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Interactions between the bacteria and fungi in the gut microbiome can result in altered
nutrition, pathogenicity of infection, and host development, making them a crucial
component in host health. Associations between the mycobiome and bacteriome
in the piglet gut, in the context of weaning, remain unknown. Weaning is a time
of significant stress, dietary changes, microbial alterations, and a predisposition to
infection. The loss of animal health and growth makes potential microbial interventions
of interest to the swine industry. Recent studies have demonstrated the diversity
and development of the microbiome in the gastrointestinal (GI) tract of piglets during
weaning, resulting from the dietary and physiological changes. Despite these advances,
the role of the mycobiota in piglet health and its contribution to overall microbiome
development remains mostly unknown. In this study we investigated the bacteriome
and the mycobiome after weaning in the GI tract organs and feces from 35-day old
piglets. Following weaning, the α-diversity and amplicon sequence variants (ASVs)
counts of the bacteriome increased, proximally to distally, from the stomach to the
feces along the GI tract, while the mycobiome α-diversity and ASV counts were
highest in the porcine stomach. β-diversity analyses show distinct clusters based
on organ type in the bacteriome and mycobiome, but dispersion remained relatively
constant in the mycobiome between organ/fecal sites. Bacteroidetes, Firmicutes, and
Epsilonbacteraeota were the most abundant bacterial phyla present in the GI tract
and feces based on mean taxonomic composition with high variation of composition
found in the stomach. In the mycobiome, the dominant phyla were Ascomycota and
Basidiomycota, and the stomach mycobiome did not demonstrate the same high level
of variation observed in the bacteriome. Potential interactions between genera were
found in the lower piglet GI bacteriome and mycobiome with positive correlations
found between the fungus, Kazachstania, and several bacterial species, including
Lactobacillus. Aspergillus demonstrated negative correlations with the short chain fatty
acid-producing bacteria Butyricoccus, Subdoligranulum, and Fusicatenibacter. This
study demonstrates the distinct colonization dynamics between fungi and bacteria in
the GI tract and feces of piglets directly following weaning and the potential interactions
of these microbes in the porcine gut ecosystem.
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INTRODUCTION

The microbiome plays a critical role in animal health through
its ability to alter nutrition, physiology, immune system
development and function, and through bacterial–fungal–host
interactions. Fungi in the GI tract of piglets are ubiquitous
members of the rare biosphere (Huffnagle and Noverr, 2013;
Summers et al., 2019) and disruption of the mycobiome may
result in disease, as it does in other species (Ott et al., 2008;
Iliev et al., 2012; Mason et al., 2012a; Erb Downward et al., 2013;
Li et al., 2014; Li Z. et al., 2019). Additionally, fungi affect gut
community structure and function through genetic exchange,
interactions with bacterial species, biofilm formation, secondary
metabolite secretion, and potential antibiotic creation (Frey-Klett
et al., 2011; Suhr and Hallen-Adams, 2015).

Recent studies have demonstrated that commensal fungi can
alter host immunity during normal health, as well as modify the
severity of some diseases (Mukherjee et al., 2015; Kureljusic et al.,
2016; Weissenbacher-Lang et al., 2016; Iliev and Leonardi, 2017;
Limon et al., 2017; Richard and Sokol, 2019). Fungi can alter host
immune responses through direct and indirect actions in the GI
tract via pattern recognition receptors (PRRs), the production
of metabolites such as prostaglandin E2 (PGE2), and multiple
virulence factors that assist in host tissue invasion and nutrient
acquisition. PGE2 is an immunomodulator typically produced
by immune cells that can also be secreted by some fungi, such
as Candida, leading to extensive immune changes in humans
(Kim et al., 2014). Further, studies suggest that commensal fungi
may promote immune tolerance to commensal bacteria (Li X.V.
et al., 2019). In the context of pigs, studies have documented
the effect of mycotoxins, fungal secondary metabolites known
for contaminating agricultural feed, on the immune response.
Different mycotoxins have the ability to up- or down-regulate the
immune response in pigs, and immunosuppressive mycotoxins
may increase piglet susceptibility to infectious diseases (Pierron
et al., 2016). Due to the known sensitivity of piglets to these
fungal metabolites, future studies are vital to understand the role
of commensal fungi in porcine health.

