spp. mosquitoes from
Mozambique (Cholleti et al., 2016). Similarly, ISVs are 88% of
the virome of Culex tritaeniorhynchus from China (Shi et al.,
2015). The virome of Culex spp. mosquitoes collected in different
sites in Kenya and China was shown to differ both in terms
of number and in relative abundance of arboviruses vs. ISVs
(Atoni et al., 2018). Three known ISVs dominated the virome of
wild-caught Ae. aegypti mosquitoes from Thailand and Australia:
the phlebovirus PCLV (family Bunyaviridae), which represents
>75% of the viral community in both sites; the unclassified
Humaita-Tubiacanga virus (HTV), and the flavivirus Cell fusing

agent virus (CFAV), which was previously found to be common
in wild Ae. aegypti samples (Cook et al., 2006; Hall et al.,
2017; Zakrzewski et al., 2018). The similarity of the virome
in mosquitoes from Thailand and Australia contrasted with
substantial differences in the composition and abundance of their
bacterial community and mycobiota (Zakrzewski et al., 2018).

Similar to findings on the bacterial component of the
mosquito microbiota, viral diversity is likely shaped by host- and
environmental-related factor, including sex, diet, environmental
temperature and ecological features of the resting sites (Atoni
et al., 2018). For instance, arboviruses replicate at higher
temperatures (i.e., 36.5–42◦C in mammals and birds) than
ISVs (i.e., around 28◦C in tropical regions), supporting the
idea that temperature is an important factor modulating viral
prevalence and maintenance in mosquito field populations
(Marklewitz et al., 2015).

The landscape of ISVs in the field as well as their prevalence
in both laboratory and natural mosquito populations are still
poorly described and require further investigation because
ISVs may influence mosquito immunity, with effects on viral
replication and gut microbiota diversity (Yamao et al., 2009;
Blitvich and Firth, 2015; Bolling et al., 2015a,b; Hall et al., 2017;
Souza-Neto et al., 2019).

MICROBIOTA AS A TARGET FOR NOVEL
VECTOR CONTROL STRATEGIES

The increasingly emerging interactions among mosquito host,
viral infection and microbiota are stimulating the development
of strategies to exploit Aedes spp. microbiota for vector control.
The application of microbiota in vector control include strategies
that aim at altering or using microbiota taxa that were
shown to have physiological impacts on the host or displaying
mosquitocidal and antipathogen effects. Alternative strategies,
collectively regarded as paratransgenesis, aim at interfering with
pathogens via the genetic modification of endosymbionts to
express antipathogen effector molecules in the mosquito host
(Wang and Jacobs-Lorena, 2017). Figure 3 provides a summary
of the currently available strategies.

Introduction of Symbionts to Manipulate
Host Physiology
Several strains of Wolbachia pipientis (Alphaproteobacteria,
Rickettsiales) are able to manipulate host reproduction through
Cytoplasmic Incompatibility (CI) (Werren et al., 2008).
Establishment of a stable mosquito infection with a Wolbachia
strain inducing CI can be exploited for mosquito control to
induce sterility as a consequence of male release in the field
(Incompatible Insect Technique, IIT) (Alphey et al., 2010). This
strategy has been implemented also in Ae. albopictus, which
naturally hosts two Wolbachia strains (wAlbA and wAlbB),
generating a triple-infected strain with wPip from Culex pipiens
molestus (Zhang et al., 2015). Field releases of wPip Wolbachia-
infected Ae. albopictus males in Kentucky (United States) were
shown to be effective in achieving a significant reduction in
the number of females in the treated area (Mains et al., 2016)

Frontiers in Microbiology | www.frontiersin.org 10 September 2019 | Volume 10 | Article 2036

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02036 September 4, 2019 Time: 15:9 # 11

Scolari et al. Aedes Microbiota: Description and Exploitation

FIGURE 3 | Microbiota-based approaches in vector control. The features and effects of strategies based on the introduction or alteration of symbionts (A), and
paratransgenesis (B) are summarized. CI, cytoplasmic incompatibility.

