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DNA and RNA-based sequencing of the 16S rRNA gene and transcripts were used
to assess the phylogenetic diversity of microbial communities at assets experiencing
corrosion in an oil production facility. The complementary methodological approach,
coupled with extensive bioinformatics analysis, allowed to visualize differences between
the total and potentially active communities present in several locations of the production
facility. According to the results, taxa indicative for thermophiles and oil-degrading
microorganisms decreased their relative abundances in the active communities,
whereas sulfate reducing bacteria and methanogens had the opposite pattern. The
differences in the diversity profile between total and active communities had an effect on
the microbial functional capability predicted from the 16S rRNA sequences. Primarily,
genes involved in methane metabolism were enriched in the RNA-based sequencing
approach. Comparative analysis of microbial communities in the produced water,
injection water and deposits in the pipelines showed that deposits host more individual
species than other sample sources in the facility. Similarities in the number of cells
and microbial profiles of active communities in biocide treated and untreated sampling
locations suggested that the treatment was ineffective at controlling the growth of
microbial populations with a known corrosive metabolism. Differences in the results
between DNA and RNA-based profiling demonstrated that DNA results alone can lead
to the underestimation of active members in the community, highlighting the importance
of using a complementary approach to obtain a broad general overview not only of total
and active members but also in the predicted functionality.

Keywords: DNA, RNA, 16S rRNA gene, oil production, produced water, injection water, microbiologically
influenced corrosion (MIC)

INTRODUCTION

Corrosion refers to the deterioration of metals that results from its interaction with the
environment. It is a natural process that affects several sectors such as production, transportation
and refining of hydrocarbons (Hansson, 2011). This phenomenon generates millions of dollar losses
to the world’s industry every year (Franklin and White, 1991; Kip and Van Veen, 2015). In fact,
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the latest estimation of the global corrosion costs quantified
as US$2.5 trillion, without including safety or environmental
consequences (Koch et al., 2016). From this total cost,
microbiologically influenced corrosion (MIC) accounts for
almost 20% of external, and 40% of internal corrosion problems
in pipelines (Wolodko et al., 2018). MIC is known as the
deterioration of metals that results from the presence and
activity of microorganisms on their surfaces (Beech and Sunner,
2004). It was first identified in 1963 (Booth and Mercer,
1963), but its significance was not commonly recognized
in the same decade (Usher et al., 2014). Nowadays, it is
well known that the participation of microorganisms in the
corrosion process can significantly increase the corrosion rates,
representing a big concern to the integrity of industrial
infrastructure, particularly oil and gas facilities (Usher et al., 2014;
Xu et al., 2016).

Microorganisms change the electrochemical conditions at
the metal/solution interface by the attachment of cells, biofilm
formation, and subsequent release of metabolites, which induces
or accelerates the corrosion process (Moura et al., 2013). MIC is
characterized by a particular morphology of damage – localized
pitting (Little and Lee, 2007), with corrosion rates reported
up to 10 millimeters per year (Machuca and Polomka, 2018).
Remarkably, MIC is not constrained to a unique corrosion
mechanism (Lewandowski and Beyenal, 2009; Kakooei et al.,
2012; Urquidi-Macdonald and Macdonald, 2014; Li et al.,
2018). The main mechanisms described for MIC include the
formation of concentration cells, the production of corrosive
metabolites, the removal of protective films, and the production
of unprotective surface layers (Skovhus et al., 2017). Lately, MIC
has been reclassified into two different mechanisms, chemical
MIC (CMIC) that considers metal deterioration induced by
corrosive chemical species produced via microbial metabolic
activity (indirect corrosion), and electrical MIC (EMIC) that
refers to the damage caused by direct microbial uptake
of electrons from the steel (direct corrosion) (Enning and
Garrelfs, 2014). Causative microorganisms have been classified
in microbial groups according to their metabolic activities,
such as sulfide producing prokaryotes that include sulfate and
thiosulphate reducers (Machuca et al., 2017; Machuca and
Polomka, 2018), acid-producing (Gu and Galicia, 2012; Gu,
2014), methanogens (Uchiyama et al., 2010), iron-oxidizing
(Ashassi-Sorkhabi et al., 2012; Liu et al., 2014), and iron-
reducing bacteria (Herrera and Videla, 2009). Microorganisms
with these metabolic capabilities are part of the normal
microbiota of petroleum reservoirs (Magot et al., 2000;
Ollivier and Magot, 2005). Microbial populations in oil
reservoirs can reach the surface and colonize the metal
infrastructure of the production facilities during the oil and gas
extraction process.

