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Extended-spectrum beta-lactamases (ESBL) and AmpC producing-Escherichia coli
have spread worldwide, but data about ESBL-producing-E. coli in the Northern and
Eastern regions of Europe is scant. The aim of this study has been to describe the
phenotypical and molecular epidemiology of different ESBL/AmpC/Carbapenemases
genes in E. coli strains isolated from the Baltic States (Estonia, Latvia, and Lithuania),
Norway and St. Petersburg (Russia), and to determine the predominant multilocus
sequence type and single nucleotide polymorphisms diversity of E. coli isolates
deduced by whole genome sequencing (WGS). A total of 10,780 clinical E. coli
strains were screened for reduced sensitivity to third-generation cephalosporins.
They were collected from 21 hospitals located in Estonia, Latvia, Lithuania, Norway
and St. Petersburg during a 5 month period in 2012. The overall prevalence of
ESBL/AmpC strains was 4.7% by phenotypical test and 3.9% by sequencing. We
found more strains with the ESBL/AmpC phenotype and genotype in St. Petersburg
and Latvia than other countries. Of phenotypic E. coli strains, 85% contained
confirmed ESBL genes (including blaCTX−M, blaTEM−29, blaTEM−71), AmpC genes
(blaCMY−59, blaACT−12/−15/−20, blaESC−6, blaFEC−1, blaDHA−1), or carbapenemase
genes (blaNDM−1). blaCTX−M−1, blaCTX−M−14 and blaCTX−M−15 were found in all
countries, but blaCTX−M−15 prevalence was higher in Latvia than in St. Petersburg
(Russia), Estonia, Norway and Lithuania. The dominating AmpC genes were blaCMY−59

in the Baltic States and Norway, and blaDHA−1 in St. Petersburg. E. coli strains belonged
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to 83 different sequence types, of which the most prevalent was ST131 (40%). In
conclusion, we generally found low ESBL/AmpC/Carbapenemase prevalence in E. coli
strains isolated in Northern/Eastern Europe. However, several inter-country differences
in distribution of particular genes and multilocus sequence types were found.

Keywords: Escherichia coli, whole genome sequencing, multilocus sequence typing,
ESBL/AmpC/Carbapenemase genes epidemiology, Northern and Eastern Europe

INTRODUCTION

Antimicrobial resistance is an emerging problem worldwide.
Each year, 33,000 people die from an infection due to bacterial
resistance to antibiotics in Europe. The burden of infections with
bacterial resistance to antibiotics on the European population
is comparable to that of influenza, tuberculosis and HIV/AIDS
combined (Cassini et al., 2019). It has been estimated that by
2050, 10 million lives a year and a cumulative 100 trillion USD
economic output are at risk worldwide due to the rise of drug
resistant infections if we do not find proactive solutions to slow
down drug resistance (O’Neill, 2016).

Resistance of Gram-positive bacteria is generally stable or
even decreasing in Europe, whereas resistance to Gram-negative
bacteria (such as Enterobacterales) has an increasing trend in
several European countries (EARS-Net, 2018).

One of the important resistance mechanisms of
Enterobacterales, including Escherichia coli, is the production
of extended-spectrum beta-lactamases (ESBLs), AmpC
cephalosporinases and carbapenemases. ESBLs include mostly
CTX-M, SHV, and TEM enzymes; AmpCs CMY, ACT, and DHA;
and carbapenemases KPC, NDM, OXA-48 (Bush and Jacoby,
2010; Bush, 2018).

Prevalence of these beta-lactamases has been increasing all
over the world, including European countries (Bevan et al.,
2017). Data from the European Antimicrobial Resistance
Surveillance Network shows that E. coli resistance to third-
generation cephalosporins is lower in Northern and higher
in the Southern and Eastern Europe (EARS-Net, 2018). The
proportion of invasive E. coli isolates resistant to third-
generation cephalosporins by EARS-Net 2017 report was 5.9%
in Norway, 8.8% in Estonia, 16.8% in Lithuania, and 22% in
Latvia (EARS-Net, 2018). Comparable data for Russia is absent.
Data from WHO CAESAR 2016 report includes a limited
number of strains from Western part of Russia and shows
high proportion of invasive E. coli isolates resistant to third-
generation cephalosporins (66%; World Health Organisation,
2016). However, genes responsible for resistance to the third-
generation cephalosporins are not well described in this region
(Edelstein et al., 2003; Naseer et al., 2009; Dumpis et al., 2010;
Seputiene et al., 2010; Bevan et al., 2017).