The weaning transition is a stressful time in a pig’s life and
associated changes in the piglet gut microbiome can result in poor
health and reduced growth performance, making it of critical
interest to the swine industry (Campbell et al., 2013; Guevarra
et al., 2018, 2019). Post-weaning diarrhea and susceptibility to
opportunistic pathogens are common consequences of changes
to the piglet gastrointestinal (GI) microbiome. Recently, studies
have begun to elucidate the normal members of the microbiota
in piglets, but details remain unknown as to interactions
among members alter immune responses and promote growth
performance. This information is necessary to identify potential
alternative growth promotants as the use of antibiotics for growth
promotion is banned in the United States. While studies have
begun to show the importance of weaning and diet changes in the
development of the GI microbiome (Bian et al., 2016; Han et al.,
2017), the mycobiota remains a poorly understood, yet integral
part of the gut ecosystem.

Members of the microbiota interact with each other within
the host environment through a variety of means, including

physical or chemical interactions, competition for resources
or space, production of biofilms, or modulation of the
surrounding environment (Krüger et al., 2019). For example,
studies have demonstrated the ability of bacterial metabolites
to directly inhibit Candida growth and colonization in the
gut (Nguyen et al., 2011; Bulgasem et al., 2016) as well as
the production of mycotoxins by bacteria residing within the
fungal cytosol (Partida-Martinez and Hertweck, 2005). Bacteria
can also indirectly inhibit fungal growth by activating different
components of the immune system. One such example is
the ability of lactobacilli to promote host resistance to gut
colonization with Candida spp. through the activation of AhR,
a transcription factor that stimulates the release of IL-22 (Kiss
et al., 2011; Zelante et al., 2013; Lamas et al., 2016). In humans,
Candida albicans can prevent the gut colonization of other
fungal and bacterial pathogens (Tso et al., 2018) and Aspergillus
fumigatus can inhibit Pseudomonas aeruginosa and alter the
pro-inflammatory immune response in co-cultures (Reece et al.,
2018). The microbial interplay in the piglet gut may significantly
alter the growth and health of pigs long-term due to the
numerous potential interactions between fungi and bacteria.
Recent studies have demonstrated a link between certain fungal
species and weight gain in other mammalian species (Mar
Rodriguez et al., 2015), and while currently unknown, potential
dietary intervention strategies for piglet weight gain is of great
interest to industry (Sam et al., 2017). Previous work from our
laboratory has shown that the dominant, post-weaning fungal
species is Kazachstania slooffiae, but its role in animal health and
development remains to be elucidated (Summers et al., 2019). We
hypothesize that the bacteriome and mycobiome will significantly
differ between organ sites. The current study investigated the
microbiome and mycobiome in piglets 2 weeks post-weaning
to evaluate the diversity, populations, and potential interactions
between the bacterial and fungal members of the piglet GI
tract and feces.

MATERIALS AND METHODS

Animal Procedures
A 23 Large White × Landrace piglets from 3 litters (L.119 = 8
piglets, L.120 = 8 piglets, and L.126 = 7 piglets) were assessed
from birth through day 35 of age and were weaned at day 21.
Piglets were not provided with creep feed or milk replacer at
any point throughout the experiment. The diet was formulated
to meet the National Research Council estimate of nutrient
requirements (Supplementary Table S1). From days 21–28,
piglets received Nursery Diet 1 followed by Nursery Diet 2
from days 29–35. Piglets were evaluated daily for health and
were given free access to feed and water; all piglets used in this
study were observed to be healthy. No antibiotics, antifungals,
or supplementary additives were administered to the piglets at
any time during the experiment. On day 35 of age, piglets were
humanely euthanized, and the GI tract was removed from the
abdominal cavity and immediately dissected. Sections from the
stomach, proximal duodenum, jejunum, distal ileum, cecum,
distal colon, and feces were collected under sterile conditions and
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luminal contents removed with a PBS wash. Mucosal-associated
microbial populations were investigated due to their proximity
with the host and the potential to alter host tissue responses.
Organ sections and feces were placed in sterile cryovials, flash
frozen in liquid nitrogen, and stored at −80◦C until further
processing. Care and treatment of all pigs were approved by the
USDA–ARS Institutional Animal Care and Use Committee of the
Beltsville Agricultural Research Center.

DNA Extraction and Sequencing
DNA was isolated from 0.25 g feces or organ sections using the
MagAttract Power Microbiome Kit (Qiagen, Hilden, Germany)
by the Microbial Systems Molecular Biology Laboratory at
the University of Michigan. Cells were lysed to isolate DNA
using mechanical bead beating for 20 total minutes with
20 frequency/second and extracted using magnetic bead
technology according to the Qiagen protocol. The V4 region
of the 16S rRNA-encoding gene was amplified from extracted
DNA using the barcoded dual-index primers developed
previously (Kozich et al., 2013). The ITS region was sequenced
utilizing primers ITS3 (5′ GCATCGATGAAGAACGCAGC-
3′) AQ3 and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′)
with the Illumina adaptor sequence added to the 5′ end
(5′-TCGTCGGCAGCGTCAGATGTG TATAAGAGACAG—
ITS3-3′) and (5′GCTTCGTGGGCTCGGAGATGTGTATAAG
AGACAG—ITS4-3′). Both 16S and ITS regions were sequenced
with the Illumina MiSeq Sequencing platform.