and large-scale population suppression trials are on the way
in Guanzhou (China) (Mishra et al., 2018). The possibility
to stably introduce Wolbachia in non-natural host species
via transinfection opened new possibilities when Wolbachia
infection was found to increase protection against arbovirues
(Xi et al., 2005; Hedges et al., 2008; Teixeira et al., 2008).
Specifically, when transfected in Ae. aegypti, the Wolbachia
wMelPop-CLA strain reduces mosquito lifespan and its vector
competence for DENV-2 and CHIKV (McMeniman et al.,
2009; Moreira et al., 2009; Walker et al., 2011). After initial
cage experiments, which showed that both wMelPop- and
wMel-infected Ae. aegypti could invade wild populations and
reach high frequencies (McMeniman et al., 2009; Walker et al.,
2011), field releases in Australia showed that Wolbachia could be
established in mosquito populations (Hoffmann et al., 2011) and
continue to reduce vector competence following establishment
in the field (Frentiu et al., 2014). Since then, several small- and
large-scale releases of transinfected Ae. aegypti are ongoing
in several locations worldwide, including Indonesia, Vietnam,
Australia, and Brazil (see World Mosquito Program, 2017;
Dorigatti et al., 2018).

The application of Wolbachia for the control of Ae. aegypti
mosquitoes in population replacement strategies stimulated
investigation to assess the occurrence of Wolbachia in wild-
caught mosquitoes, with contrasting results. Wolbachia was
detected in wild Ae. aegypti larvae and adults from Florida and
in adults from Thailand and the Philippines (Coon et al., 2016b;
Thongsripong et al., 2017; Carvajal et al., 2018). In contrast,
there was no evidence of Wolbachia in over 2,500 mosquitoes
from the whole species range (Gloria-Soria et al., 2018). The
presence of a natural Wolbachia infection in Ae. aegypti would

be of great significance because a natural endosymbiont may
circumvent the fitness loads related to the artificial mosquito-
Drosophila system currently in use (Moreira et al., 2009; Schmidt
et al., 2017; Gloria-Soria et al., 2018).

A pathogen enhancement effect with respect to DENV-2 was
seen in Ae. aegypti re-infected with Serratia odorifera, opposite
to the phenotype observed for wMelPop- and wMel-infected
Ae. aegypti (Apte-Deshpande et al., 2012, 2014). These findings
emphasize the complex interplay among the host, the microbiota
and the pathogens. These multifaced effects should also be
considered in an ecological framework. For instance, it has
been proposed that DENV inhibition of wMelPop- and wMel-
infected Ae. aegypti mosquitoes may be temperature-sensitive
(Ye et al., 2016).

Other bacterial endosymbionts, such as Spiroplasma and
Arsenophonus are capable of manipulating host reproduction
(Briones et al., 2008; Duron et al., 2008; Terenius et al.,
2008; Segata et al., 2016), suggesting that further exploration
of microbiota in Aedes spp. mosquitoes may reveal
additional candidates to be explored as tools for mosquito
population control.

Exploitation of Endosymbionts With
Antipathogen Effects
A number of microbiota members were shown to have
antipathogen activities (Blumberg et al., 2016). For example,
some entomopathogenic fungi shorten mosquito life span or
reduce blood feeding success (Kean et al., 2015). Analogously
of Wolbachia, Beauveria bassiana influences mosquito vector
competence by activating the Toll/Jak-Stat immune pathways in
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Ae. aegypti thus indirectly decreasing DENV-2 infection (Dong
et al., 2012) and reducing vectorial capacity for ZIKV in Ae.
albopictus (Deng et al., 2019). The presence of the ascomycota
Metarhizium anisopliae was shown to correlate with reduced
DENV-2 loads in Ae. aegypti females (Carballar-Lejarazú et al.,
2008; Paula et al., 2011; Garza-Hernandez et al., 2013).

Insect-specific viruses appear to suppress arboviruses in
mosquitoes not only through replicative interference due to their
genetic similarity with arboviruses, but also by superinfection
exclusion, a process whereby primary viral infections can block
a secondary infection of a similar virus (Newman et al., 2011;
Crockett et al., 2012; Kenney et al., 2014; Bolling et al., 2015b;
Kuwata et al., 2015; Hall-Mendelin et al., 2016; Saldaña et al.,
2017; Öhlund et al., 2019). So far, most studies involved in vitro
systems and focused on IS-flaviviruses, with the exception of the
IS-alphavirus Eilat (EILV) that could alter Sindbis virus titers
in vivo (Nasar et al., 2015; Öhlund et al., 2019).