The aim of this study has been to describe the prevalence
and molecular mechanisms of resistance to third-generation
cephalosporins in E. coli strains isolated from Estonia, Latvia,
Lithuania, Norway, and St. Petersburg (Russia), and to determine
the predominant multilocus sequence type and single nucleotide
polymorphisms diversity of E. coli isolates deduced by whole
genome sequencing (WGS).

MATERIALS AND METHODS

Strain Collection
During a 5 month period in 2012, E. coli clinical isolates from
21 hospitals located in Estonia (n = 5), Latvia (n = 4), Lithuania
(n = 3), Norway (n = 1), and St. Petersburg (Russia) (n = 8)
were screened for reduced susceptibility to the third-generation
of cephalosporins. Briefly, all clinically relevant materials (such
as blood, pus, urine, and respiratory tract samples) taken in
case of infection from any kind of patients (all ages, outpatients
or hospitalized in any department) and sent to microbiology
laboratories for culture were included in the study. Surveillance,
environmental and clinically irrelevant samples were excluded.
All non-duplicate E. coli isolates interpreted as a probable cause
of infection were included to the study (excluding clinically
irrelevant cases, such as probable colonization or contamination
from indigenous microbiota), and tested for third-generation
cephalosporins (at least for ceftazidime and ceftriaxone and/or
cefotaxime). Duplicates were defined as the same species isolated
from the same patients during the study period and showing
the same resistance pattern. Thus, the first isolate from a
patient was always included. In case of similar isolates that
were found from different materials taken at the same time,
invasive isolate was preferred (for example, an isolate from
blood was collected instead of sputum). Written instructions for
sampling and laboratory procedures, and laboratory materials
(ESBL/AmpC, confirmations kits, quality control strains, and
if needed antibiotic disc) were distributed to all participants.
Beforehand our project’s country managers and technical
coordinators participated in a training course to ensure similar
handling of samples, performance of laboratory techniques and
quality control.

ESBL/AmpC Screening and Confirmation
Susceptibility testing used disk diffusion according to the
guidelines of valid versions at the time of testing of European
Committee of Antimicrobial Susceptibility Testing (EUCAST,
as in the Baltic countries and Norway) or the Clinical and
Laboratory Standards Institute (CLSI, used in St. Petersburg,
Russia). Initial antimicrobial susceptibility testing was performed
in each laboratory for local standard panel that includes
mandatorily ceftazidime and ceftriaxone and/or cefotaxime. In
E. coli isolates with reduced susceptibility to third-generation
cephalosporins, ESBL and AmpC cephalosporinases production
was confirmed in a local laboratory with a ESBL + AmpC
confirmation kit (Rosco Diagnostica, Taastrup, Denmark)
provided by the project coordinator. E. coli isolates with the
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ESBL/AmpC phenotype were stored and sent to Estonian
reference center (Human Microbiota Biobank, University of
Tartu, Tartu, Estonia)1 for deposition and future characterization.
Identification of all strains was confirmed by MALDI-TOF MS
(MALDI Biotyper, Bruker Daltonics GmbH, Germany).

Bacterial DNA Extraction and Whole
Genome Sequencing (WGS)
All E. coli isolates with ESBL/AmpC phenotype were sequenced.
Briefly, DNA templates for sequencing were generated by
growing cultures of E. coli isolates overnight on the Mueller-
Hinton agar (Oxoid Limited, United Kingdom). The total
bacteria DNA from the strains were extracted using QIAamp
DNA Mini Kit (Qiagen, Germany).