Bacteriome (16S) and Mycobiome (ITS)
Sequence Processing
Bacteria (16S)
Quality filtering, pairing, denoising, amplicon sequence variants
(ASVs) determination, and chimera removal was conducted
with the DADA2 plugin (Callahan et al., 2016) in QIIME2 v.
2019.4 (Caporaso et al., 2010). For quality trimming, paired-end
sequences were truncated to 240 and 160 bp for forward and
reverse reads, respectively, with an average median quality score
of 34.8. Taxonomic classification of the ASVs was performed
using the pretrained 16S 515F/806R from the Silva 132 database
(Yilmaz et al., 2014). ASVs identified as Archaea, chloroplast,
mitochondria, or unassigned were removed from further analysis.

Fungi (ITS)
Forward and reverse primers were removed from paired-end
reads with cutadapt v 1.18 (Martin, 2011). QIIME2 plugin
DADA2 was used to perform similar quality filtering and ASV
identification described above for bacterial sequences. Because of
the variable nature of fungal ITS sequencing length, however, no
quality trimming was conducted on fungal sequences. Average
median quality score was 35.9 and 32.3 for forward and reverse
reads, respectively. Taxonomic classification was trained and
conducted on fungal sequences using the UNITE (Koljalg et al.,
2013) developer’s full-length ITS reference sequences in QIIME2.
Fungal ASVs without a phylum or higher classification or those
identified as unassigned were removed. Additional classification

using BLAST1 was performed on removed sequences to confirm
non-fungal origin.

Separate rarefaction curves for bacterial and fungal samples
were produced using the vegan package (Oksanen et al., 2019)
in R v 3.5.12 and visualized in GraphPad Prism v 7 (La Jolla, CA,
United States) to determine minimum sequencing depth. A cutoff
of 5,000 sequences was determined for bacterial and fungal
samples. Samples <5000 sequences were removed (bacteria,
n = 30; fungus, n = 11). 130 bacterial and 149 fungal samples were
selected for downstream analysis.

Characterization of the Bacteriome and
Mycobiome
Calculations of α-diversity were performed on rarefied (n = 5,000
sequences) bacterial and fungal samples using the phyloseq
package (McMurdie and Holmes, 2013). Shannon diversity
indices and observed ASVs were normalized using box cox
and square root transformations, respectively. Satisfaction of
normality was tested using the Shapiro–Wilk test. Differences
between bacterial and fungal Shannon diversity and observed
ASVs were determined using a linear mixed model with organ as
the fixed effect and pig as the random effect using the lmer4 and
lmerTest. Non-metric multidimensional scaling (NMDS) was
conducted using the vegan package on log-transformed bacterial
and fungal sequences using Bray–Curtis dissimilarity distances.
To reduce potential ASV artifacts, ASVs with <1 sequence in
≤5.0% of samples were removed prior to analysis. NMDs plots
were visualized using the ggplot2 package (Wickham, 2016).
Pairwise comparisons of mean Bray–Curtis distances to group
centroids was calculated using the permutational analysis of
multivariate dispersion (PERMDISP) function in vegan and
plotted in R. Due to similarities between organ bacteriomes
and mycobiomes, samples were recategorized by GI region:
duodenum, jejunum, and ileum samples were recategorized as
“Upper GI,” cecum and colon were recategorized as “Lower
GI,” and stomach and feces remained categorized as “Stomach”
and “Feces,” respectively. For visualization purposes, relative
abundances of taxa are presented as mean% value by litter for
each GI tract region and feces.

Correlation and Network Analyses of the
Lower GI
For correlation analysis, samples were rarefied to their
corresponding bacterial or fungal sample pair to account
for sequencing depth differences between pairs while retaining
similar community composition structure. Bacterial (n = 46)
and fungal sample pairs (n = 46) were combined and ASVs
were merged at the genus level. Genera found <30% of samples
were removed to prevent degradation of correlation detection,
which increases with increased numbers of 0 counts (Weiss
et al., 2017). Correlations between fungus and bacteria were
detected using the sparse correlations for composition (SparCC)
python module (Friedman and Alm, 2012). Correlation values

1https://blast.ncbi.nlm.nih.gov
2https://www.R-project.org
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were visualized using the corrplot package in R. P-values were
corrected for multiple comparisons using FDR. A corresponding
network analysis of SparCC correlation coefficients was created
using the igraph (Csardi and Nepusz, 2005) and the Sparse
and Compositionally Robust Inference of Microbial Ecological
Networks (Kurtz et al., 2015) R-packages. Only correlations with
an absolute value ≥0.4 were plotted. Unless otherwise stated,
all statistical tests were performed in R, p-values of <0.05 were
considered significant, and errors are given as ±SE. All figures
were created with GraphPad Prism 7, unless otherwise indicated.

