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pathways and networks is limited. To understand how such changes occur, we
measured the cellular metabolome of M. tuberculosis subjected to four microbicidal
stresses using liquid chromatography-mass spectrometric multiple reactions monitoring
(LC-MRM/MS). Overall, 87 metabolites were identified. The metabolites best describing
the separation between stresses were identified through multivariate analysis. The
coupling of the metabolite measurements with existing genome-scale metabolic
model, and using constraint-based simulation led to several new concepts and
unreported observations in M. tuberculosis; such as (i) the high levels of released
ammonia as an adaptive response to acidic stress was due to increased flux
through L-asparaginase rather than urease activity; (i) nutrient starvation-induced
anaplerotic pathway for generation of TCA intermediates from phosphoenolpyruvate
using phosphoenolpyruvate kinase; (i) quenching of protons through GABA shunt
pathway or sugar alcohols as possible mechanisms of early adaptation to acidic and
oxidative stresses; and (iv) usage of alternate cofactors by the same enzyme as a
possible mechanism of rewiring metabolic pathways to overcome stresses. Besides
providing new leads and important nodes that can be used for designing intervention
strategies, the study advocates the strength of applying flux balance analyses coupled
with metabolomics to get a global picture of complex metabolic adjustments.

Keywords: genome-scale metabolic network, metabolite profiling, metabolic rewiring, stress adaptation in
M. tuberculosis, sugar alcohols

INTRODUCTION

Mycobacterium tuberculosis (M. tuberculosis), tuberculosis (TB) causing bacteria in human, is
a very successful pathogen, that still claims millions of lives worldwide every year (World
Health Organization [WHO], 2018). The success of this pathogen, in part, is attributed
to its ability to survive long periods of slow or arrested growth, remaining quiescent
for years before reactivating to cause active disease (Flynn and Chan, 2001). The clinical
evidence of the occurrence of M. tuberculosis within diverse forms of lesions during different
stages of infection (Lenaerts et al, 2015) strongly indicates its competence to survive a
variety of permissive and restrictive host environments. Aerosolic M. tuberculosis typically
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enters the lungs and ingested by alveolar macrophages, where
it is challenged by microbicidal environment comprising of
low pH, reactive oxygen and nitrogen intermediates (ROI
and RNI) in concomitance with deprivation of nutrients and
essential micronutrients (Denis, 1991; Schaible et al., 1998;
Gomez and McKinney, 2004).

Studies involving genomics, transcriptomics, and proteomics
have unraveled a wide array of molecular mechanisms employed
by M. tuberculosis to survive this hostile microbicidal milieu
of macrophage phagosomes (Forrellad et al, 2013; Gopinath
et al., 2015; Liu et al., 2016; Danelishvili et al., 2017; Hoffmann
et al., 2018). This included mycobacterial detoxification system
of catalase (KatG) (Ng et al., 2004), superoxide dismutases (SodA
and SodC) (Wu et al., 1998; Dussurget et al., 2001; Piddington
et al, 2001; Sassetti and Rubin, 2003), mycothiol (MSH)
(Buchmeier and Fahey, 2006; Buchmeier et al., 2006; Vilcheze
et al., 2008), NADH-dependent peroxidase, and peroxynitrite
reductase system (Bryk et al., 2000, 2002; Tian et al., 2005a;
Shi and Ehrt, 2006). Studies also advocate the role of cell
wall components like OmpA (Outer membrane protein A) in
resisting low pH, with mutant screening appropriately indicating
the crucial role of biosynthesis of peptidoglycan or the cell
wall lipid lipoarabinomannan in intracellular survival (Raynaud
et al.,, 2002; Sassetti and Rubin, 2003; Molle et al., 2006; Vandal
et al., 2009). Proton pumps and unconventional transporters,
like Mg?* transporter MgtC, have also been suggested to be
important for intra-phagosomal survival of M. tuberculosis.
Besides these, there are reports on pathways involving DNA and
protein repair or degradation to play direct or indirect roles in the
pathogenesis of M. tuberculosis (Forrellad et al., 2013; Ehrt et al.,
2015, and references therein).

While these studies point to an array of essential proteins
and pathways that may be regulated at genomic or transcript
levels in M. tuberculosis, an early response is often met by
changes in the metabolites and activities of these proteins
which control the rate of turnover of molecules through
metabolic networks. For instance, NADH-dependent peroxidase
and peroxynitrite reductase in M. tuberculosis is instrumental
in resisting reactive oxygen intermediated (ROI) and reactive
nitrogen intermediated (RNI). The complex consists of four
enzymes, alkyl hydroperoxide reductase subunit C (AhpC), a
thioredoxin-related oxidoreductase (AhpD), dihydrolipoamide
acyltransferase (DlaT) and lipoamide dehydrogenase (Lpd).
DlaT and Lpd also act as E2 and E3 elements of pyruvate
dehydrogenase (PDH) that produces acetyl coenzyme A (CoA)
(Tian et al., 2005b), a central metabolite for many biochemical
pathways. The significance of metabolic adjustments was also
evident with glyoxylate shunt enzyme isocitrate lyase been
proven essential for intracellular persistence of M. tuberculosis
in both macrophages and mice, the essentiality of which was
worked out recently through a combination of chemogenetic
and metabolomic approaches (McKinney et al, 2000; Eoh
and Rhee, 2014). Since then, several studies involving both
cellular and animal models where M. tuberculosis recovered from
macrophages in vitro and from mouse lungs have implicated
crucial roles of central carbon metabolism, fatty acid uptake, and
utilization, biosynthesis of lysine and leucine, gluconeogenesis,

etc., amongst several other interconnected metabolic pathways
(Rohde et al., 2007; Schubert et al., 2015; Kurthkoti et al.,
2017; Zimmermann et al., 2017; Baker and Abramovitch, 2018;
Koen et al., 2018; Lee et al., 2018). Integrating proteomics with
metabolomics suggested that M. tuberculosis co-utilizes up to
33 different nutrients during macrophage infection, highlighting
nutrient requirements and adjustments (Zimmermann et al,
2017). In recent times, metabolomics has been applied to
understand antimicrobial mechanisms, surviving iron-deprived
microenvironments of human granulomas, averting intracellular
toxicity, etc. in M. tuberculosis (Rohde et al., 2007; Schubert et al.,
2015; Kurthkoti et al., 2017; Zimmermann et al., 2017; Baker and
Abramovitch, 2018; Koen et al., 2018; Lee et al., 2018). However,
given the metabolic overlap between human and M. tuberculosis
cells, it is challenging to segregate and measure the metabolites
from the host and the pathogen. Therefore, such metabolic
studies are alternatively performed in vitro while mimicking the
in vivo growth conditions.