Bacterial genomic DNA was quantified using the Qubit R©

2.0 Fluorometer (Invitrogen, Grand Island, NE, United States).
1 ng of sample DNA was processed for the sequencing libraries,
using Illumina Nextera XT sample preparation kit (Illumina,
San Diego, CA, United States). The DNA normalization
step was skipped; instead, the final dsDNA libraries were
quantified with the Qubit R© 2.0 Fluorometer and pooled in
equimolar concentrations. The library pool was validated
with the 2200 TapeStation (Agilent Technologies, Santa Clara,
CA, United States) measurements) and qPCR used the Kapa
Library Quantification Kit (Kapa Biosystems, Woburn, MA,
United States) to optimize cluster generation. A total of 96
bacterial genomic libraries were sequenced with 2 × 101 bp
paired-end (PE) reads on the HiSeq 2500 rapid-run flow
cell (Illumina, San Diego, CA, United States). Demultiplexing
was done with CASAVA 1.8.2. (Illumina, San Diego, CA,
United States), allowing 1 mismatch in index reads.

All sequenced genomes were assembled de novo with
assembler Velvet version 1.2 (Zerbino and Birney, 2008). Before
assembly, all reads with low quality were removed after quality
control with fastq_quality_trimmer (with parameter values –l 40,
-t 30) and fastq_quality_filter (-q 25 –p 90) from FASTX-Toolkit2.
Velvet was run with different parameter values (-max_gap_count
-max_divergence -cov_cutoff -ins_length -min_pair_count) until
the best match of E. coli MLST genes was retrieved.

Finding Beta-Lactamase Genes From
Assembled Genomes
Beta-lactamase genes were retrieved from the Comprehensive
Antibiotic Resistance Database [CARD database; (McArthur
et al., 2013)]. Thereafter, the sequences were searched with
BLAST (identity cut-off 90% and alignment length 90% of
shortest sequence) from assembled genomes. The assembled
contigs were considered to originate from either the plasmid
genome or the chromosomal genome based on a BLAST search.
We used complete plasmid genomes and complete chromosomal
genomes of E. coli from NCBI genomes database for the BLAST
search (the best match based on BLAST Score and E-value are
used for deciding the origin of a contig).

1http://eemb.ut.ee/eng/humb_english_introduction_list.php
2http://hannonlab.cshl.edu/fastx_toolkit/index.html

Multi-Locus Sequence Typing (MLST)
For accurate multi-locus sequence typing of assembled E. coli
genomes, a dedicated MLST tool was used, created by Torsten
Seemann3, that calculates the MLST profile based on a BLAST
(Altschul et al., 1997) alignment of the input sequence file and the
specified allele set. Public E. coli database (Achtman scheme) for
molecular typing was downloaded (with given date: 11.06.2019)
from PubMLST4. Raw reads from isolates with undetermined
MLST types were submitted to Enterobase, which assigned five
new sequence types (9656, 9692, 9693, 9694, and 9696). In
order to visualize evolutionary relationships between bacterial
strains, we used PHYLOViZ 2.0a (Nascimento et al., 2017) that
generates complete minimum spanning trees with goeBURST
Full MST algorithm.

Core Genome Analysis
Parsnp program from Harvest suite (Treangen et al., 2014) was
run to create core genome alignment. The alignment was used to
calculate the maximum likelihood phylogenetic tree, with RaxML
under GTR-GAMMA model and with 100 bootstrap replicates
(Stamatakis, 2014).

SNP Analysis of ST131 Isolates
ST131 isolates were aligned with Parsnp using Escherichia
coli EC958 as a reference ST131 strain (Forde et al., 2014).
Core genome SNPs from the alignment were extracted with
harvest-tools and pairwise SNP distances were used for
UPGMA tree calculation conducted in MEGA7 (Kumar
et al., 2016). Phylogenetic trees were visualized using iTOL
(Letunic and Bork, 2019).

Statistical Analysis
Statistical analysis used Past 3.225. The prevalence of
strains, genes, ST and clones were compared by Chi-
squared test or Fisher’s exact test; p < 0.05 was considered
statistically significant.

RESULTS

Phenotypic and Genotypic Epidemiology
of ESBL/AmpC/Carbapenemases
Producing E. coli Strains
A total of 10,780 consecutive E. coli isolates from Estonia, Latvia,
Lithuania, Norway and St. Petersburg (Russia) were screened
for reduced sensitivity to third-generation cephalosporins. Of
these, 5,486 (51%) were recovered from stationary patients and
5,294 (49%) from outpatients. A total of 508 (4.7%) E. coli
strains showed ESBL/AmpC phenotype. Significant inter-country
differences were found regarding the prevalence of E. coli
showing ESBL/AmpC phenotype (Table 1).