Monitoring microbial activity in production facilities is part
of the corrosion management of oil and gas industry assets.
Microbiological assessment is routinely performed to detect the
presence of MIC causative microorganisms and to evaluate
the effectiveness of biocide treatments used to mitigate against
MIC. Traditionally, culture-based techniques have been used
to identify the presence of known corrosive microbial groups

in industrial facilities (Muyzer and Marty, 2014; Beale et al.,
2016; Machuca and Polomka, 2018). Since culture media cannot
recover all microorganisms present in the environment (Keasler
et al., 2012; Chakraborty et al., 2014), culture-independent
techniques are used to complement cultivation based analyses. In
the last decades, molecular microbiological methods have been
implemented to improve the understanding of the microbial
ecology of a system (Chakraborty et al., 2014). Within molecular
methods, 16S rRNA gene amplicon sequencing is the most
implemented method to study the biodiversity of oilfield
environments (Lin et al., 2014; Wang et al., 2014; Li et al.,
2017a; Okoro and Amund, 2018). Despite the disadvantage
in the data interpretation due to the variation of 16S gene
copy number among species (Crosby and Criddle, 2003; Acinas
et al., 2004), the use of this sequencing approach on the
biofilm communities recovered from corroded metals has
allowed for taxonomic identification of microorganisms likely
to be associated with corrosion failures (Vigneron et al., 2016,
2018; Li et al., 2017a). Considering that DNA-based analysis
cannot discriminate between active and inactive species, RNA-
based analyses have become popular in microbial ecology
investigations as an alternative methodological approach to
generate information of active members in the communities of
different environments (Moeseneder et al., 2005; Bastias et al.,
2007; Lillis et al., 2009; Kim et al., 2013). Nevertheless, the
suitability of amplicon sequencing of 16S rRNA transcripts for
identifying the active microbial populations that may be involved
in corrosion of oil production systems has rarely, if ever, been
explicitly addressed.

This work aimed to determine whether the application of
complementary analysis using amplicon sequencing of the 16S
rRNA gene and transcripts would provide relevant information
on the microbial communities recovered from an oil production
facility with corrosion issues. The production facility chosen
for this investigation has exhibited several incidents of pinhole
leaks or rapid reduction in wall thickness in pipes and vessels
in the last decade. To the present, the causes of the increase
in the corrosion rates of assets at the facility are uncertain.
Corrosion processes were previously attributed to the presence
of deposits called “schmoo,” which are a combination of oil,
corrosion inhibitor, produced fines and scales (O’Reilly et al.,
2016). The formation of this material in the pipe walls reduces
the effectiveness of corrosion inhibitors, increasing the risk
of corrosion failures. However, the localized corrosion attack
evidenced in the facility and the detection of microorganisms
previously associated with MIC has raised the concern that
microbial activity might also play a part in these corrosion
failures. Including the RNA-based sequencing approach in the
microbiological assessment of the oil facility helped identify
active members in the community. In addition, the comparison of
both methodologies through several bioinformatics tools allowed
to visualize differences in the profiles between total and active
communities, as well as the effect of environmental parameters
(local operational conditions) and biocide treatment on their
composition. Functional profiles from 16S rRNA data were
predicted as a complementary and cost-effective metagenomic
pre-study for identifying the metabolic capabilities of the oilfield
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communities, and to relate potential differences in the DNA and
RNA-based results with predicted functionality.

MATERIALS AND METHODS

Site Description and Sampling
The oil production facility from which samples were taken
is located on the north-west coast of Western Australia. The
oilfield has been operating for many years and uses water
flooding to increase reservoir pressure and thereby stimulate
production. Approximately 80,000 barrels of water per day
(BWPD) are injected into the reservoir from 268 injector wells.
Water used for this practice consists of a mixture of source water
extracted from source water wells, and recycled produced water,
also known as produced water re-injection (PWRI). Produced
fluids extracted by the oil producing wells are transported to
satellite stations distributed in the facility, where a biphasic
separation is carried out by degasser vessels. Then, the water-
oil mixture is transported to the central processing facility
(CPF) for further separation of oil and water in low-pressure
separator units. After separation, oil is shipped out of the
facility and produced water is reinjected into the reservoir.
A schematic diagram of the production facility is presented
in Figure 1.