Another concern is that only limited numbers of metabolites
can be identified even when the most advanced targeted-
metabolomic techniques are used. Consequently, while the
measurable fractions provide valuable information regarding
the metabolic state of a cell/organism, comprehending cellular
metabolism in its entirety remains elusive. To this end, in silico
techniques may be put to use to decipher cellular metabolism
from data on a subset of metabolites. Genome-scale metabolic
models (GEMs), which enable the integration of various omics
data, can be used along with flux balance analysis (FBA)
techniques to simulate perturbations in cellular metabolism
(Yizhak et al., 2010; Kim and Lun, 2014; Garay et al., 2015;
Lu et al, 2018). Some previous in silico studies have already
reported changes in M. tuberculosis metabolism under varying
growth conditions by integrating transcriptomic data into FBA
simulations (Yizhak et al., 2010; Blazier and Papin, 2012;
Kim and Lun, 2014; Lu et al, 2018). Such an integrative
approach showed that metabolic adjustments through carbon
re-routing from energy and biosynthetic precursors generating
metabolic pathways to pathways for storage compound synthesis
indicate a switch from active growth to dormancy (Shi et al,
2010). However, no previous genome-scale FBA simulation
studies on M. tuberculosis have incorporated metabolomic
data. A probable reason for this could be the unavailability
of an appropriate algorithmic-framework/software-tool wherein
metabolite concentrations measured from the targeted analysis
could be directly overlayed on FBA simulations.

This study aimed to understand the early metabolic
adaptation to the microbicidal stresses namely, acidic,
oxidative, iron deprivation and nutrient starvation that
M. tuberculosis undergoes upon ingestion by alveolar
macrophages, using established in vitro growth models.
Targeted liquid chromatography-mass spectrometric multiple
reactions monitoring (LC-MRM/MS) metabolomic was used
to measure metabolites from M. tuberculosis H37Rv cells
(henceforth referred to as M.tb) cultured under different stresses.
To get a comprehensive picture, the metabolomics data obtained
across all stresses were analyzed using statistical approaches and
FBA simulations. To this end, a previously published GEM of
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M.tb (namely, iEK1011) was manually curated so that it could
best mimic the observed metabolic states of M.tb grown under
stresses. Further, given the lack of an appropriate framework,
new approaches were designed for integrating metabolite data in
FBA simulations.

The metabolic measurements coupled with the in silico
simulations, indicated a complex rewiring in M.tb metabolic
network during stresses, with nutrient deprivation causing
maximum perturbations, suggesting an intriguing association of
all cellular metabolites to the nutrient availability. Some of the
observed metabolic changes like the release of excess ammonia
during acid stress could be comprehended as adaptations of
M.tb to the alleviation of stresses. However, unlike the general
concept, the present study showed that increased flux through
L-asparaginase rather than urease might be responsible for
the generation of excess ammonia as an early stress response.
Additionally, metabolomics data analyses point to quenching
of protons through GABA shunt pathway or sugar alcohols
as possible mechanisms of early adaptation to acidic and
oxidative stresses in M.tb. Besides these new observations, our
FBA analyses suggested a probable anaplerotic path for the
generation of TCA intermediates from phosphoenolpyruvate
using phosphoenolpyruvate kinase under nutrient stress and for
the first time indicated the use of alternative cofactors to rewire
metabolic pathways to overcome stresses.

MATERIALS AND METHODS

In vitro Mycobacterial Cell Culture
Mycobacteria were grown following protocols described in earlier
literature (Ganji et al., 2016). Primarily M.tb cultures were grown
in 7H9 media [consisting 0.4% glycerol (v/v), 0.05% tyloxapol
(v/v) and supplemented with 10% Middlebrook Oleic Albumin
Dextrose Catalase (OADC) growth supplement (v/v)] at 37°C
with shaking at 180 rpm till the absorbance at ODgy nm
reached to 0.6-0.7. Cultures were then harvested, washed, and
resuspended in 10 ml of respective stress media for 36 h. The
study was performed by using well-established in vitro models
mimicking stress conditions such as acidic stress (pH 5.5),
oxidative stress, iron deprivation (no iron supplemented) in
Sauton’s minimal medium (Vemula et al., 2016; Balakrishnan
et al., 2017; Rizvi et al., 2019). For nutrient starvation stress,
1xPBS was used as described by Loebel et al. (1933) and Rizvi et al.
(2019). Any possible contamination in the culture was ruled out
by using ZN staining before and after stress. Each experiment was
performed twice with five technical replicates. The cell viability
was checked by CFU counts.

Identification and Quantification of
Metabolites From M.tb

Extraction of Intracellular Metabolites From
Mycobacterial Cells

Mycobacterium tuberculosis cells were extracted using a modified

version of an extraction protocol previously described by More
et al. (2018). Briefly, post 36 h of stress, M.tb cells cultures

were harvested and quenched in liquid nitrogen. The cell pellets
were thawed on ice and treated with 1 ml of Methanol along
with 0.1 mm of zirconia beads to lyse the cells for 10 cycles
using mini bead beater with an interval of 1 min on ice. The
supernatant was collected after centrifuging at 1000 rpm for 45 s.
The supernatant was then centrifuged at 12,000 rpm for 30 min.
The upper layer phase was collected in a 1.5 ml vial, and the
solvent was evaporated by speed vac. The dried powder was used
for further analysis.

LC-MRM/MS

Sample preparation

The dried metabolite extract from M.tb were dissolved in
50 1 sample buffer (6.5:2.5:1 acetonitrile: methanol: water) and
used for positive ionization mode (HILIC Chromatography).
For negative ionization mode, the dried metabolite extract
from M.tb was dissolved in 50 pl ultrapure water (T3 RPLC
Chromatography). For both modes, 10 pl of the sample was
injected into the mass spectrometer using Shimadzu Prominence
HPLC autosampler.