3https://github.com/tseemann/mlst
4http://www.pubmlst.org/
5http://folk.uio.no/ohammer/past/
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From 508 sequenced strains in total, 494 gave accepted
sequence quality and could be analyzed. At least one bla (beta-
lactamase) gene (including TEM and SHV other than 2be Bush-
Jacoby functional group and bla genes without well characterized
function) was found in 468 strains of the 10,780 screened isolates
(4.3%, Table 1). Of the phenotypic ESBL/AmpC producing
strains, 468 out of 494 (94.7%) harbored one of the bla genes:
blaCTX−M (n = 383; 77.5%); blaSHV (n = 21; 4%); blaTEM (n = 271;
54.9%); blaCMY (n = 36; 7.9%); blaACT (n = 3; 0.6%); blaESC−6
(n = 2; 0.4%); blaFEC−1 (n = 7; 1.4%); blaDHA (n = 12; 2.4%);
blaOXA (n = 192; 38.9%); blaNDM (n = 1; 0.2%).

Of 494 resistant strains, 421 (85%) carried any
ESBL/AmpC/Carbapenemases encoding genes (Clinic,
2015). In remaining isolates (n = 74; 15%) no known
ESBL/AmpC/Carbapenemases genes were found. Sequencing
showed the highest percentage of E. coli strains with the ESBL
genotype in St. Petersburg and Latvia compared to Estonia,
Norway and Lithuania (Table 1).

Prevalence of ESBL (including blaCTX−M, blaTEM−29,
blaTEM−71), AmpC (blaCMY−59, blaACT−12/−15/−20, blaESC−6,
blaFEC−1, blaDHA−1), carbapenemases (blaNDM−1) groups and
their combinations by countries can be found in Table 2 and
Supplementary Figure S1. In 393 (93%) strains only one ESBL
or AmpC was found and in 28 (7%) different genes combinations
were detected. The most common combination was blaCTX−M−14
together with blaDHA−1 followed by blaCTX−M−15 with
blaCMY−59 (Table 2).

Beta-Lactamases Genes
ESBL Genes
In total, 383 out of 468 (81.3%) bla gene-positive E. coli strains
had CTX-M gene (Table 2). Among ESBL-positive strains,
blaCTX−M−15 was predominated (n = 263; 68.7%) followed by
blaCTX−M−14 (n = 62; 16.2%). Three isolates had 2 different CTX-
M genes (blaCTX−M−15 with blaCTX−M−14). In total, 80% of the
CTX-M genes were plasmid-mediated and the remaining 20%
were located on the chromosome. Chromosome localizations
was found in the case of 6 genes: blaCTX−M−1, blaCTX−M−3,

blaCTX−M−14, blaCTX−M−15, blaCTX−M−24.

Although, blaCTX−M−15 was the most common gene in all
the countries, some inter-country differences were found. This
gene was more common in Latvia than in St. Petersburg, Estonia,
Norway and Lithuania (82.5 versus 71.8, 61.3, 60.3, and 41.7%;
p ≤ 0.01, p ≤ 0.01, p ≤ 0.01; p ≤ 0.001, respectively). Also
strains isolated from St. Petersburg had more blaCTX−M−15 genes
compared to Lithuanian strains (71.8 vs. 41.7%; p < 0.05).
Lithuanian strains carried more blaCTX−M−14 genes than Latvian
strains (33.3 vs. 5.6%; p = 0.0005).

ESBL associated TEM genes were found only in 2 cases:
blaTEM−29 in Estonian and blaTEM−71 in Lithuanian.

AmpC Genes
Out of 468 E. coli strains with any bla gene, 60 (12.8%) were
harboring one of the AmpC type gene. All blaACT−12/−15/−20,

blaDHA−1, blaFEC−1 genes were located in plasmid, blaESC−6 in
chromosome and blaCMY−59 in plasmid or chromosome.
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TABLE 2 | Prevalence of different ESBL/AmpC/Carbapenemase (Carba) genes and their combinations in E. coli strains from different countries.