RESULTS

Composition and Diversity of the
Bacteriome and Mycobiome in the Piglet
GI Tract
To analyze the microbiota communities in the piglet GI tract, the
V4 and ITS2 regions of the bacterial 16S rRNA and fungal ITS
genes, respectively, were amplified and sequenced from feces and
six organ sections (stomach, duodenum, jejunum, ileum, cecum,
and colon) collected from 23 piglets, aged 35 days. A total of
8,363,058 bacterial and 6,670,225 fungal high quality sequences
were obtained following the QIIME processing and filtering
pipeline. Rarefaction curves showed that a minimum sampling
depth of 5,000 sequences was sufficient to capture both bacterial
and fungal diversity in organs and feces (Supplementary
Figures S2A,B). After removal of samples with <5000 sequences,
the number of bacterial and fungal samples was reduced to 130
and 149, respectively (Supplementary Tables S2A,B). A mean
sequencing depth of 24,909 ± 1,448 and a total of 2383 ASVs
were detected in bacterial samples, and a mean sequencing
depth of 35,187 ± 1,585 and a total of 592 ASVs were detected
in fungal samples.

Indices for Shannon and observed ASVs were calculated
to measure the α-diversity in the bacteriome and mycobiome
(Figures 1A,B and Supplementary Tables S3A,B). In the
bacteriome, the overall trend showed an increase in diversity
and observed ASVs from the stomach to the feces along the
GI tract. The mycobiome showed a different trend, with the
stomach showing higher diversity and observed ASVs, followed
by a decrease in diversity and observed ASVs in the duodenum,
jejunum, and ileum and an increase in diversity and observed
ASVs in the colon. Compared to the mycobiome, diversity
and observed ASVs were significantly higher in the bacteriome
(p < 0.001, Supplementary Tables S2A,B).

Non-metric multidimensional scaling plot were used to
visualize β-diversity between the different regions and organs
of the piglet GI (Figures 2A,B). In both the bacteriome and
mycobiome, stomach and feces showed distinct clusters from
the other organs. The duodenum, jejunum, and ileum organs
in the upper GI, and the cecum and colon in the lower GI
had a high degree of overlap among their centroids within
their respective GI tract region indicating similarities between
the microbiota communities. Mean distances between group
centroids (dispersion) for each organ were calculated using

PERMDISP on Bray–Curtis dissimilarities (Supplementary
Tables S4A,B). In the bacteriome, there was a significant decrease
in dispersion from the stomach and upper GI tract to the
lower GI tract and to the feces, signifying a larger amount
of individual variation in the upper GI tract vs. the lower
GI tract and feces (p < 0.05, Figure 3A and Supplementary
Table S2A). This trend in dispersion directly contrasted with
α-diversity, which showed an increase in observed ASVs and
Shannon diversity from the stomach to the lower GI as shown
previously (Figure 1A). The mycobiome showed no significant
trends in dispersion and remained relatively similarly dispersed
throughout the piglet GI tract and feces (p≥ 0.05, Figure 3B, and
Supplementary Table S2B).