Data acquisition

Targeted metabolomic analysis was performed using multiple
reaction monitoring (MRM) based approaches, as previously
described (More et al., 2018). Hundred and eight metabolite
standards were purchased from Sigma-Aldrich to build
in-house MRM methods. For each metabolite standard,
parent ion to daughter ion transitions was selected using
MS/MS fragmentation. Based on the fragmentation pattern of
metabolites, 108 metabolite standards were further divided into
positive and negative ionization mode. For each MRM transition,
collision energy (CE) and declustering potentials (DP) were
optimized. The information obtained was exported to build the
acquisition methods for positive and negative ionization modes.
MS data were acquired using a 4000 QTRAP triple quadrupole
mass spectrometer (AB SCIEX, Foster City, CA, United States)
equipped with Shimadzu Prominence binary HPLC pump
(Shimadzu Corporation, Japan). For positive ionization mode,
the chromatographic separation was achieved using XBridge
HILIC column (Waters, Milford, MA, United States) that was
eluted at 700 pl/min with a 32 min linear gradient starting from
5% mobile phase A (10 mM ammonium formate with 0.1%
formic acid) increasing to 60% mobile phase B (acetonitrile with
0.1% formic acid). The column was kept at 60% mobile phase B
for 3 min then returned to 5% mobile phase A for equilibration.
For negative ionization mode, the chromatographic separation
was achieved using ATLANTIS T3 column (Waters, Milford,
MA, United States) that was eluted at 500 pL/min with a 40 min
linear gradient starting with 100% mobile phase A (10 mM
ammonium hydroxide with 0.1% acetic acid) increasing to 98%
mobile phase B (100% MeOH). The column was kept at 98%
mobile phase B for 5min then returned to 100% mobile phase
A for equilibration. MRM was used to acquire targeted MS data
for specific metabolites in the positive and negative ion modes.
Transitions, dwell time, and collision energies were set by using
Analyst 1.5 software (SCIEX, Foster City, CA, United States).
MS conditions were set as following, source temperature: 400°C,
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interface heater: ON, curtain gas: 30, declustering potential: 90,
entrance and exit potential: 10, and the two ion source gases were
set at 45 (arbitrary units). Analyst 1.5 software (Sciex, Foster
City, CA, United States) was used to analyze LC-MRM/MS data
by manual inspection of chromatograms and for the detection of
the compounds. An internal standard of known concentration
of d2 L-phenylalanine was used to obtained the quantitative
metabolomics data. Internal standard peak areas were used to
evaluate the metabolite extraction efficiency as well as to check
the instrument performance over time. Analyst quantitation
wizard was used for integration of peak areas. For quality
measures, samples order was randomized at the time of analysis,
and integration of peaks was performed in a blinded manner.
Metabolites with a minimum of 30% of base peak intensity
were considered for quantitation. The peak areas obtained after
integration were exported in a matrix format to a spreadsheet file
for univariate and multivariate analysis.

Statistical Analysis

The data matrix file obtained from LC-MRM/MS was used
as input to perform statistical analysis by using online tool
MetaboAnalyst' (Xia et al., 2012). The original data obtained
were normalized to ODgpo equivalent of the number of cells
at the time of harvesting post stress (OD;) (Miguez et al,
2018) Normalization for paired comparison was performed
using the following calculation [Normalized metabolite peak
area for Control Experiment = (P./OD.) X ODs], where
P is peak area. The normalization parameters are given in
Supplementary Table S11.

Each set of data was then pre-processed to achieve normal
distribution (i.e., they follow a Gaussian or Normal distribution);
the methods applied for each condition are mentioned in
Supplementary Table S1. Such pre-processing is an essential
requirement for any statistical analysis as otherwise most of
the standard statistical tests become unreliable (Xia et al.,
2012). Hierarchical clustering (Ward’s algorithm) was used
to generate Heat map, with the dendrogram being scaled to
represent the distance between each branch (distance measure:
Pearson’s correlation). The color differences in the Heat map
reveal the relative concentration of each metabolite across
different stresses and experiment groups. Next, univariate and
multivariate analysis like fold change; ¢-test, PCA, and PLS-DA
were performed to identify metabolites that were differential
between control and stresses. For univariate a fold change cut-off
>1.5 or <0.5, p-value < 0.05 and FDR < 0.05 were considered
significant (Vinaixa et al., 2012; Cruickshank-Quinn et al., 2014;
More et al., 2018). Multivariate analyses such as PCA and PLS-
DA were performed wherein PLS-DA is a supervised clustering
method, and PLS-DA is used to generate a VIP score plot, to
identify key metabolites that contribute to group segregation. VIP
is defined as the weighted sum of squares of the PLS weight, which
indicates the importance of the variable to the entire model.
VIP > 1.0 was considered to be statistically significant (Feng et al.,
2016; Ma et al., 2016; Bazurto et al., 2017; Wu et al., 2018).

www.metaboanalyst.ca/MetaboAnalyst

Further pathway analysis module of MetaboAnalyst was
used to identify pathways in M.tb that were differentially
affected during stresses. Default pathway analysis algorithm
‘Global Test” and ‘Relative Betweenness Centrality’ were used
for analysis. The metabolic pathways with Pathway impact
values >0.1, p-value (p < 0.05) and false discovery rate (FDR)
(FDR < 0.05) was considered to be affected significantly (Liew
et al, 2016). Pathway analysis identifies most significantly
perturbed pathways under respective stress compared to control
by utilizing pathway enrichment and topology analysis. The
Pathway impact is calculated from the pathway topology analysis
(Xia and Wishart, 2011).

Calculation of Adenylate Energy Charge

(AEC)
AEC was computed from the levels of ATP,
ADP and AMP using the following formula

AEC = ([ATP]*[ADP])/([ATP] + [ADP] + [AMP]) (Atkinson
and Walton, 1967).

Measurement of Urease Activity

The urease activity was measured as per manufacturer protocol
by the colorimetric method at 670 nm using urease activity assay
kit (ab204697, Abcam Plc., United Kingdom). Post-exposure to
respective stress conditions, M.tb cells were washed with ice-
cold 1xPBS and then resuspended in 300 pl of 1xPBS with the
protease inhibitor. Cells were then lysed by bead beating, after
adding 0.1 mm zirconia beads to each sample. The cell lysate was
centrifuged at 10,000 rpm at 4°C for 20 min. The supernatant was
filtered by a 0.22-micron filter. The protein concentration of the
resultant supernatant was measured. An equal amount of protein
from each sample was taken, and the volume was made up to
10 pl. To each 10 pl of the sample, 90 pl of reaction mix (urease
buffer and urea) was added. The samples were homogenized
and incubated at 37°C for 30 min. Then, as per manufacturer
protocol, 80 pl of reagent-1 followed by 40 1 of reagent-2 were
added. Samples were incubated for 30 min at room temperature).
Absorbance was measured at 670 nm in a multi-well plate reader
(Biotek). All the experiments were performed at least three times.