The assessment of the microbial composition of total and
potentially active communities in the facility was carried out
by collecting six (6) produced water samples, four (4) deposits
samples (schmoo), and one (1) injection water sample. Produced
water samples were collected from five (5) satellite stations
downstream of the degasser facility and one (1) after the oil-
water separator at the CPF. Each satellite station recovers
fluid from different oil production wells, while the CPF water
sample comingles fluids recovered from the satellite stations
in the oilfield. Deposits samples accumulated at 6 o’clock
position were collected from four different locations of the
pipeline in the produced water recovery system. Deposits were
sampled during replacement activities of corroded pipeline
downstream the low-pressure separators. All replaced pipeline
was covered by approximately 3 cm of schmoo material; only
one of the samples was collected in an exact indication of wall
thickness loss. The injection water sample was collected from
the storage tank, downstream the source water wells. Samples
were coded according to the source (produced water = PW,
deposits = DP, injection water = IW). Sampling locations
are indicated in Figure 1. Samples PW1 and PW2 belong
to stations with biocide treatment tetrakis (hydroxymethyl)
phosphonium chloride (THPS) whereas the other stations were
not under chemical treatment. Produced water is also treated
with Acrolein (ion dissolver and biocide) in the CPF separators

FIGURE 1 | Process flow diagram of the oil production facility.
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before entering the produced water recovery system. In this
way, PW6 and all deposits are biocide treated samples. Sample
DP3 was the only sample collected in an exact indication of
wall thickness loss.

Water samples were collected in baked and autoclaved glass
containers, after 1 min of line flushing, whereas deposits samples
were collected using sterile spatulas and placed in DNase/RNase
free sterile plastic containers. Six samples were collected from
each sampling location and processed separately to obtain
triplicates for the DNA and RNA analysis, respectively. All
containers were tightly sealed to avoid oxygen intrusion and
immediately transported to the oilfield production laboratory
for processing and preservation within maximum 30 min after
collection. Oil-water samples were decanted in sterile separatory
funnels for oil phase removal, and 500 mL of water were
filtered through sterile 0.2 µm pore size membranes to harvest
microbial cells. Deposits and filter membranes were immersed
in RNAprotect R© Bacteria Reagent (QIAGEN) and transported
at 4◦C to a research facility (2 days after collection) for further
processing. Upon arrival, RNAprotect was washed from the
samples with diethyl pyrocarbonate (DEPC) treated water, and
samples were stored at −80◦C until DNA/RNA extractions were
conducted (maximum 1 week upon collection).

Chemical Characterization
Chemical analysis of produced water and deposits (performed
by a certified commercial laboratory) were carried out following
US EPA, APHA (American Public Health Association, 2005),
and in-house test methods. Analyses included: (a) pH (Thermo
Scientific, Orion Star A329 pH probe and meter); (b) conductivity
(Thermo Scientific Orion 5-Star Conductivity meter); (c) total
petroleum hydrocarbons (TPH) by Gas Chromatography-Flame
Ionization Detector (GC-FID) (US EPA 3510C); (d) volatile
fatty acids (VFA) by High Performance Liquid Chromatography
(HPLC) (in-house method); (e) metals Fe, Mg, Na, K,
Ca by atomic absorption spectroscopy (AAS) (APHA 3030
and 3110) and S, Cr, Cu, Mn, Ni, Zn by inductively
coupled plasma optical emission spectrometry (ICP- OES)
(APHA 3030 and 3120); (f) total nitrogen, total phosphorus,
nitrate-N, chloride and sulfate measured using an automated
Colorimetric/Turbidimetric Aquakem System (APHA 4500); (g)
thiosulphate measured using an in-house method involving
standardized iodate/iodide titration following by formaldehyde
pre-treatment; (h) total organic carbon (TOC) by the high-
temperature combustion method (APHA 5310B), and (i)
alkalinity by titration (APHA 2320).

Microbial Enumeration
The number of cultivable sulfide-producing prokaryotes (SPP),
acid-producing bacteria (APB), iron-reducing bacteria (IRB),
and iron-oxidizing bacteria (IOB) were determined by the serial
dilution method described in the standard test method NACE
TM0194 (NACE International, 2014), which is the most widely
used technique in the industry for monitoring oil field microbes.
For counting SPP microorganisms, a culture media described
elsewhere was used (Suarez et al., 2019a). Other microbial
populations were evaluated using culture media suggested in the

standard mentioned above. The serial dilution method consists
of preparing 10-fold dilutions of the sample into liquid media.
For this, 1 mL of water or 1 g of deposits was inoculated in a
glass vial with 9 mL of culture medium and diluted six times
(106). Each serial dilution was conducted in duplicate. Culture
vials were incubated at the temperature found in situ during
sample collection (40◦C), for a total of 28 days. Positive growth
was determined by changes in the culture media as per NACE
TM0194 guidelines.

