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Understanding the drivers of diversity is a fundamental question in ecology. Extensive
literature discusses different methods for describing diversity and documenting its effects
on ecosystem health and function. However, it is widely believed that diversity depends
on the intensity of sampling. | discuss a statistical perspective on diversity, framing the
diversity of an environment as an unknown parameter, and discussing the bias and
variance of plug-in and rarefied estimates. | describe the state of the statistical literature
for addressing these problems, focusing on the analysis of microbial diversity. | argue
that latent variable models can address issues with variance, but bias corrections need
to be utilized as well. | encourage ecologists to use estimates of diversity that account
for unobserved species, and to use measurement error models to compare diversity
across ecosystems.
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1. INTRODUCTION

Alpha diversity metrics summarize the structure of an ecological community with respect to its
richness (number of taxonomic groups), evenness (distribution of abundances of the groups),
or both. Because many perturbations to a community affect the alpha diversity of a community,
summarizing and comparing community structure via alpha diversity is a ubiquitous approach
to analyzing community surveys. In microbial ecology, analyzing the alpha diversity of amplicon
sequencing data is a common first approach to assessing differences between environments.

Unfortunately, determining how to meaningfully estimate and compare alpha diversity is not
trivial. To illustrate, consider the following example where the alpha diversity metric of interest is
strain-level richness of a microbial community (the total number of strain variants present in the
environment). Suppose I conduct an experiment in which I take a sample from Environment A
and count the number of different microbial taxa present in my sample. I then take a sample from
Environment B, count the number of different taxa in that sample, and compare it to the number of
taxa in Environment A. I am likely to observe higher numbers of different taxa in the sample with
more microbial reads. The library sizes can dominate the biology in determining the result of the
diversity analysis (Lande, 1996).

Rarefaction is a method that adjusts for differences in library sizes across samples to aid
comparisons of alpha diversity. First proposed by Sanders (1968), rarefaction involves selecting
a specified number of samples that is equal to or less than the number of samples in the smallest
sample, and then randomly discarding reads from larger samples until the number of remaining
samples is equal to this threshold (see Hurlbert, 1971 for a deterministic version). Based on these
subsamples of equal size, diversity metrics can be calculated that can contrast ecosystems “fairly,”
independent of differences in sample sizes (Weiss et al., 2017).
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Unfortunately, rarefaction is neither justifiable nor necessary,
a view framed statistically by McMurdie and Holmes (2014)
in the context of comparison of relative abundances. In this
article, I discuss why unequal sample sizes appear to cause
special problems in the analysis of alpha diversity. I introduce
a statistical perspective on the estimation of alpha diversity,
and argue that a common view of diversity indices is causing
fundamental issues in comparing samples. Without advocating
for any particular model of microbial sampling, I suggest
a general approach to comparing microbial diversity, one
which accounts for uncertainty in estimating diversity metrics.
However, since estimates for alpha diversity metrics are heavily
biased when taxa are unobserved, comparing alpha diversity
using either raw or rarefied data should not be undertaken.
I describe statistical methodology for alpha diversity analysis
that adjusts for missing taxa, which should be used in place of
existing common approaches to diversity analysis in ecology.
While the focus of the examples is microbiome data analysis, the
issues and discussion are equally applicable to macroecological
data analysis. Furthermore, this discussion applies equally to
diversity analyses performed at the strain, species, or other
taxonomic level.

2. MEASUREMENT ERROR AND
VARIANCE IN MICROBIOME STUDIES

Imagine that we had complete knowledge of every microbe
in existence, including identity, abundance and location.
To compare microbial diversity, we would define specific
environments (e.g., the distal gut of women aged 35 living
in the contiguous U.S.) and compare diversity metrics across
different ecological gradients (e.g., with or without irritable
bowel syndrome diagnoses). Alpha diversity could be compared
exactly, because we would know entire microbial populations
with perfect precision.

Unfortunately, we do not have knowledge of every microbe.
We take samples from environments, and investigate the
microbial community present in the sample. We use our findings
about the sample to draw inferences about the environment that
we are truly interested in. The samples are not of particular
interest, except that they reflect the environment from which they
were sampled. As we sample more and more of the environment
using larger samples, we get closer to understanding the true and
total microbial community of interest. This means that as we
increase sampling, our calculation of any diversity metric [e.g.,
richness (Fisher et al., 1943), Shannon index (Shannon, 1948),
and Simpson index (Simpson, 1949)] approaches the value of that
diversity metric as calculated using the entire population.