Mean taxonomic composition by litter of bacterial and fungal
families present in the piglet GI tract were compared across
GI tract and feces (Figures 4A,B). In the bacteriome, the
most abundant phyla (Supplementary Figure S2A) present
in the GI tract and feces were Bacteroidetes (40.8 ± 1.9%),
Firmicutes (37.2 ± 1.9%), and Epsilonbacteraeota (19.5 ± 2.5%)
comprising >97% of the piglet bacteriome. Genera Prevotella
9, Prevotella 1, Prevotellaceae NK3B31 group, and Alloprevotella
from family Prevotellaceae (38.2 ± 2.0%), Helicobacter from
family Helicobacteraceae (17.4 ± 2.4%), Lactobacillus from
family Lactobacillaceae (10.3 ± 1.4%), Blautia from family
Lachnospiraceae (7.2 ± 0.4%), and Veillonella f rom family
Veillonellaceae (5.2 ± 0.6%) were among the most abundant and
prevalent genera and families in the bacteriome (Supplementary
Figure S2C). In general, bacterial families Helicobacteraceae
and Lactobacillaceae decreased from the stomach and upper
GI to the lower GI and feces, while families Prevotellaceae,
Lachnospiraceae, and Ruminoccocaceae increased along the GI
tract and feces. Relative abundances of Helicobacteraceae in
the feces were <1.0%. Of the different GI tract regions, the
stomach showed high variation in taxonomic composition
among litters, while the lower GI and feces showed relatively
consistent taxa across litters. In the mycobiome, Ascomycota
(90.7 ± 1.3%) and Basidiomycota (9.0 ± 1.2%) made up
the dominant phyla (Supplementary Figure S2B). Genera
Kazachstania (sp. sloofiae) from family Saccharomycetaceae
(49.6 ± 2.8%), Hyphopichia from family Debaryomycetaceae
(23.2 ± 2.3%), and Wallemia from family Wallemiaceae
(6.3 ± 1.0%) were the dominant genera and families across
all GI tract regions and feces (Figure 4B and Supplementary
Figure S2D). Symbiotaphrina from family Symbiotaphrinaceae
was dominant in the piglet GI tract organs (9.8 ± 2.0%)
but was only found in 3 piglet feces samples at <0.1%
abundance. In contrast to the stomach and feces bacteriome,
the stomach mycobiome had relatively consistent taxa among
the litters, while the feces mycobiome demonstrated a high
degree of variation.

Interactions Between the Bacteriome
and Mycobiome in the Piglet Lower GI
Potential interactions between genera found in the lower
piglet GI bacteriome and mycobiome were determined
with SparCC correlations and a corresponding network
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FIGURE 1 | Alpha-diversity of the bacteriome and mycobiome in piglet GI organs. (A) Shannon diversity index values and (B) observed ASV counts for bacterial 16S
rRNA and fungal ITS gene sequencing data by sample type. Linear mixed-models were performed to determine differences between bacterial and fungal indices by
organ. Only samples with both bacterial 16S rRNA and fungal ITS gene sequencing data were plotted and analyzed. Significance indicated by ∗p < 0.001.
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FIGURE 2 | Beta-diversity of gastrointestinal tract organs and litters. Non-metric multidimensional scaling (NMDS) plot of β-diversity based on Bray–Curtis
dissimilarities in the (A) bacteriome and (B) mycobiome of the piglet GI tract. Ellipses indicate 1 standard deviation from organ centroid and spiders are drawn to GI
tract region centroid. Colors indicate GI tract region, symbols indicate litter, and ellipses line types indicate specific organs of the upper and lower GI.
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FIGURE 3 | Box plot of pairwise distances between piglet organ centroids. Plots represent the median and interquartile range in the (A) bacteriome and (B)
mycobiome. Colors indicate piglet GI tract region: red = stomach, green = upper GI, blue = lower GI, purple = feces. Differences between organ centroids were
analyzed using permutational analysis of multivariate dispersion on Bray–Curtis dissimilarities with significance indicated by letters (p < 0.05).
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FIGURE 4 | Taxonomic composition of the bacteriome and mycobiome in the piglet GI tract. Mean percent relative abundances by litter at the family level are shown
for the most abundant members of the (A) microbiome and (B) mycobiome for each GI tract region.

analysis (Figures 5A,B and Supplementary Tables S5A,B).
Fungi genus Kazachstania showed significant positive
correlations with bacteria genera Alloprevotella, Lactobacillus,
Prevotella 9, and Subdoligranulum. Fungi genera Aspergillus,
Cladosporium, Hyphopichia, and Wallemia showed mostly
negative correlations with other bacteria genera. Aspergillus,
in particular, showed predominantly negative correlations

with short chain fatty acid-producing bacteria such as
Butyricicoccus, Subdoligranulum and Fusicatenibacter. Fungi
genera Diopadascus, Symbiotaphrina, and Trichosporon
did not show correlations with other fungi or bacteria.
Additionally, there were no strong correlations among
any of the other fungi genera identified within the
piglet gut mycobiome.
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FIGURE 5 | Inferred interactions between the bacteriome and mycobiome in the piglet lower GI tract. (A) SparCC correlation plot showing significant individual
correlations between bacterial and fungal genera in the lower GI organs of the post-weaning piglet. Red circles indicate negative correlations and blue circles indicate
positive correlations (p < 0.05 after FDR adjustments). The size of circles represents correlation strength while non-significant correlations are not shown.
(B) SparCC correlation network between bacterial and fungal genera with plotted correlations with an absolute value ≥0.4. The edge color indicates sign of
correlation: negative (red), positive (blue); node color indicates kingdom: bacteria (purple), fungus (green). The size of node is proportional to the mean centered-log
ratio abundance for each genus.