Nucleic Acids Extraction
To assess the potential involvement of the microbial communities
in the corrosion failures experienced in the oil production
facility, DNA and RNA-based profiling were used for the
molecular characterization of the total and potentially active
microorganisms, respectively. DNA was extracted from
water samples using the DNeasy PowerWater Kit (QIAGEN)
according to the manufacturer’s instructions with the following
modification: filters were placed into the PowerWater DNA Bead
Tube containing solution PW1 and heated at 65◦C for 10 min
before the Vortex step. RNA was extracted using the RNeasy
PowerWater Kit (QIAGEN) following the manufacturer’s
instructions. DNA and RNA concentrations were quantified
fluorometrically with the Qubit dsDNA and RNA HS Assay
kits (Life Technologies). Afterward, total RNA was treated with
DNase I (Thermo Scientific) to remove remaining DNA. To
verify the complete removal of DNA, a PCR reaction targeting
the 16S rRNA gene was performed. Subsequently, RNA was
purified and concentrated by using the RNeasy MinElute
Cleanup kit (QIAGEN). Purified RNA was converted to cDNA
by using the QuantiTect Reverse Transcription kit (QIAGEN).
DNA and RNA from deposits were extracted as mentioned
for water samples but employing the DNeasy PowerSoil and
RNeasy PowerSoil Kits (QIAGEN), respectively. Despite several
attempts with modified conditions, the extraction of high-quality
RNA from the IW sample or cDNA synthesis from DP1 –
DP4 samples failed.

Library Preparation and Sequencing
Polymerase chain reaction (PCR) and sequencing were
performed by the Australian Genome Research Facility.
PCR amplicons were generated using the primers
341F (5′ CCTAYGGGRBGCASCAG 3′) and 806R (5′
GGACTACNNGGGTATCTAAT 3′) (Yu et al., 2005).
Thermocycling was completed with an Applied Biosystem
384 Veriti and using AmpliTaq Gold 360 master mix (Life
Technologies, Australia) for the primary PCR. The first stage
PCR was cleaned using magnetic beads, and samples were
visualized on 2% Sybr Egel (Thermo-Fisher). A secondary
PCR to index the amplicons was performed with TaKaRa
Taq DNA Polymerase (Clontech). The resulting amplicons
were cleaned again using magnetic beads, quantified by
fluorometry (Promega Quantifluor) and normalized. The
equimolar pool was cleaned a final time using magnetic beads
to concentrate the pool and then measured using a High-
Sensitivity D1000 Tape on an Agilent 2200 TapeStation. The
pool was diluted to 5 nM and molarity was confirmed again
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using a High-Sensitivity D1000 Tape. This was followed by
sequencing on an Illumina MiSeq instrument with a V3 (600
cycles) kit (Illumina).

Bioinformatics and Statistical Analysis
The Quantitative Insights Into Microbial Ecology Software
(QIIME, v1.9.1) (Caporaso et al., 2010) was used for the
analyses of the 16S rRNA gene sequences generated with the
Illumina MiSeq. Paired-end reads were assembled by aligning
the forward and reverse reads using PEAR (v0.9.10 - 64 bit)
(Zhang et al., 2014) with default parameters. Then, Primers were
identified and trimmed with Cutadapt (v1.10) (Martin, 2011)
using default settings. Afterward, USEARCH (v10.2) (Edgar,
2010) was used for quality filtering, dereplication, denoising,
and clustering into zero-radius operational taxonomic units
(zOTUs) with the UNOISE3 algorithm. Chimeric sequences
were removed using UCHIME (Edgar et al., 2011) with
SILVA as reference database (SILVA v132) (Yilmaz et al.,
2014). Filtered sequences were mapped to chimera-free
OTUs, and the zOTU table was created using VSEARCH
(v1.1.3) (Rognes et al., 2016). Taxonomic classification of the
reference sequences (zOTUs) was performed by similarity
searches using BLAST against the same SILVA database.
Species richness, alpha and beta diversity estimates were
determined using the QIIME algorithms. Sample comparisons
were done at the same surveying effort, utilizing 34,532 by
random selection.