ESBL/AmpC/Carba genes Estonia Latvia Lithuania Norway St. Petersburg TOTAL

ESBL blaCTX−M−1 6 5 2 2 1 16

blaCTX−M−2 1 1

blaCTX−M−3 4 3 1 7 15

blaCTX−M−5 1 1

blaCTX−M−9 1 1

blaCTX−M−14 12 5 8 9 12 46

blaCTX−M−15 47 79 10 35 80 251

blaCTX−M−24 1 1 1 3

blaCTX−M−27 2 1 6 9

blaCTX−M−32 3 1 4

blaCTX−M−55 4 1 5

blaCTX−M−88 1 1

blaCTX−M−111 1 1

blaCTX−M−116 1 1

blaCTX−M−136 1 1

blaTEM−29 1 1

blaTEM−71 1 1

AmpC blaCMY−59 11 6 5 4 2 28

blaFEC−1 2 1 3 6

blaESC−6 1 1

Combinations blaCTX−M−14, blaCTX−M−15 3 3

blaCTX−M−3, blaACT−12 1 1

blaCTX−M−14, blaDHA−1 12 12

blaCTX−M−14, blaFEC−1 1 1

blaCTX−M−15, blaACT−15 1 1

blaCTX−M−15, blaACT−20 1 1

blaCTX−M−15, blaCMY−59 1 5 6

blaCTX−M−15, blaESC−6 1 1

blaCTX−M−24, blaCMY−59 1 1

blaNDM−1, blaCMY−59 1 1

The most prevalent AmpC-like genes were blaCMY−59 (n = 36;
60%), blaDHA−1 (n = 12; 20%), and blaFEC−1 (n = 7; 11.7%) alone
or in combination with other genes (Table 2).

Other Beta-Lactamase Genes
A total of 271 (57.9%) E. coli strains with any bla gene carried
blaTEM : blaTEM−1, blaTEM−29, blaTEM−71, blaTEM−76, blaTEM−98,
blaTEM−135, blaTEM−150, blaTEM−198,and blaTEM−199. The most
dominant strain was blaTEM−1 (in 246 strains). Only, 21 (4.5%)
bla gene-positive E. coli strains had blaSHV−188 gene; however,
the activity of SHV-188 enzyme has not been properly described.
192 (41%) bla gene-positive E. coli strains carried blaOXA−1 and 1
strain blaOXA−7. However, enzymes coded by these genes are not
real ESBLs. One carbapenemase plasmid-associated blaNDM−1
gene was found in combination with blaCMY−59 (Table 2).

Genotypes of Bla Genes Containing
E. coli Strains
We identified 83 different sequence types, the most prevalent
being ST131 (n = 198; 40%), followed by ST38 (n = 37;
7.5%), ST405 (n = 32; 6.5%), ST167 (n = 19; 3.8%), and
ST2015 (n = 18; 3.6%). The prevalence of other sequence

types was <3%. When ST131 was common in all the
countries, then ST167 was mainly found in Latvia (14/19;
73.7%), ST38 (25/37; 67.6%), and ST405 (27/32; 84.4%)
in St. Petersburg and ST2015 (18/18; 100%) was found
only in Estonia. Four sequence types were found in all
countries: ST69, ST131, ST354, and ST405 (Figure 1 and
Supplementary Figure S2).

ST131 was most common in Latvia (63/109; 57.8%), followed
by Estonia (61/147; 41.5%), Lithuania (11/34; 32.4%), St.
Petersburg (43/135; 31.9%), and Norway (20/6; 29%). In Latvia,
the proportion of ST131 among ESBL strains was significantly
higher than in St. Petersburg and Norway (p ≤ 0.001,
p ≤ 0.001, respectively). Estonian strains belonged to more
different sequence type groups when compared to Latvia,
Lithuania and Norway (43 vs. 26, 19, 26; p ≤ 0.01, p ≤ 0.001,
p ≤ 0.01, respectively). In St. Petersburg there were 30
different sequence types.