Estimation of Ammonia Released

The ammonia released was estimated by the colorimetric method
at 430 nm by using Nessler’s reagent as described (Gouzy et al.,
2014) with modifications in a 96-well plate reader. In brief,
after growth under respective stresses, samples were harvested
at 3,500 rpm. The resultant supernatant was filtered by a 0.22-
micron filter. To 10 pl of the supernatant, 90 pl of Nessler’s
reagent was added and incubated at room temperature for
15 min. Then absorbance was measured at 430 nm in a multi-
well plate reader (Biotek). For respective stress conditions, media
(without inoculation) was taken as control. All the experiments
were performed at least three times.

Extracellular pH Measurement
The pH was measured as described in earlier literature (Gouzy
et al,, 2014). The samples, after growing under stress conditions,
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were harvested at 3,500 rpm. The resultant supernatant was
collected in 50 ml tubes. For respective stress conditions, non-
inoculated media was taken as control. All the experiments were
performed at least three times.

RNA Extraction and Semi-Quantitative
RT-PCR

RNA extraction was performed by using the Trizol method
as describe (Rizvi et al, 2019). After growing the cells under
respective stress conditions, the samples were harvested and
resuspended in trizol along with 0.1 mm glass beads. After lysing
with bead beating, glycogen was added at room temperature
(RT). Next, the mixture was vortexed vigorously after adding
chloroform and then incubated at RT for 10 min. The upper
aqueous layer was collected, and RNA was precipitated using
isopropanol along with of glycogen. The obtained pellets were
washed with 75% ethanol(v/v), and subsequently, air-dried
at RT and dissolved in RNase-free water (Qiagen, Hilden,
Germany). Any residual DNA contamination was removed
by DNase treatment before reverse transcribing the RNA.
The DNase treated RNA was further reverse transcribed with
random hexamers as a primer using Superscript III Reverse
Transcriptase (Invitrogen) to synthesize cDNA. With 1:10 diluted
cDNA semi-quantitative RT-PCR was carried out for 24 cycles.
Details of primers used are provided in Supplementary Table
§2. Initial denaturation at 95°C (3 min), cycles of 95°C
15 s/appropriate temperature mentioned in the Supplementary
Table S2; 20 s/72°C 20 s, final extension at 72°C for 10 min.
16S rRNA gene was used as an endogenous control. The
products were fractionated on a 2% agarose gel and densitometric
analysis was performed.

Creation of the Genome-Scale Metabolic
Model of M.tb

It was observed that none of the existing genome-scale metabolic
models of M.tb encompassed the full set of 87 metabolites
that were measured in our study (Supplementary Table S3).
To address this problem, the recent and most comprehensive
model of M.tb metabolism (viz. iEK1011) (Kavvas et al., 2018)
was augmented with additional reactions to represent the
metabolic states of M.tb best as observed in our experimental
conditions. Evidence from literature and bioinformatic resources
were gathered so that reactions corresponding to the missing
metabolites could be added to the base model and any gaps in
the model could also be filled with appropriate reactions. As a
part of this process, two reactions in the pyrimidine metabolism,
namely, CMP Nucleosidase (CMPN) and Cytosine Deaminase
(CSND) were added. While there was genomic evidence for
the former (enzyme encoded by Rv1205 and Rv2491), the latter
was added during the gap filling step based on its presence in
other mycobacterial species (e.g., Mycobacterium sp. JS623 and
Mycobacterium sp. NRRL B-3805).

Additionally, protein sequences of M.tb were obtained from
the NCBI database and subjected to analysis using PRIAM?

Zhttp://priam.prabi.fr/

(Claudel-Renard et al., 2003). PRIAM allows automated enzyme
detection by mapping the query sequence against PRIAM
profiles. By the earlier literature (Chan et al., 2010), enzymes
(EC numbers) with e-value < 1070 were considered and were
mapped against the BIOCYC database (Caspi et al., 2008) to
obtain the corresponding reactions. Two reactions, namely,
AP4A1 (Ap4A phosphorylase, EC 2.7.7.53, KEGG) and ADATT
(ADP: ATP adenylyltransferase) (Mori et al., 2010) from purine
metabolism, were thus added to update the iEK1011 model. The
efficacy of the updated model was validated through an in silico
single gene deletion analysis (see Supplementary Results).

Flux Balance Analysis (FBA)

Flux balance analysis (FBA) is a widely used constraint-based
approach for analyzing GEMs. It predicts metabolic fluxes by
optimizing a given objective function (Orth et al., 2010). The
commonly used objective functions include maximization of
biomass (Fong et al., 2003; Schuster et al., 2008) minimization
of total internal fluxes (Poolman et al., 2009; Poolman et al.,
2013). Although significant advancements have been made in
the development of computational approaches for an in silico
metabolic analysis of both single cells as well as communities,
there is not yet any tool which can reliably be used for utilizing
static metabolite data into constrainment of metabolic models
at a genomic scale. It is worthy to note in this regard that
earlier attempts have been made translate metabolomic data into
in silico fluxomic information (Cortassa et al., 2015). However,
owing to the requirement of kinetic parameters, such attempts
could only be applied to smaller subsystems and not ideal for
genome scale models.

Subsequently, we explored the possibility of using modified
versions of known FBA approaches to study metabolic changes
in M.tb. While one of the methods relied on minimizing the
total internal flux through the metabolic model, the other
approach was based on optimizing flux through the objective
function while constraining flux through a newly defined sink
function (see Supplementary Methods and Supplementary
Data Sheet S1). The inputs conditions for the flux analysis
were appropriately designed so that they could mimic the actual
experimental conditions. The conditions for Sauton’s media
were replicated by allowing uptake of L-aspargine and ferric
ammonium citrate [upto 1 mM/h/gdry weight]. Besides uptake
of a small amount of glycerol and traces of other amino acids
was also allowed. The latter was done with the objective of
mimicking the initial state of the cells (before suspension in
Sauton’s media). In the case of simulating the iron deficient
condition, the uptake of ferric ammonium citrate was not
allowed. Similarly, uptake of small amounts of H,O, [upto
1 mM/h/g dry weight] was enforced on the M.tb model for
simulating the oxidative stress condition. The input conditions
while simulating nutrient starvation were the same as the
control condition.