Statistical analyses and graphs were conducted employing
R (v3.4.3) (R Core Team, 2014), and PAST (v3) (Hammer
et al., 2001) software. Results of statistical tests were considered
significant with p ≤ 0.05. The statistical analyses implemented
depended on the normality of the data in each variable. Shapiro–
Wilk test (Shapiro and Wilk, 1965) was used to determine data
distribution and homogeneity of variance. To test differences in
variables with normal distribution we used analysis of variance
(ANOVA) followed by Tukey’s multiple comparisons (Tukey,
1949). For those variables with a non-normal distribution,
we used the Kruskal–Wallis test followed by Dunn’s multiple
comparisons. The shared microbial zOTUs among communities
in the produced water, injection water and deposits were
investigated using “VennDiagram” R package (Boutros Paul
and Chen, 2011). Relative abundances of specific microbial
groups in the total and active communities were studied at
phylum and order level, whereas differences in the microbial
composition of all sample sources was investigated at genus
level. Bart charts of the microbial communities with phylogenetic
groups with relative abundances equal or greater to 1% in at
least one sample were created using the “ggplot2” R package
(Wickham, 2016).

To visualize the multivariate dispersion of the community
composition a non-metric multidimensional scaling (NMDS)
analysis was performed based on the Weighted UniFrac
distance (Lozupone and Knight, 2005), lines for joining samples
collected in the same sample source were projected onto
the ordination, utilizing the function ordiellipse. The effect of
environmental parameters on the microbial community was
analyzed using the envfit function and projected into the

ordination with arrows. Ordiellipse and envfit functions are
contained in the “vegan” R package (Oksanen et al., 2015).
Permutational analysis of variance (PERMANOVA) and analysis
of similarities (ANOSIM) were used to test for significant
differences in beta diversity, Bray–Curtis distance (Bray and
Curtis, 1957) was used in these tests. To identify the microbial
orders associated with the produced water at the different
stations or within each sample source, an analysis based on
the point biserial correlation coefficient was performed using
multipatt in the “indicSpecies” R package (De Caceres and
Legendre, 2009). For visualization, a network was generated using
stations or sample source as source nodes, and the bacterial
orders as target nodes. All taxa with significant associations
were visualized in the networks. The network was performed
using the edge-weighted spring embedded layout algorithm in
Cytoscape (v3.5) (Shannon et al., 2003), with the edge weight
corresponding to the association strength of each order with each
sampling location.

The functional profile of the microbial communities was
predicted using the “Tax4Fun” R package (Aßhauer et al., 2015).
FTU (fraction of taxonomic units unexplained) values of the
prediction were relatively low in most of the samples (FTU x̄ 26)
which indicated that the majority of the zOTUs were included
in the functional prediction. Comparison of the functional
profiles predicted from the DNA and RNA-based sequencing was
performed using the average of the relative abundance predicted
per pathway in all samples. Linear discriminant analysis (LDA)
effect size was employed through LEfSe v1.0 (Segata et al., 2011)
to identify KEGG pathways as significant biomarkers of the
microbial communities and sample sources. For this analysis,
the alpha parameter significance threshold for the Krushkal–
Wallis (KW) test implemented among classes in LEfSe was
set to 0.05 and the logarithmic LDA score cut-off was set to
2.0. All analyses were performed through the Galaxy server
(Goecks et al., 2010).

RESULTS

Chemical Characterization
The chemical composition of the water and deposit samples
is shown in Tables 1, 2, respectively. A clear difference in
the chemistry of produced water and injection water was
evidenced. Injection water contained lower levels of petroleum
hydrocarbons (TPH), organic carbon (TOC) and volatile fatty
acids (VFAs), as well as less total dissolved solids as indicated
by the conductivity. Produced water samples exhibited similar
characteristics in the different sampling locations, pH close
to neutrality, high salinity, and similar content of organic
compounds. The main difference in the chemical composition
of produced water samples was the concentration of metals.
PW1, PW2, and PW5 reported higher levels of iron and
manganese. Additionally, PW2 displayed higher levels of zinc,
as well as the presence of sulfate. Chromium, copper, nickel,
sulfur, and thiosulphate were not detected in any of the water
samples. On the other hand, deposits samples exhibited more
variation in chemical composition among them. Different to
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TABLE 1 | Chemical composition of produced water and injection water samples.