In ST131 strains, 7 different CTX-M genes were found:
blaCTX−M−1, blaCTX−M−3, blaCTX−M−5, blaCTX−M−14,
blaCTX−M−15, blaCTX−M−27, blaCTX−M−111. ST38 strains
carried mainly blaCTX−M−14, and ST405 blaCTX−M−15 genes;
these sequence types were more frequent in St. Petersburg
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FIGURE 1 | Distribution of bla genes containing E. coli multilocus sequence types (MLST) in Estonia (blue), Latvia (greenish yellow), Lithuania (green), Norway (black),
and St. Petersburg (red).

(ST38; 25/135; 18.5% and ST405 27/135; 20%) compared
to other regions.

Analysis of single nucleotide polymorphisms (SNPs) in shared
genome blocks revealed 18,888 SNPs present in the core genome
of ST131 strains. Differences compared to reference EC958
ranged from 17 to 7,067 SNPs (Supplementary Figure S3).
Four groups were detected among ST131 strains containing
isolates from different countries, and having in-group average
pairwise SNP distances of<20 (n = 40 strains; Supplementary
Figure S4). SNP differences inside those four groups were
0–8.8 SNPs/Mbp of the ST131 core genome (∼3.4 Mbp).
The average amount of SNPs between the groups was less
than 110. One such group was also very close to reference
EC958 strain. SNP tree of all E. coli strains is given in
Supplementary Figure S2.

DISCUSSION

This study describes the phenotypic and molecular epidemiology
of E. coli strains with reduced susceptibility to third-generation
cephalosporins in Northern and Eastern Europe by screening
of more than 10,000 E. coli strains. The overall prevalence of
ESBL/AmpC strains was 4.7% by phenotypical test and 3.9%
by sequencing. We found more strains with the ESBL/AmpC
phenotype and genotype in St. Petersburg and Latvia than in
other countries. According to our knowledge this is the first study
analyzing beta-lactamases epidemiology of E. coli using WGS and
describing in detail resistance genes, distribution of MLST and
SNP clones in this region.

Although several reports have been previously published,
scope, methodology and data quality in these studies vary.
Edelstein’s group investigated E. coli strains from Russia, and
found that the prevalence of phenotypic ESBL-positive strains
was close to 16%; however, prevalence figures in different
institutions varied from 10 to 90% (Edelstein et al., 2003).

WHO CAESAR study reports high prevalence (66%) of third-
generation cephalosporins resistance in invasive E. coli strains in
Russia, however the number of strains was small (World Health
Organisation, 2016). This high variance might be dependent
upon different antibiotic use policies in different Russian
regions and hospitals. Our results also showed a relatively
high prevalence of ESBL/AmpC phenotype in St. Petersburg
area compared to other countries. However, it is impossible
to draw final conclusions about the overall prevalence of
ESBL/AmpC/Carbapenemases in Russia at large, since the strains
were collected only from St. Petersburg region, and thus reflects
the situation in only one city.

In a previous Eastern European study conducted between
2004-2010 that included 42 centers, the average ESBL phenotype
prevalence among E. coli strains was 15.3%, with the highest
prevalence in South-East European countries - Turkey (25.2%),
Bulgaria (15.7%) and Romania (12.2%) - and lowest in Central
and North-East European countries - Croatia (3.6%) Czechia
(3.6%), Latvia (3.6%), Slovenia (2.7%), and Lithuania (1.8%)
(Balode et al., 2013). In a similar following study done between
2011 and 2016, the E. coli ESBL phenotype average prevalence
was higher when compared to the previous survey (20.1 vs.
15.3%) (Balode et al., 2013; Dowzicky and Chmelarova, 2018).
However, in these studies, phenotypic tests detecting only ESBL
(not AmpC) were used. In countries of Western and Northern
Europe, a prevalence of ESBL producing bacteria was low
in the Netherlands (6.1%), Germany (7.7%), Sweden (2–4%),
and Norway (1.5%) (Brolund et al., 2014; Soraas et al., 2014;
Zhou et al., 2017).