DISCUSSION

Fungi, in addition to bacteria, are important members and
contributors of the microbiome, and recognition of their role
is an essential step forward in elucidating the dynamics of the
GI environment. Of the limited gut studies examining bacteria
and fungi together, none to our knowledge have explored the
interaction of the bacteriome–mycobiome of the piglet GI tract.
Our study characterized and compared the mucosal-associated
bacteriome and mycobiome of 23 healthy piglets, aged 35 days,
from 3 litters along different organs of the GI tract and feces. The
lower GI tract, which included the cecum and colon, was further

evaluated to assess differences in predicted interactions between
the bacteriome and mycobiome and determine associations
between bacterial and fungal genera. This research is a critical first
step in revealing the complex interactions, including health and
growth, promoted by the fungi in the piglet gut during weaning.

While studies investigating the microbiota have become
common, extensive studies of the mycobiota have been limited
due to a lack of technologies, databases, and consensus in
techniques (Li X.V. et al., 2019; Richard and Sokol, 2019).
Recently, Li X.V. et al. (2019) reviewed studies characterizing
the mycobiome of different human sites and disease states.
Despite significant recent advances, methodologies continue to
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lack consensus for DNA isolation, primer design, sequencing,
databases, and analysis of fungal species. Previous work in
our laboratory aimed to determine which techniques and
fungal primers were effective in studying the piglet mycobiome
(Summers et al., 2019). Lower estimated diversity in the
mycobiome compared to the bacteriome has been observed in
human stool (Nash et al., 2017), piglet feces (Summers et al.,
2019), and settling dust in pig farms (White et al., 2019).
While there is no established consensus on what constitutes a
healthy gut mycobiome, it is widely accepted that fungi are less
abundant and demonstrate less diversity than bacteria in the
human gut, comprising roughly 0.1% of the microbiome based
on shotgun metagenome sequencing (Qin et al., 2010; Huffnagle
and Noverr, 2013). In this study, compared to the bacteriome,
estimated overall diversity and observed ASVs for all 6 GI organs
(stomach, duodenum, jejunum, ileum, cecum, colon) and feces
were significantly lower in the mycobiome (Figures 1A,B and
Supplementary Figures S1A,B).

Within the bacteriome, there was an increasing trend in
α-diversity along the GI tract from the stomach to the colon,
with highest α-diversity found in the feces, coupled with a
decreasing trend in dispersion (β-diversity) among the organs
(Figure 1A and Supplementary Tables S3, S4). These trends
are consistent with those seen by Crespo-Piazuelo et al. (2018),
which characterized the bacteriomes of 120 day old pigs along
the GI tract gradient from the duodenum to the distal colon. In
general, the stomach and upper GI tract (duodenum, jejunum,
and ileum) host fewer microorganisms than the lower GI tract
(colon and cecum) due to shorter retention times for adherence
to tissue or mucus (Donaldson et al., 2016) lower pH, and
higher concentrations of bile acids (Mackie et al., 1999; Walter
and Ley, 2011). The harsher environment of the stomach and
upper GI may subsequently select for a smaller number of
colonizing bacterial species resulting in reduced diversity. The
stomach and organs associated with the upper GI bacteriome
also demonstrated higher levels of dispersion than the lower
GI and feces, indicating a greater level of individual variation
among piglets. Unlike the lower GI, the stomach and upper GI
are exposed to new and exogenous bacteria ingested with food
particles (Donaldson et al., 2016). The stomach, in particular,
serves to block ingested microbes from passing to the intestine
(Martinsen et al., 2005). Despite identical piglet diets, individual
variation was seen in the stomach and upper GI, potentially due
to the amount and timing of the piglet’s meal. Other potential
factors, including host immunity or fungal interactions, may
influence bacterial variation in the upper GI of the piglet as the
small intestine plays a critical role in the development of mucosal
and systemic tolerance toward microbes (Villmones et al., 2018).