Observing small samples from a large population is not
an experimental set-up unique to microbial ecology: it is
almost universal in statistics. The set-up where an estimate
of a quantity converges to the correct value as more samples
are obtained is also well understood in statistics. The unique
property of microbiome experiments and alpha diversity analysis
is that samples do not faithfully represent the entire microbial
community under study. There is unadjusted error in using our
samples as proxies for the entire community.

To illustrate this distinction, I contrast microbial diversity
experiments with a non-microbial experiment. Suppose we are
interested in modeling the CO; flux of soil treated with different
amendments. We would measure the flux of equally sized
soil sites treated with the different amendments, performing
biological replicates using multiple sites for each amendment. To
assess if the amendments affect the flux, we would fit a regression-
type model (such as ANOVA) to flux with amendment as an
explanatory variable. Implicitly, this model acknowledges that we
can assess the flux with high precision; that is, the margin for
error for determining flux is negligible.

Now suppose we knew that our flux-measuring machine
consistently underestimated flux by exactly 5 units. We would
adjust for the measurement error by adding 5 units to each
measurement before comparing them. But what happens when
we have random measurement error? If the measurement error
on the machine was random (e.g., with 0 mean and variance of
1 unit for all amendments), this would not affect any particular
amendment. However, detecting a difference between the effects
of amendment on flux would be more challenging statistically: we
would require more samples to detect a true difference compared
to the case without measurement error. To account for the
additional experimental noise, we would use a model that would
account for measurement error in assessing differences between
amendments. If the variance in the measurement error was 1
unit for amendment A but 5 units for amendment B, we would
similarly adjust with a measurement error model.

To decide if measurement error must be accounted for when
observations are made in an experiment, it is necessary to
consider the effect of repeating the observational process on
the same experimental unit. In the flux experiment, this would
involve measuring the flux of the same soil sites again using the
same experimental conditions. Without measurement error in
the observations, we would consistently observe the same flux
measurement, while if we had random measurement error, we
would most likely observe slightly different flux measurements.
Because technical replicates in microbiome experiments yield
different numbers of reads, different community compositions,
and different levels of alpha diversity, we have measurement
error in microbial experiments. We currently do not account for
measurement error in microbial diversity studies.

3. BIAS IN ESTIMATING AND COMPARING
ALPHA DIVERSITY

While measurement error in microbiome studies affects all
analyses of microbiome data, alpha diversity is particularly
affected because commonly used estimates of alpha diversity
are heavily biased compared to other estimation problems in
microbial ecology (such as estimating relative abundances).
Some tools to address problems with bias in alpha diversity
exist in the statistical literature (Chao and Bunge, 2002; Willis
and Bunge, 2015; Arbel et al., 2016; Willis and Martin, 2018).
However, there are two incorrect practices surrounding alpha
diversity that are preventing the uptake of statistically-motivated
methodologies. The first practice is using biased estimates of
alpha diversity indices. The second practice is treating alpha
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FIGURE 1 | Expected sample taxonomic richness increases with number of reads (A,E). Comparing sample taxonomic richness can therefore often lead to incorrect
conclusions about true richness (B,F). Rarefying samples to the same number of reads can also lead to incorrect conclusions (C,G). Adjusting for unobserved taxa
and accounting for uncertainty in the estimate correctly detects both true (D) and false (H) differences in richness. While the example employed here concerns
microbial richness, the same argument applies to macroecological richness, as well as other alpha diversity indices.

diversity estimates as precisely observed quantities that do not
have measurement error.

To clarify this discussion, I will focus on taxonomic richness
(the simplest case), and later generalize the argument to other
alpha diversity metrics. Consider the setting in Figure 1A, where
we are investigating 2 different environments, and Environment
A’ richness (call it C4) is higher than Environment B’s richness
(Cp). Suppose we have two biological replicates of samples from
each environment: 147 and n4, reads from Environment A, np;
and np, reads from Environment B, and 141 < npg; < nay < ngp.
Let ¢;j be the observed richness of environment i on replicate j. As
may commonly occur in practice, c41 < ca2 < 1 < CB2.