Compound/elementa LODb Produced water Injection water

Stations CPF Tank

PW1 PW2 PW3 PW4 PW5 PW6 IW

pH – 6.75 6.95 7.34 7.18 7.03 7.02 6.92

Conductivity (mS/cm) – 60.1 60.3 68.3 65.7 65.2 59.2 48.0

TPHc C6-9 (mg/L) 0.02 2.2 0.64 1.1 2.3 44 4.4 <0.02

TPH C10-14 (mg/L) 0.02 27 8.7 10 25 210 43 0.74

TPH C15-28 (mg/L) 0.04 31 9.4 9.5 31 200 44 0.17

TPH C29-36 (mg/L) 0.04 1.7 0.28 0.19 3.0 20 2.6 <0.04

TPH C > 36 (mg/L) 0.04 0.29 0.08 <0.04 0.30 5.4 0.34 <0.04

Calcium (mg/L) 0.1 390 530 570 610 750 490 500

Iron (mg/L) 0.01 10 11 4.0 3.7 12 4.9 0.55

Potassium (mg/L) 0.1 190 370 170 160 170 170 310

Magnesium (mg/L) 0.1 190 270 370 310 370 240 140

Manganese (mg/L) 0.01 0.16 0.15 0.06 0.08 0.15 0.07 0.07

Sodium (mg/L) 0.1 13,000 13,000 15,000 14,000 14,000 14,000 9,800

Zinc (mg/L) 0.01 0.16 1.7 <0.01 0.30 0.04 <0.01 0.07

Ammonia-N (mg/L) 0.02 45 42 52 47 47 43 41

Chloride (mg/L) 5 22,000 23,000 28,000 27,000 26,000 25,000 20,000

Sulfate (mg/L) 1 <1 2 <1 <1 <1 <1 <1

Alkalinity (mg CaCO3/L) 5 720 520 610 410 450 540 580

Salinity (mg/L) 10 37,000 39,000 44,000 42,000 42,000 38,000 31,000

Acetic Acid (mg/L) 1 66 39 69 29 67 33 <1

Propionic Acid (mg/L) 2 29 24 60 53 36 28 <2

TOCd (mg/L) 1 96 64 100 73 97 56 < 1

Total Nitrogen (mg/L) 0.2 45 42 52 47 47 43 41

Total Phosphorus (mg/L) 0.01 0.11 0.38 0.12 0.25 0.06 0.15 0.10

aChromium, Copper, Nickel, Sulfur, NOx-N, Nitrate-N, Nitrite-N, and thiosulphate were not detected in any of the samples. bLOR, Limit of Detection. cTPH, Total Petroleum
Hydrocarbons. dTOC, Total Organic Carbon.

produced water, deposits exhibited high levels of sulfur, sulfate
and thiosulphate. Samples also contained high levels of petroleum
hydrocarbons and metals such as iron and manganese, the last
two probably associated with under-deposit corrosion (UDC).
Nitrogen oxides, nitrate, and nitrite were not detected in
any of the samples.

Microbial Enumeration
Serial dilution analysis indicated that microbial populations
typically monitored by the oil and gas industry and
previously associated with corrosion are present in all the
sources evaluated in concentrations of 10–106 Bact/mL-
g. Sulfide producing microbes and APB were widespread
across the oil production facility whereas iron utilizing
microorganisms were present only in a few locations, as
shown in Table 3. Stations treated with biocide (PW1 and
PW2) reported similar levels of microorganisms than other
stations without biocide treatment (PW3, PW4, and PW5).
Microorganisms were also detected in the deposits samples
despite the chemical treatment applied to the system. In
fact, sample DP4 exhibited the highest concentration of
sulfide producing and acid producing microorganisms of all
samples collected.

Microbial Molecular Characterization
Characteristics of the 16S rRNA Datasets
A total of 3,991,895 (DNA-based) and 2,926,183 (RNA-based)
sequence reads were obtained from the MiSeq sequencing.
After removal of low-quality sequences, chimeras and singletons
3,536,010 (DNA-based) and 2,010,504 (RNA-based) high-quality
sequences were used for the diversity profiling analysis. The
number of sequences in each sampling location ranged from
34,532 to 203,508 DNA-based, and from 73,419 to 168,184
RNA-based. After rarefaction analysis with normalized sequences
per sample (34,532), we obtained 493 zOTUs from DNA-
based (ranged from 54 ± 2 to 285 ± 4 per sample) and
287 from RNA-based (ranged from 116 ± 5 to 198 ± 8
per sample). Reads and zOTU counts for the individual
sample replicates are summarized in Supplementary Table
S1. The Good’s coverage index of 0.99 (±0.005) for both
sequencing approaches indicated that the datasets enclose all
major microbial groups inhabiting the oil production facility
(Supplementary Figure S1).