Much less is known about diversity trends in the gut
mycobiome. Unlike the bacteriome, the mycobiome did not
follow the same general linear increase in α-diversity along
the GI tract (Figure 1B). Instead, the stomach mycobiome
had the highest mean diversity, followed by the colon. The
average gastric pH of 6-month old pigs fed ad libitum is 4.4,
although this level can vary among individuals or timing of
meals (Merchant et al., 2011). Compared to many bacteria, fungi
are more acid tolerant. Many fungi have adaptive strategies to

respond to low pH environments, and some fungi like Aspergillus
sp. actively lower the surrounding pH of their environment
(Vylkova, 2017). This suggests that the high diversity of the
stomach mycobiome may be due to the greater survivability of
fungi in highly acidic environments, as well as potentially less
competition from bacteria for resources compared to the rest of
the GI tract. Individual variation in the mycobiome remained
relatively similar along the GI tract based on dispersion estimates
(Figure 2B). Unlike the bacteriome, however, there was no
reduction in dispersion in the lower GI or feces, and individual
variation remained comparable to the upper GI bacteriome.
Some studies have suggested that most fungi found in the GI tract
are transient via environmental or dietary sources, and are unable
to colonize or inhabit the gut long-term (Suhr and Hallen-Adams,
2015; Raimondi et al., 2019). The suspected temporary nature
of some fungi in the piglet GI tract, as well as the genetic and
immunity factors that affect the bacteriome, may all play a role in
the relatively high level of individual variation in the mycobiome.
Despite high individual variation within each organ mycobiome,
distinct clusters were found for each GI tract region depicted
in the NMDS (Figure 2B), indicating that fungal distribution
along the GI tract is not random and may indicate different GI
environmental niche effects on the mycobiome.

In both the bacteriome and mycobiome, there were dominant
taxa throughout most of the piglet GI tract and feces
(Figures 3A,B). In the bacteriome, Bacteroidetes, Firmicutes,
and Epsilonbactereota were the dominant phyla, consistent
with previous studies investigating the pig GI tract (Zhao
et al., 2015; Kelly et al., 2017; Crespo-Piazuelo et al., 2018;
Zhang et al., 2018). In previous studies, Proteobacteria was
considered a dominant phylum, but recently Epsilonbactereota
was reclassified as a separate phylum from Proteobacteria (Waite
et al., 2017) and Epsilonbactereota was a more dominant phylum
in our dataset. In general, there were increases in Prevotellaceae,
Lachnospiraceae, and Ruminoccocaceae from the stomach to the
lower GI tract, corresponding with a decrease in Lactobacillaceae
and Helicobacteraceae. Many of these taxa shifts may be
attributed to changing environmental conditions that occur
along the GI tract. Measured dissolved oxygen levels undergo a
dramatic reduction from the duodenum in the upper GI to the
cecum of the lower GI (Hillman et al., 1993), as well as a reduction
in pH, an increase in resistant starches (Flint et al., 2012), and
slower peristalsis times (Walter and Ley, 2011). Members of
Helicobacteraceae and Lactobacillaceae are tolerant of bile acids
and oxygen (De Boever and Verstraete, 1999; Okoli et al., 2007;
Yasuda et al., 2015), and are able to adhere firmly to the surface of
the small intestine (Donaldson et al., 2016) making them suitable
for colonizing the upper GI tract. In comparison, Prevotellaceae,
Lachnospiraceae, and Ruminoccoccaceae are oxygen-sensitive and
are likely more competitive in the lower GI due to their ability
to degrade complex carbohydrates (Arumugam et al., 2011; Flint
et al., 2012; Liu et al., 2012).

The dominant phyla in the piglet GI tract and feces
mycobiome were Ascomycota and Basidiomycota, which are
similar to those found in human mycobiome gut studies
(Hoffmann et al., 2013; Nash et al., 2017; Raimondi et al., 2019).
Unlike human studies, however, commonly found yeasts from
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genera Candida and Saccharomyces (Hallen-Adams and Suhr,
2017; Sam et al., 2017), were either absent or found at <1%
relative abundance in our study samples. Instead, the dominant
yeast throughout the piglet GI tract and feces was identified
as Kazachstania (sp. sloofiae). K. sloofiae has been previously
identified from different parts of the healthy pig GI tract (Uden
and Carmo-Sousa, 1962; Urubschurov and Janczyk, 2011) and
feces (Summers et al., 2019), and has been shown to establish
quickly in the gut of piglets based on fecal analysis (Urubschurov
et al., 2015; Urubschurov et al., 2017). Urubschurov et al. (2017)
determined K. sloofiae may be responsible for maintaining piglet
health by producing peptides, vitamin C, and formic acid in the
piglet GI tract. Other dominant fungi genera found throughout
the piglet GI tract and feces included Hyphopichia (sp. burtonii)
and Wallemia. In contrast to K. sloofiae, both of these fungi
are likely non-colonizing, transient fungi of the piglet GI tract.
Hyphopichia burtonii, a commonly isolated yeast from corn,
wheat, and rice (Kurtzman, 2011), has an estimated maximum
growth temperature of 37◦C (Burgain et al., 2015), and is unlikely
to thrive at the internal temperature of a pigs at around 38.7–
40◦C. Wallemia, commonly isolated from food sources as well
as agricultural dust, is also unlikely to reside in the piglet GI
environment due to its extremophilic and xerophilic nature
(Zajc and Gunde-Cimerman, 2018).