When comparing ESBL/AmpC prevalence in different studies
several aspects should be taken into account. Different methods
and criteria have been used in different studies such as decreased
sensitivity to third-generation cephalosporins as an indicator of
ESBL; phenotypic confirmation test for ESBL alone or ESBL
combined with AmpC. In studies where molecular methods
were applied, different approaches have been used: searching
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only for CTX-M types or including also TEM, SHV and
AmpC type genes.

Besides differences in detection methodologies several other
factors might influence the results and potential cause over as well
as underestimation of ESBL/AmpC prevalence and resistance
percentages. One such factor is the use of different sampling
practices in different institutions noted also by EARS-Net as a
factor that should be taken into account in interpreting inter-
country differences (EARS-Net, 2018). A similar limitation is
present in all studies using clinical strains from routine cultures,
including our study.

We found more strains with ESBL/AmpC phenotype than
strains with known ESBL/AmpC gene. Several reasons can
cause this: other mechanisms such as possible hyperproducers
of intrinsic (chromosomal) cephalosporinase combined or not
with alteration in porin channels can lead to resistance to third-
generation cephalosporins; bla genes databases are not complete
- we probably don’t know all ESBL/AmpC genes or not all are
submitted to databases, furthermore these genes are changing
and new variants may not be recognized; we found in our
strains several genes (such as SHV and TEM variants) without
information about their belonging to particular Bush-Jacoby
functional group (ESBL/AmpC or not). Only well described
ESBL/AmpC genes were included in this study.

The most common ESBL genes in our study were
blaCTX−M−15 and blaCTX−M−14. These enzymes have been
reported throughout Asia, Africa, Europe, America and Australia
(Livermore et al., 2007; Sidjabat et al., 2010; Iroha et al., 2012;
Chen et al., 2014; Pietsch et al., 2017). So far, the CTX-M-15
genotype appears to be the most prevalent in all continents,
and our findings are in accordance with previous reports
(Sidjabat et al., 2010; Canton et al., 2012; Iroha et al., 2012;
Voets et al., 2012; Brolund et al., 2014; Chen et al., 2014;
Bevan et al., 2017; Jorgensen et al., 2017; Pietsch et al., 2017).
CTX-M-15 dominates in Germany and the Netherlands, but
more recent studies show an increased proportion of CTX-M-1
compared to CTX-M-14 (Voets et al., 2012; Pietsch et al.,
2017). CTX-M-14 has been found to be less prevalent in
most countries with some exceptions [China, South-East Asia,
South Korea, Japan, and Spain; (Onnberg et al., 2011; Copur
Cicek et al., 2013; Helldal et al., 2013; Bevan et al., 2017)].
Although we found CTX-M-14 in all investigated countries
it was less prevalent than CTX-M-15. We found in few cases
(0.7%) the combination of CTX-M-14 and CTX-15. In some
regions this combination was frequently reported (Park et al.,
2012). Increasing prevalence of CTX-M-27 has been reported
worldwide. This genotype is a single nucleotide variant of
CTX-M-14 showing higher MIC to ceftazidime and therefore
use of ceftazidime would theoretically select it (Bevan et al.,
2017). We found only a few CTX-M-27 strains from Estonia,
Latvia and Norway. As in previous studies we found the
majority of blaCTX−M in plasmids and a minority (20%) in
chromosome. However, frequency of chromosomal location
of blaCTX−M (mainly blaCTX−M−14 and blaCTX−M−15) varies
in different regions and studies from<5% in some European
countries to 27% in recent Japanese study (Rodríguez et al., 2014;
Hamamoto and Hirai, 2019).

In previous studies AmpC prevalence in E. coli was
usually low, however in some regions prevalence up to 9%
has been reported (Pascual et al., 2016; Zhou et al., 2017;
Kazemian et al., 2019; Ribeiro et al., 2019). In our study
AmpC prevalence was<1% except for in St. Petersburg
(2.1%). In the previous studies, CMY-2 was usually the most
common AmpC, however DHA-1 has been reported as
dominant in some studies (Brolund et al., 2014; Soraas et al.,
2014; Pascual et al., 2016; Kazemian et al., 2019; Ribeiro
et al., 2019). In our study blaCMY−59 was dominating
in the Baltic States and Norway but blaDHA−1 in St.
Petersburg. There are only a few reports about finding
blaCMY−59 in clinical strains (Roy et al., 2011; Ranjbar
et al., 2013). In some AmpC epidemiology studies, common
predominance of “CMY-2 like” genes has been reported
without exact gene determination that makes it difficult
to compare our data with others (den Drijver et al., 2018;
Pietsch et al., 2018).