Biosafety Committee Approval

All experiments were performed in the facilities (F-60) approved
for Mycobacterium cultures by University of Hyderabad
Institutional Biosafety Committee under the Department of
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Biotechnology, Govt. of India. The protocols of handling
Mycobacterium tuberculosis for study in the laboratory were
approved by the Institutional Biosafety Committee No.
UH/SLS/IBSC/Review/SB-R-11 and SB-R-14.

RESULTS

Alteration in Metabolic Profile and
Metabolic Pathways of M.tb on Exposure

to Stresses

A total of 87 metabolites were detected consistently under
different stresses (Supplementary Table S$3) with a minimum
base peak intensity of 30% in the LC-MRM/MS analyses (details
in section Materials and Methods). The obtained results were
subjected to statistical analyses using MetaboAnalyst (Xia et al.,
2012). As compared to the control experiment, a total of 23, 6, 7
and 43 metabolites were quantified to be present at differential
levels under acidic, oxidative, iron deprivation and nutrient
starvation stresses respectively using a fold change cut-off of
1.5; p-value < 0.05; false discovery rate < 0.05 (Supplementary
Table S4). A graphical representation of individual metabolite
levels in different stresses is represented as a heat map in
Supplementary Figure S1. Additionally, Partial Least Squares
Discriminant Analysis (PLS-DA) was performed to explore the
separation between the control and the stresses. While maximum
segregations were observed in nutrient starvation and acidic
stress, iron deprivation showed the least segregation from the
control (Figures 1A-D). A possible reason for the latter could be
the presence of available intracellular iron for utilization by M.tb
despite exogenous iron deprivation. Since the stress duration was
short, it is possible that M.tb continued to utilize its intracellular
iron resources, thus showing metabolic profile nearly similar to
control conditions.

The quality of the PLS-DA models as described in terms of
goodness of fit (R?) and goodness of predictability (Q?) values
is given in Supplementary Table S5. Metabolites differentiating
control from each of the stresses were selected based on the
Variable Importance in Projection (VIP) scores obtained from
PLS-DA analysis. 47, 35, 21, and 46 metabolites with VIP
score > 1 were identified to be the major contributors for
segregation of the model for acidic, oxidative, iron deprivation
and nutrient starvation stresses respectively (Supplementary
Figures S2A-D and Supplementary Table S4). The same
is represented in the form of Euler diagrams in Figure 2.
Significances of some of the observed metabolic changes during
different stresses are discussed in subsequent sections.

Metabolic pathway analysis was performed for pairwise
comparison using MetaboAnalyst to obtain the Dbiological
significance of the changes in metabolite levels (Xia et al.,
2012) (see section Materials and Methods). This is represented
in Figure 3 where each dot represents a unique metabolic
pathway, with the color of the dots corresponding to the -
log(P) value and size of the dots corresponding to the pathway
impact score. The same metabolic pathways across the four
pairwise comparisons are represented by the same numbers

(Figure 3). Six pathways that were found perturbed in acidic, iron
deprivation and nutrient starvation stresses, were not affected
significantly during oxidative stress. These were alanine, aspartate
and glutamate metabolism, pyruvate metabolism, glutamine and
glutamate metabolism, aminoacyl-tRNA biosynthesis, butanoate
metabolism and arginine and proline metabolism. These
pathways are collectively part of nitrogen assimilation and
utilization (Gouzy et al, 2013; Majumdar et al, 2016). It is
known that nitrogen metabolism pathway helps in alleviating
acidic stress by producing ammonia (Gouzy et al, 2014).
We make a similar observation in one of our earlier studies
involving M. smegmatis, where several of these pathways were
perturbed during acidic stress (Rizvi et al,, 2019). Similarly,
nutrient starvation can alter nitrogen assimilation and use
efficiency to adjust to nutrient limiting conditions for survival.
Our analysis also showed five pathways (inositol phosphate
metabolism, fructose and mannose metabolism, riboflavin
metabolism, glycolysis or gluconeogenesis) that were exclusively
affected during nutrient starvation indicating re-wiring of central
carbon metabolism to deal with nutrient deprivation and
maintain energy homeostasis. Overall most affected pathways
in our study belonged to nucleotide metabolism, amino acid
metabolism, and central carbon metabolism (Supplementary
Table $6). The assignment of different significance scores under
different stress conditions to the same pathway suggested a
distinct degree of perturbation in a pathway as a function of
specific stress. Detailed pairwise pathway impact is provided in
Supplementary Table S6.

Flux Balance Analysis of M.tb

Metabolism Under Different Stresses
Although pathway analysis of LC-MRM/MS data designated
alterations in only a few pathways, it is expected that the
manifestation of the effects of these perturbations on M.tb
metabolism would spread across a wider array of metabolic
pathways. To gain further insights, we adopted in silico methods
to gauge the probable effects of these stresses on M.tb metabolism
at a genome scale. The metabolic model of M.tb used in this
study consisted of 1232 reactions involving 1014 enzyme-coding
genes and 1000 metabolites (Supplementary Data Set SI).
We designed two methods (henceforth referred to as FBA-
M1 and FBA-M2) to constrain flux through M.tb GEM by
modifying traditional flux balance analysis (FBA) approaches (see
Supplementary Methods). Results obtained through the in silico
simulations are presented in Supplementary Tables S7, S8
and in Supplementary Data Sheet S2. Data presented in
Supplementary Data Sheet S2 may be visually analyzed through
the Escher platform (Zachary et al., 2015).

While there were subtle quantitative variations in the
results obtained through the two FBA approaches, insights
obtained from both methods remarkably concur qualitatively
at pathway/subsystem levels. Further, the results obtained from
our in silico studies were in agreement with experimental
findings published in earlier literature. For example, experimental
evidence from published literature (Gouzy et al., 2014) suggest
perturbations in amino acid metabolism, particularly the
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conversion of asparagine (Asn) to aspartate (Asp) during
alleviation of acidic stress in M.tb. Similar trends were also noted
in our in silico studies.