The shared microbial zOTUs analysis indicated that
there are unique and shared zOTUs in each sample source
(Supplementary Figure S2). Shared zOTUs between the three
sources was 65, accounting for 78% of the total community
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TABLE 2 | Chemical composition of deposits samples collected in the
produced water system.

Compound/elementa LODb DP1 DP2 DP3

TPHc C6–9 (mg/Kg) 0.2 5,900 22000 26000

TPH C10–14 (mg/Kg) 0.2 22,000 74000 87000

TPH C15–28 (mg/Kg) 0.4 1,400 83000 100000

TPH C29–36 (mg/Kg) 0.4 <0.4 8100 12000

TPH C > 36 (mg/Kg) 0.4 <0.4 3200 5300

Calcium (mg/Kg) 10 160 7100 1500

Chromium (mg/Kg) 1 11 120 77

Copper (mg/Kg) 1 7 1300 36

Iron (mg/Kg) 1 330,000 66000 58000

Potassium (mg/Kg) 10 <10 820 790

Magnesium (mg/Kg) 10 30 1100 970

Manganese (mg/Kg) 1 2,900 470 260

Sodium (mg/Kg) 10 <10 18000 36000

Nickel (mg/Kg) 1 8 260 170

Sulfur (mg/Kg) 10 77,000 41000 31000

Zinc (mg/Kg) 1 <1 680 1900

Total Nitrogen (mg/Kg) 10 430 13000 28000

Total Phosphorus (mg/Kg) 1 3 11000 11000

Ammonia-N (mg/Kg) 10 30 60 70

Chloride (mg/Kg) 10 1,700 6400 8000

Sulfate (mg/Kg) 10 40,000 10 10

Thiosulphate (mg/Kg) 2 600 82 140

Propionic Acid (mg/Kg) 2 120 <2 <2

Formic Acid (mg/Kg) 2 <2 30 70

TOCd (mg/Kg) 0.1 10 14 19

aNOx-N, Nitrate-N and Nitrite-N were not detected in any of the samples.
bLOR, Limit of Detection. cTPH, Total Petroleum Hydrocarbons. dTOC,
Total Organic Carbon.

TABLE 3 | Enumeration of microorganisms associated to MIC corrosion.

Sample SPPa APBb IRBc IOBd

PW1 103 102 <10 <10

PW2 102 102 101 103

PW3 103 102 <10 <10

PW4 103 102 <10 <10

PW5 102 101 <10 <10

PW6 102 102 <10 <10

DP3 103 101 <10 <10

DP4 106 103 <10 <10

IW 102 <10 <10 101

aSPP, Sulfide-producing prokaryotes; bAPB, Fermenting acid-producing bacteria;
c IRB, Iron reducing bacteria; d IOB, Iron oxidizing bacteria.

in the injection water, 15% of deposits, and 17% of produced
water. Most of the zOTUs were simultaneously detected in the
produced water and deposits (263 zOTUs accounting for 53%
of the total zOTUs detected). However, deposits hosted more
individual species than other sample sources (105 zOTUs). Based
on the Venn diagrams, unique zOTUs were also detected in the
satellite stations and deposits when the same sample source was
compared. Only 22% (82 zOTUs) of the total zOTUs detected in

produced water were shared in all stations. Stations with biocide
treatment (PW1 and PW2) exhibited more individual species
than stations without biocide treatment. Similar to produced
water, only 29% (125 zOTUs) of the total zOTUs detected in
deposits were common in all samples. Shared zOTUs analysis
between DNA and RNA-based profiling showed that most of the
microorganisms present in produced water were detected with
both sequencing approaches (325 zOTUs accounting for 82%
of the total zOTUs detected in produced water). The detection
of unique zOTUs with the DNA-based approach indicated
that not all microorganisms in the system are active. Likewise,
the detection of unique zOTUs with the RNA-based approach
indicated that the system host rare taxa that are highly active.