Isolation of cultivable bacteria from the midgut of field-
collected Ae. aegypti mosquitoes from Panama and subsequent
reintroduction of single-isolate bacterial species such as Proteus
sp. and Paenibacillus sp. resulted in a significant decrease
in DENV-2 infection (Ramirez et al., 2012). This effect was
related to the transcriptional changes induced in a number
of antimicrobial peptide genes in the midgut, including
cecropin, gambicin, and attacin. In the same study, the
authors identified a Chromobacterium sp. isolate that was
later shown to be able to recolonize the gut of both An.
gambiae and Ae. aegypti and block Plasmodium and DENV-
2 infection, respectively (Ramirez et al., 2014). The Gram-
negative Chromobacterium inhibits growth of other bacteria in
the midgut, displays entomopathogenic activity on larvae and
adults, and was suggested to exert in vitro and in vivo anti-
pathogen activity through stable secondary metabolites. While
romidepsin appeared to be the most likely Chromobacterium-
produced metabolite responsible for antiplasmodial activity
(Saraiva et al., 2018b), the anti-DENV activity is mediated
by an aminopeptidase interfering with DENV-2 attachment by
promoting the degradation of the Flavivirus E protein (Saraiva
et al., 2018a). These effects on mosquitoes, together with its
culturability, make Chromobacterium an ideal candidate to be
integrated in strategies for controlling both mosquito populations
and pathogen transmission.

One key aspect of these approaches is the feasibility of their
use in field applications. Indeed, the capacity to spread efficiently
in a wild population is essential. To do so, further research
focused on the identification of selective pressures that could
confer modified microbes an advantage over their wildtype
counterparts is important and requires a better understanding of
the physiological and genetic mechanisms favoring the presence
of specific microbes among the community.

Paratransgenesis Approaches
Paratransgenesis requires the identification of symbionts that
can be isolated from host tissues and used for in vitro genetic
transformation. Moreover, symbionts should show specific tissue
tropism as the cycle of several pathogens initiates in the gut
and ends with salivary gland, and vertical transmission to the

progeny, thus allowing self-sustenance of the modified symbionts
in the field (Mancini et al., 2018). Moreover, such symbionts have
to be well established in the mosquito host in order to survive
long enough to produce the effectors in the necessary amounts
and display or excrete the effector molecule on their surface
(Wilke and Marrelli, 2015).

Asaia emerged as a promising candidate for the
paratransgenic-based control of malaria, as it was shown
to be important for larval development in Anopheles spp.,
can be genetically manipulated, can be easily acquired by
mosquitoes and it is vertically transmitted (see Saldaña et al.,
2017 for a review). This bacterium has been detected in
both laboratory and field mosquitoes, in both Ae. albopictus
and Ae. aegypti (Chouaia et al., 2010; Minard et al., 2013a).
Asaia was already modified to secrete anti-malaria molecules
(Bongio and Lampe, 2015) and the results of semi-field trials
suggested it can rapidly spread in wild populations of An.
stephensi and An. gambiae (Mancini et al., 2016). Wolbachia
and Asaia appear to negatively compete, with Asaia occurrence
in Wolbachia-infected mosquito species being low (Rosso
et al., 2018). Thus, a potential use of Asaia in paratransgenic
approaches to control Aedes spp. mosquitoes will require a better
understanding of the dynamic interactions between these two
endosymbionts in the field.

CONCLUSION

The possibility to rear mosquitoes in which a particular
bacterial species is dominant among the gut microbiota
supports the development of strategies based on symbionts
that induce antiviral responses or antiviral molecules in
Aedes spp. (Baldacchino et al., 2015; Ritchie et al., 2018).
Achieving a deeper understanding of the molecular mechanisms
underlying the interaction between microbiota and pathogens
may also lead to the selection of mosquito strains resistant to
infection. On this basis, it is important to further expand our
understanding of the physiological and metabolic interactions
between Aedes spp. mosquitoes and their microbiota, in
particular providing consistent answers to key questions, such
as: (i) what is the composition of Aedes spp. microbiota in
the field? (ii) what is the level of its variability and which
are the parameters affecting such differences? (iii) how are
community members of Aedes spp. microbiota transmitted cross-
generationally? (iv) how do endosymbionts released into the
environment compete with the natural microbiota members
of mosquitoes?

Besides having practical applications, these questions will
also shed new light on the establishment and maintenance of
symbiotic interactions. Interestingly, apart from Wolbachia, the
bacterial species that have been identified so far to contribute
to vector competence (i.e., Serratia and Chromobacterium)
are sporadically detected in field mosquitoes supporting the
hypothesis that while the core microbiota may contribute
to mosquito physiology, rare and differentially distributed
bacterial species should be more carefully studied in relation to
vector competence.
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