Complex interactions between bacteria and fungi also occur
within the gut. Several significant correlations were found
between bacterial and fungal genera in the lower piglet GI
tract, suggesting potential bacteriome–mycobiome relationships
(Figures 5A,B). The dominant fungal genus in the GI tract
of humans is Candida and several species have been found to
interact directly with bacterial species like Lactobacillus (Mason
et al., 2012b; Allonsius et al., 2017; Hallen-Adams and Suhr, 2017;
Rossoni et al., 2018). Kazachstania was strongly and positively
correlated with Lactobacillus in the lower GI of our piglets and as
Kazachstania is genetically similar to Candida (Kurtzman et al.,
2005), it may be a potential porcine analog to Candida in the
guts of humans. Future studies will be needed to clarify its role
in pig gut health and homeostasis, as well as its potential to
act as an opportunistic pathogen. A positive correlation between
Kazachstania and Lactobacillus was also found in piglet feces in
Urubschurov et al. (2011) using culture methods and PCR-DGGE
techniques. In co-cultures of Lactobacillus and some yeasts,
Lactobacillus released organic acids that lower the surrounding
pH and promoted yeast growth; these yeasts are then stimulated
by Lactobacillus to release essential nutrients and vitamins
utilized by Lactobacillus (Stadie et al., 2013). A similar mutualistic
relationship may exist between the dominant yeast Kazachstania
in the piglet GI tract and Lactobacillus.

A strong positive correlation was also observed between
Kazachstania and Prevotella 2 and Prevotella 9 genera. It has
been hypothesized from observed positive associations between
Candida yeasts and Prevotella, that Candida and Prevotella are
involved in a mutualistic relationship regarding the degradation
and fermentation of complex carbohydrates in the human
gut (Hoffmann et al., 2013). In the piglet gut, Kazachstania
may fulfill the role of Candida in the potential Candida-
Prevotella link to starch metabolism. The corresponding

network plot of the bacteriome–mycobiome community
correlations showed no interactions between Cladosporium,
Symbiotaphrina, and Trichosporon and other microbiota of
the bacteriome–mycobiome. Unlike the Kazachstania-bacterial
potential relationship, these fungi may be truly transient in
the lower piglet GI and pass through without interacting with
the gut microbial community. Interestingly, Hyphopichia and
Wallemia showed mostly negative correlations with several
gut bacteria. While these fungi are also thought to be non-
colonizing microbiota of the gut as mentioned previously,
they may still have an impact on the gut bacteriome during
passage or may be capable of establishing themselves in the lower
gut environment. One interesting finding in the lower gut of
piglets was the negative association between short chain fatty
acid-producing bacteria and Aspergillus. In humans, Aspergillus
can exacerbate allergic responses in farm workers and is a
well-documented pathogen. Aspergillosis is less common in pigs
but has been documented as a rare cause of porcine abortions
(Eustis et al., 1981; Todd et al., 1985; Sabino et al., 2012; Li
Z. et al., 2019). Aspergillus has been documented to directly
interact with bacterial species such as Stenotrophomonas and
Pseudomonas and may play a critical role in disease severity
(Schroeckh et al., 2009; Melloul et al., 2018; Briard et al., 2019).
The negative association of Aspergillus with SCFA-producing
bacteria, typically associated with beneficial gut health (Baxter
et al., 2019; Peirce and Alvina, 2019) could be explained by the
change in Aspergillus spp. behavior following sodium butyrate
exposure (Philip et al., 1963).

In this study, we provided a comprehensive overview of the
bacteria and fungi present along the piglet GI tract and feces
in healthy piglets post-weaning, as well as new insight into
potential interactions between the microbiome and mycobiome.
The taxonomy and diversity of the mycobiome, in addition to
the microbiome, demonstrated distinct differences in diversity
between the bacterial and fungal members of the gut. In addition,
fungal commensals, such as Candida spp., from the human gut
were lacking in the pig. Potential interactions in the porcine
gut show that bacteria may be acting in a beneficial way with
the fungus, Kazachstania, and through negative interactions with
Aspergillus. Further exploration of these significant correlations
in the piglet gut will provide a greater understanding of the
relationships that exist between the bacteriome and mycobiome
that may potentially alter piglet growth and health.
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