There are currently two commonly used methods for
comparing alpha diversity. The first method, Figure 1B, is to
use the estimates c4;, ca2, cg1, and cpy, and perform modeling
and hypothesis testing (such as ANOVA) as if both the bias
and variance of these estimates were zero (see, for example,
Makipaa et al., 2017). In the setting of Figure 1A, this leads
to the erroneous conclusion that Environment A has lower
richness than Environment B. The second method is to generate

a normalized, or rarefied sample by randomly discarding reads
from all samples until each sample has n4; reads (the number of
reads in the smallest sample), Figure 1C. The resulting rarefied
richness levels are then ca1, ¢/y,, ¢5;> and c¢j,. These estimates are
then used for modeling and hypothesis testing (see, for example,
Arora et al., 2017). This leads to the conclusion that Environment
A and Environment B do not have significantly different
richnesses, and the estimates of richness are far below the actual
richnesses of each ecosystem (there is substantial negative bias
in the estimates), prohibiting comparison of richness across
different experiments. Furthermore, not all information collected
from the samples was used in making the comparison.

Here I advocate for a third strategy: adjust the sample richness
of each ecosystem by adding to it an estimate of the number of
unobserved species, estimate the variance in the total richness
estimate, and compare the diversities relative to these errors
(Figure 1D). This option has the advantages of leveraging all
observed reads, comparing estimates of the actual parameter of
interest (taxonomic richness), and accounting for experimental
noise. In the case where the environments have equal richness
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(Figures 1E-H), this approach correctly detects equal richness,
even when the abundance structures differ.

Modeling parameters observed with estimation error is not
a new suggestion: this approach is from the field of statistical
meta-analysis, where the results of multiple studies estimating
the same effect size is compared (Demidenko, 2004; Willis
et al., 2016; Washburne et al.,, 2018). In meta-analyses, larger
studies need to be given more weight in determining the overall
effect size, and this is incorporated into a meta-analysis via the
smaller standard errors on the effect size estimates. Similarly,
when comparing the response of different treatment groups in
clinical trials, the number of subjects in each treatment group is
accounted for in a comparison of the overall treatment effect.
Adjusting for sample size when comparing different groups
of observations without discarding data is widely prevalent in
the sciences, and discarding data to adjust for unequal sample
sizes is the exception. The strategy outlined here for modeling
richness after adjusting for missing species adjusts for both bias
and variance, thus accounting for library size differences and
incomplete microbial surveys.

While the example discussed here is richness, this approach
to estimating and comparing alpha diversity using a bias
correction (incorporating unobserved taxa) and a variance
adjustment (measurement error model) could apply to any
alpha diversity metric. However, richness estimation has a well-
studied statistical literature, and richness estimators that are
adapted to microbiome data exist (see Bunge et al., 2014 for a
review). The same is not true for other alpha diversity metrics.
For example, the Chao-Bunge (Chao and Bunge, 2002) and
breakaway (Willis and Bunge, 2015) estimators of taxonomic
richness provide variance estimates, account for unobserved taxa,
and are not overly sensitive to the singleton count (the number
of species observed once). In contrast, the coverage adjusted
entropy estimator of the Shannon index (Chao and Shen, 2003)
provides variance estimates and accounts for unobserved taxa,
but is extremely sensitive to the singleton count, which is
often difficult to determine in microbiome studies. While alpha
diversity estimation for microbiomes is an active area of research
in statistics (Arbel et al., 2016; Zhang and Grabchak, 2016; Willis
and Martin, 2018), there remain many features of microbial
ecosystems (such as crosstalk between samples and spatial
organization of microbes) that are not yet incorporated into
statistical methodology for alpha diversity estimation. Despite
this, alpha diversity estimates that account for unobserved taxa
and provide variance estimates are vastly preferable to both plug-
in and rarefied estimates, which do not account for unobserved
taxa nor provide variance estimates.

4. DISCUSSION

Plug-in estimates of many alpha diversity indices (including
richness and Shannon diversity) are negatively biased for
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