Our in silico simulations showed down-regulation of mycolic
acid synthesis pathway during nutrient starvation, which is
in agreement with the existing literature (Jamet et al., 2015).
Figure 4 summarizes the major pathway perturbations under
varying stress conditions as observed in FBA results some
of which are detailed as Supplementary Figures S3-S6 and
discussed in the consequent paragraphs accordingly. The central
carbon metabolism, nucleotide metabolism, and amino acid
metabolism that were observed to be affected in our experimental

conditions could also be replicated in the in silico analyses. While
simulations also indicated perturbations in redox metabolism
and oxidative phosphorylation during both acidic and oxidative
stresses, folate metabolism was additionally altered during
oxidative stress. Cofactor biosynthesis pathway was observed to
be affected only during iron deprivation. The detoxification of
H,0, by catalase (KatG) was noted to be an essential reaction
for the survival of M.tb during oxidative stress (Figure 4 and
Supplementary Figure S3).

Further, an increased level of ammonia release was predicted
during acidic stress (Supplementary Figures S5, S6). As
compared to the other three stresses, a much higher number
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of reactions were predicted to be modified during nutrient
starvations. As one would expect, all major metabolic pathways
in M.tb seemed to be drastically slowed down under nutrient
starvation stress. It included glycolysis/gluconeogenesis,
TCA cycle, pentose phosphate pathway, glycerophospholipid
metabolism, fatty acid metabolism, mycolic acid biosynthesis,
amino acid metabolism, folate metabolism, riboflavin
metabolism, oxidative phosphorylation and most reactions
in nucleotide metabolism. Interesting, higher flux through
certain reactions of the nucleotide salvage pathway (like NTD7
and NTD9) during nutrient starvation were noted. Both these
reactions are intermediary processes leading to inosine (Ins)
production. Pertinently, Ins modifications in DNA and RNA
has previously been shown to be a highly regulated strategy
among pathogens during stress conditions (Alseth et al., 2014).
Another reaction which showed differential flux during nutrient
starvation was mediated by phosphoenolpyruvate carboxykinase
(PEPCK) wherein an increased flux favoring oxaloacetate (OAA)
production from phosphoenolpyruvate (PEP), and CO, was
noted (Supplementary Figure S4). The role of this anaplerotic
reaction during in vivo survival of M.tb has already been
discussed in earlier literature (Beste et al., 2013).

Transcripts Levels of Some of the

Enzymes Involved in Metabolic Rewiring

We next checked if the differential levels of metabolites in
pathways are a reflection of changes at transcript levels of
enzymes in these pathways. We performed semi-quantitative
RT-PCRs to monitor the expression levels of a few enzyme-
encoding genes whose metabolic products were observed to be
differential during various stress conditions. More precisely, the

transcript levels of GS, GDH, GOGAT, ureC, arcA, treS, glgB,
and metK genes were investigated during respective stresses
(Supplementary Figure S7). Other than alterations in the levels
of downstream metabolite products, we also observed some
differences at the transcript levels of these genes during the stress
conditions. Further, we observed that though urease activity
differed during different stresses (Figure 6C), the transcript
levels of ureC did not vary significantly during iron deprivation
and acidic stress as compared to the control (Supplementary
Figure S7). To further corroborate whether transcriptional
changes play role in metabolic rewiring, we analyzed data from
a previously published literature which had reported changes in
M.tb gene expression under oxidative stress (Rodriguez et al.,
2002). We observed that 32 genes which encoded for metabolic
enzymes (and were present in our metabolic model) showed
significant expression changes (adjusted p-value of 0.05). Further,
only nine of them could be associated with the perturbed
reactions in our in silico study (Supplementary Table S9).

DISCUSSION

The results obtained through experiments coupled with the
in silico simulations pointed to a complex rewiring in M.tb
metabolic network during stresses, with nutrient deprivation
causing maximum perturbations, suggesting a noteworthy
association of all cellular metabolites to the nutrient availability.
Combining the two approaches, we also found increased flux
through L-asparaginase that might be responsible for the
generation of excess ammonia during acidic stress rather than
increased activity of urease enzyme. Additionally, it could be
suggested that proton-quenching through GABA shunt pathway
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or sugar alcohols can be possible mechanism to circumvent
acidic and oxidative stresses. Utilizing excess of protons as a
putative mechanism of stress response by M.tb, in the context
of clues from existing literature, is discussed below. In the
following sections, we also discuss the inferences drawn from
FBA simulations using new approaches employed in this study
that led to testable hypothesis such as, presence of a probable
anaplerotic path for the generation of TCA intermediates from
phosphoenolpyruvate using phosphoenolpyruvate kinase under
nutrient stress and events of alternate use of cofactors by enzymes
during oxidative stress response, showcasing M.tb’s potential to
utilize multiple cofactors as stress-adaptation mechanism.

Physiological Changes in M.tb During
Adaptation to Stresses as Inferred From
Metabolomics and Flux Balance

Analyses

Energy Homeostasis

TCA cycle, which is known to be instrumental in energy
generation as well as in providing biosynthetic precursors
(Tian et al., 2005a; Mailloux et al., 2007) was affected in all
stress conditions (Supplementary Figure S8). Metabolomics data
showed that the levels of ATP, ADP and AMP were different in
all stresses (Supplementary Table S4 and Figure 5), while the
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ATP/ADP ratio was highest for acidic and iron stress. Adenylate
energy charge (AEC) values for control, acidic, oxidative, iron
deprivation and nutrient starvation stresses were 0.81 %+ 0.02,
0.87 £+ 0.002, 0.86 £ 0.02, 0.88 £ 0.01, and 0.94 £ 0.01
(Figure 5). It was therefore clear that though large fluctuations
in the ATP, ADP, and AMP concentrations were observed during
different stresses, the AEC values were maintained close to that
of control indicating adjustments in energy dynamics for stress
adaptation in M.tb. ATP that was observed to accumulate during
nutrient starvation in our experiments could be explained by
FBA results that showed a decrease in the flux through the
major energy consuming metabolic pathways, such as mycolic
acid synthesis, membrane metabolism and fatty acid metabolism
(Supplementary Figure S4). Thus, the original pool of ATP and
ADP which was present within the cell before being transferred
from nutrient sufficient media (control) to nutrient deficient
media (nutrient starvation) largely remained underutilized due
to lack of substrates to act. These results for the first time
highlighted the ability of M.tb to adjust its energy dynamics in
terms of maintaining AEC within fine physiological ranges to

sustain functional metabolic viability for immediate adaptation
to environmental stresses.