Only one NDM-1-producing E. coli was found during our
study. Carbapenem resistance is still rare among E. coli strains
in Europe (0–1.6%) and blaOXA−48 is the most commonly
observed carbapenemase. At the same time carbapenem
resistant K. pneumoniae is more common in Europe (0–
64.7%) with blaKPC and blaOXA−48 predominance (Grundmann
et al., 2017; EARS-Net, 2018). However, outbreak of NDM-1-
producing K. pneumoniae has been reported in St. Petersburg
(Pavelkovich et al., 2014). No co-production of NDM-1
and CMY-39 has been reported previously. Prevalence of
carbapenemases among other Enterobacterales is probably
rare. In our study in Northern and Eastern Europe (2015,
including nine countries) only one blaOXA−48 was found in
88 Enterobacterales strains (other than K. pneumoniae) with
reduced susceptibility to carbapenems; in the same settings
ca 50% of K. pneumoniae strains with reduced susceptibility
to carbapenems (n = 171) harbored carbapenemase gene (our
unpublished data).

In sequenced strains presence of TEM, SHV or OXA genes
was common. However, only a few (< 1%) TEM genes were real
ESBL/AmpC encoding genes. In other cases these genes were
not associated with ESBL/AmpC phenotype or their belonging
to Bush-Jacoby functional group is unknown. Thus, detection of
TEM, SHV or OXA genes without sequencing have no value in
ESBL epidemiology studies.

ST131, which belongs to the highly virulent phylogenetic
group B-group, is prevalent worldwide (Sidjabat et al., 2010;
Voets et al., 2012; Brolund et al., 2014; Bevan et al., 2017;
Jorgensen et al., 2017; Pietsch et al., 2017; Zhou et al., 2017; Chong
et al., 2018). According to other studies, ST131 usually contains
different blaCTX−M, the most common being blaCTX−M−15,
followed by blaCTX−M−14, and blaCTX−M−27 as also found in our
region (Sidjabat et al., 2010; Brolund et al., 2014; Chen et al., 2014;
Bevan et al., 2017; Chong et al., 2018; Teunis et al., 2018).

ST131 was also the most common genotype in our study.
More than 50% of the Latvian and over one-third of Estonian,
Lithuania, and St. Petersburg’s E. coli strains belonged to this
group. When applying SNP analysis to ST131 strains several
clones with cross-border spreading were found.
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In general, prevalence of ESBL, AmpC and Carbapenemases
genes was low in investigated E. coli strains. However, several
inter-country differences notably in distribution of particular
genes, MLST groups and SNP clones, were described.
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FIGURE S1 | Prevalence of ESBL/AmpC/carbapenemases genes in E. coli strains
isolated from Estonia, Latvia, Lithuania, Norway, and St. Petersburg.

FIGURE S2 | Maximum likelihood phylogeny of the core genome of studied E. coli
isolates calculated with RaxML. Top five most frequently observed sequence types
are marked in color: ST131 (red), ST38 (yellow), ST405 (green), ST167 (blue),
ST2015 (purple). Country codes (two first letters in strain codes): EE, Estonia; LV,
Latvia; LT, Lithuania; NO, Norway; RU, St Petersburg (Russia). Isolates NOR5_51
and EETUKB199 were not used in further analysis because of the low
assembly quality.

FIGURE S3 | UPGMA tree based on core SNP distances among ST131 isolates.
Country codes (two first letters in strain codes): EE, Estonia; LV, Latvia; LT,
Lithuania; NO, Norway; RU, St Petersburg (Russia).

FIGURE S4 | Higher resolution subpart of ST131 tree from Supplementary
Figure S3. Groups containing isolates from different countries and average
pairwise distances less than 20 SNPs inside the group are marked. Country codes
(two first letters in strain codes): EE, Estonia; LV, Latvia; LT, Lithuania; NO, Norway;
RU, St Petersburg (Russia).
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