Accumulated o-Keto-Glutarate (AKG) During Nutrient
Starvation and Acidic Stress May Have Different
Fates for Adequate Adaptive Responses

Amongst TCA cycle metabolites, a notable increase in a-keto-
glutarate (AKG) (also referred to as oxoglutaric acid) levels were
observed in all stresses, especially during nutrient starvation.
One possible source of AKG is glutamate, catalyzed by enzyme
glutamate dehydrogenase (GDH) (Supplementary Figure S5).
This anaplerosis node may serve as a universally important
step for early metabolic adaptation during stresses and has
previously been suggested to have importance in overcoming
acidic, oxidative, and nitrosative stresses (Gallant et al., 2016).
GDH in the process of converting glutamate to AKG releases
ammonia and also reduces NAD+ to NADH (Maksymiuk
et al, 2015). Assuming that the predicted accumulation of
AKG should translate into the release of ammonia, we
attempted to score ammonia formation during different stresses
through FBA simulations. Our FBA simulations predicted that
ammonia was negligibly formed during nutrient starvation,
not formed during oxidative stress but was highly produced
during acid stress. The reaction of glutamate converting to
AKG by GDH was found to be marginally down-regulated
during nutrient starvation (Supplementary Tables S7, S8).
A possible explanation for this down-regulation could be
the limited availability of Asp. While the growth media was
Asp limiting, flux through L-asparaginase (ASNN) mediated
conversion of Asn to Asp during nutrient starvation was also
found to be low. Instead, the accumulation of AKG during
nutrient starvation could probably be attributed to altered
flux through the reaction catalyzed by aspartate transaminase
(ASPTA), wherein turnover of AKG to oxaloacetic acid
(OAA) was predicted to be lower than normal. The lower
turnover of OAA was however compensated by anaplerosis
by PEPCK. As mentioned earlier, during nutrient starvation,
the conversion of PEP to OAA was observed to be active by
simulations (Supplementary Figure S4). The same is important
during in vivo survival of M.tb in an earlier study (Beste
et al,, 2013). On the contrary, during oxidative stress, GDH
mediated reaction was found to operate in reverse direction
wherein ammonia was consumed and also showed drastic
down-regulation in the flux. ASNN mediated reaction also
showed around 90% decrease in the flux compared to control
(Supplementary Table S7).

Interestingly, flux leading to AKG was also observed in
certain other reactions during acidic stress. However, the
mechanism of AKG accumulation and utilization was predicted
to be different during acidic stress as compared to nutrient
starvation. The measured concentration of Asp and Glu were
low, which was probably suggestive of higher utilization of these
amino acids. Concomitantly, flux through reactions leading to
the generation of AKG and ammonia from Asn was higher
(Supplementary Figure S6).

To validate this prediction, we measured the released
ammonia in culture media during different stresses (Figure 6A).
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While a basal level of ammonia was found to be released during
iron deprivation, it was nearly twofold elevated during acidic
stress. Ammonia levels could not be detected under oxidative
and nutrient starvation conditions. Thus, as predicted by FBA
simulations, elevated levels of ammonia were indeed released
by M.tb during acidic stress and negligible during nutrient
starvation or oxidative stress. To test, if the released ammonia is
also associated with alleviation of acidic stress, the pH levels of the
cell cultures, pre- and post-stress were measured (Figure 6B). The
pH of the media was seen to rise significantly only during acidic
stress (Figure 6B). These experiments supported our in silico
predictions about the release of ammonia being significant only
in response to acidic stress.

Based on these observations, pathways with the potential
to release ammonia were further probed for acidic stress.
Conventionally, the urea cycle is believed to be predominantly
responsible for adaptation to acidic stress in bacteria (Mobley
et al., 1995; Mendz and Hazell, 1996). To check if urease is
responsible for the ammonia production in these conditions,
the enzymatic activity of urease was measured during different
stresses. To our surprise, we observed a decrease in urease
activity in all stresses as compared to the control (Figure 6C).
This suggested that urea cycle under acidic stress may

not be principally responsible for increased ammonia in
the culture supernatant in our experimental conditions. We
once again reverted to our FBA results, which suggested
increased flux through L-asparaginase (ASNN) reaction, which
may be responsible for the generation of excess ammonia
during acidic stress (Supplementary Figure S6). Generation
of ammonia during the conversion of asparagine to aspartate
through reactions catalyzed by L-asparaginase, as a strategy to
mitigate low pH in M.tb has also been advocated in recent
literature (Gouzy et al., 2013). Collectively, with this, we could
demonstrate differential adjustments of metabolic networks
concerning o-keto-glutarate (AKG) utilization in different
stresses in M.tb.

Metabolomics Data and FBA Simulations Pointed to
Proton Quenching as a Possible Mechanism to
Counter Acid Stress

A set of the metabolites identified to be differentially abundant
during various stresses were that of GABA shunt pathway
as presented schematically along with their differential
levels in Supplementary Figure S9. When glutamate
gets metabolized to GABA by glutamate decarboxylase, a
proton is utilized, which under acidic stress may prove

Frontiers in Microbiology | www.frontiersin.org 1

1 October 2019 | Volume 10 | Article 2417


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Rizvi et al.

Metabolic Rewiring in M. tuberculosis

B
09 -
o 0.8 ~025 -
907 - 2 **
30 €02
© 06 - =
S &
§05° 1015
'3- 04 - e
02 # # b
£ 0.0 -
: g
I
0. , ‘ L) | m :
_— - . \ )
Normal Iron  Oxidative Acidic  Starvation & \@o ° ) \b\° ‘_&\00
00(\ \b'b ?9 G
O+ g{b
C
16 -
14 -
>
=212
s *%
510 -
. 8
0]
%%
@ 6
o
54
2
0- T ‘ ‘
Control  Iron  Oxidative Acidic ~starvation
FIGURE 6 | Ammonia release and alleviation of stress. (A) Ammonia estimation post stress in the respective culture media supernatant using Nessler's assay as
assessed by absorbance at 430 nm normalized to respective blank; (B) Measurement of change in pH in M.tb culture post stresses; and (C) urease activity (in terms
of ammonia nmol/mg protein/min) in M.tb cell lysates post stress measured by using urease activity assay kit (ab204697, Abcam Plc., United Kingdom). **Indicated
p-value < 0.005 and * indicated p-value < 0.05 as compared to control. # ND, not detectable.

beneficial for a cell (Supplementary Figure S9). Apart
from removing proton at low pH, GABA shunt can also
reduce NAD+ to form succinate by metabolizing succinate
semialdehyde by the action of succinate-semialdehyde
dehydrogenase (Tian et al, 2005a). Thus, from this study,
we may infer that GABA can quench protons and at the
same time participate in NAD+/NADH balance, thereby
contributing to the early adaptations of M.tb during both
acidic and oxidative stresses. The study also encourages further
investigation of this less explored pathway in understanding
M.tb pathogenesis.

Further, we also observed high levels of sugar alcohol
during stresses, which are usually generated through the pentose
phosphate pathway (PPP) (Lin, 1988; Toivari et al., 2007).
PPP is one of the fundamental pathways known for providing
reducing molecules for metabolism, overcoming oxidative stress,
maintaining carbon homeostasis, and supplying precursors for
amino acid as well as nucleotide biosynthesis (Stincone et al.,
2015). Sugar alcohols are reduced form of an aldose or ketose
sugar and their conversion from sugar to sugar alcohol consumes
excess protons from the milieu while utilizing NADH. In our
data, we observed an exceptional increase in sugar alcohols,
xylitol (25-fold) and ribitol (21-fold) in acidic stress and a modest

increase in xylitol and ribitol concentrations in oxidative and
iron deprivation stresses (Supplementary Table S4). However,
during nutrient starvation, the levels of xylitol and ribitol
were lower as compared to control (0.76-fold and 0.79-fold,
respectively). The differential levels of xylitol and ribitol in
different stresses suggested a greater impact of PPP pathway in
acidic stress as compared to oxidative and iron stresses. This
hypothesis is further supported by higher flux through Ribulose-
5-phosphate metabolizing reactions RPI and RPE during acid
stress. The drastic accumulation of sugar alcohols including
xylitol and ribitol in acid stress is suggestive of their possible
involvement in the metabolic adaption of M.tb to counter
acidic stress, which has not been studied in detail. Notably,
xylitol is a known bacteriostatic metabolite. Although it is taken
up by many bacteria, they are unable to metabolize xylitol.
Xylitol is also known to inhibit bacterial metabolism, including
acid production (Ohashi et al, 1991; Trahan et al, 1991;
Roberts et al., 2002; Nayak et al., 2014). This possibly explains
potential adaptation to acid stress, wherein the acid generating
pathways are blocked or re-routed in the presence of elevated
levels of xylitol. With these observations, we propose that yet
another mechanism by which M.tb may resist acidic stress is by
utilizing excess protons.
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Multiple Regulations on Enzymes During Metabolic
Adjustments During Stress Adaptation

Some of our earlier studies which inspected the cross-talks
between metabolic network, gene regulatory network, and host-
pathogen interaction network of M.tb during hypoxia (Bose
et al, 2018) had suggested changes at the transcript levels
of genes as a probable mechanism aiding in such metabolic
rewiring. When we checked the expression levels of some selected
enzyme-coding genes by semi-quantitative RT-PCRs, few, but
not all, showed significant differences at the transcript levels
as response to stresses (Supplementary Figure S7). Urease
activity, but not the transcript levels of ureC (Supplementary
Figure S7), varied significantly during acidic stress as compared
to the control, in our conditions (Figure 6C). It was therefore
clear that the regulation of the enzymes during initial stages
of stress responses, besides changes at transcription levels, can
also be controlled through regulation of enzymatic activities by
a combination of intrinsic and extrinsic factors. Such changes
may be mediated through various factors including changes
in thermodynamic conditions, alternate use of cofactors, etc.
We analyzed our results for events wherein alternate metabolic
pathways were invoked due to differential use of cofactors
(Supplementary Table S10). Most events of alternate use of
metabolites were observed for oxidative stress. One such example
is the use of menaquinol over ubiquinone as a cofactor to
NADH dehydrogenase under oxidative stress. Effects of the use
of such alternate pathways, especially during stress alleviation
in bacterial systems have been elucidated in earlier literature
(Shimizu, 2013; Armingol et al., 2018). However, very few such
events were noted for the stresses other than oxidative stress
for M.tb. Therefore, it is likely, that although cofactors play a
part in metabolic rewiring, there are other factors, such as post-
translational modifications (Oliveira and Sauer, 2012), which
may also contribute significantly to enzyme activity and assembly
and thereby changes in metabolic rewiring.

Limitations of the Present Study

The study was limited to identification of 108 metabolites
available as standards due to which several metabolites including
lipids were not identified. Despite a limited number of
metabolites that could be measured by LC-MS/MRM from the
entire pool of metabolites owing to these technical limitations,
mathematical tools like FBA was used to overcome such
constraints. It may, however, be noted that FBA comes with
certain limitations (Orth et al., 2010). Firstly, it does not use
kinetic parameters and is mostly applicable for determining
fluxes at steady state. Secondly, it does not account for regulatory
effects such as activation of enzymes or regulation of gene
expression. So, its predictions may not always be accurate
specifically in situations where short term regulations take
place. However, time-dependence and environmental transitions
may be (partially) accounted in FBA analysis through the
use of appropriate constraints derived from experimental or
literature evidences. Such constrainments may be in the form
of gene expression data, protein or metabolite abundances, etc.
(Cortassa et al., 2015; Bose et al., 2018).

CONCLUSION

In this paper, we have discussed approaches to comprehend
the genome-scale metabolic changes in M.tb during early
stress adaptation from a small subset of measured metabolite
concentrations. Using in silico approaches, we were able to
predict the probable alterations in the paths of the flow of
metabolic fluxes, thereby leading to adaptation to stresses.
Understanding that in silico method has limitations due to
the incompleteness of the genome-scale metabolic models
and non-availability of thermodynamic parameters for all the
enzymatic reactions in case of M.th, efforts were made to
improve the existing M.tb metabolic model with regards to
the metabolites which were measured through LC-MRM/MS.
In spite of our best efforts, we were unable to capture all
the measured metabolites in the M.tb model. In particular,
metabolites from the sugar alcohol metabolic pathway could
not be captured. Thus, there exists an opportunity to improve
the in silico model of M.tb metabolism. While this study was
a single time-point study, a time-course experiment would
provide better perception on how the mycobacterial system
responds to these stresses over time for early adaptation.
Such studies and leads from these observations are under
investigations. Conclusively, with this study, together with earlier
reports (Gouzy et al, 2013, 2014), we propose glutamate
dehydrogenase (GDH), glutamate synthetase (GS) and glutamine
oxoglutarate aminotransferase (GOGAT) as important nodes
for early adaptation to microbicidal stresses, especially during
acidic stresses. In addition, GABA shunt and sugar alcohols
synthesis pathways are attractive leads to understand the
pathobiology of M.tb.
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