Comparison of DNA and rRNA Amplicon Libraries
Total and potentially active microbial communities in the
produced water were dominated by Bacteria. Relative abundances
of Archaea were higher in the RNA-based profiling than in the
DNA-based profiling. Same dominant phyla were detected
with both methodological approaches. However, the relative
abundances of the phyla detected in each sampling location
varied between DNA and RNA-based profiling (Figure 2A
and Supplementary Table S2). The trend of variation in
the abundance of each phylum was similar in all samples.
Dominant phyla were Proteobacteria (28% DNA, 35% RNA),
Firmicutes (24% DNA, 18% RNA), Euryarchaeota (19% DNA,
30% RNA), Synergistetes (16% DNA, 8% RNA), Thermotogae
(7% DNA, 1% RNA), Kiritimatiellaeota (2% DNA, 4% RNA),
and Epsilonbacteraeota (1% DNA, 2% RNA). At the order level,
Methanococcales, Methanosarcinales, and Desulfovibrionales
were more abundant in the RNA-based than in the DNA-
based profiling (Figure 2B and Supplementary Table S3).
Clostridiales, Synergistales, Kosmotogales, and Thermotogales
orders showed the opposite trend. Dominant orders such as
Desulfuromonadales, Rhodospirillales, and Methanomicrobiales
presented similar abundances in the total and potentially
active communities.

Microbial Community Composition of the Three
Sample Sources at the Genus Level
DNA-based profiling of the abundant genera found in the
different sampling locations of the oil production facility is
shown in Figure 2C (complete list of genera is available in
the Supplementary Table S4). Results indicated that produced
water and deposits samples contained similar populations with
differences in their abundance among samples. Results also
evidenced that the microbial community existing in the injection
water was markedly different from the other sample sources.
An overview of the main microbial genera found in the
production samples (water and deposits) allowed to differentiate
two communities. The first type of community was evidenced in
deposits samples DP2 and DP3. The community was principally
composed by Methanosaeta (x̄ 35%), Thermovirga (x̄ 20%),
Methanoculleus (x̄ 8%), and Caminicella (x̄ 6%) genera. The
second type of community was found in all other samples,
main species were Caminicella (x̄ 16%), Thermovirga (x̄ 14%),
Pelobacter (x̄ 8%), Roseospira (x̄ 7%), Methanothermococcus
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FIGURE 2 | Microbial community composition in the oilfield retrieved from 16S rRNA gene and transcripts sequencing. (A) Total and active microbial communities in
produced water samples at phylum level. (B) Total and active microbial communities in produced water samples at order level. (C) Total microbial community in
produced water, deposits and injection water samples at genus level. U., unclassified. Phylogenetic groups accounting for <1% of all classified sequences were
summarized in the artificial group “Others.” Results from the three replicates collected in each sampling location were pooled together.
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(x̄ 6%), Desulfothermus (x̄ 5%), and Methanocalculus (x̄ 5%).
Differently, the microbial community in injection water was
dominated Desulfothermus (x̄ 71%), Desulfacinum (x̄ 6%),
Methanothermococcus (x̄ 5%), Methanocalculus (x̄ 3%), and
Methanoculleus (x̄ 3%).

Alpha Diversity Analysis of the Microbial Community
Comparison of the biodiversity between total and potentially
active communities in produced water samples showed
significant (p ≤ 0.05, t-test) differences in the alpha diversity
measurements. The richness index (Chao1) of the microbial
community was highest for the RNA-based profiling and lowest
for the DNA-based profiling (Figures 3A,B). Conversely,
the diversity index (Simpson) showed the opposite pattern
(Figures 3D,E). Statistical analysis of the alpha diversity also
revealed significant differences in the biodiversity among
sampling locations (p ≤ 0.05, ANOVA). Unexpectedly,
stations with biocide treatment (PW1 and PW2) displayed
higher richness than stations without biocide treatment
under both sequencing approaches. A similar pattern
was evidenced in diversity indices with the DNA-based
analysis but slightly different from the RNA-based. The
diversity of the potentially active community in station
PW1 was the highest, whereas diversity in PW2 and PW5
were the lowest.

Alpha diversity metrics calculated from the DNA-
based sequencing were significantly different (p ≤ 0.05,

ANOVA) among sample sources and sampling locations
(Figures 3C,F). In the comparison of sample sources,
deposits presented the highest Chao1 richness, followed
by produced water, and injection water. Simpson diversity
measurements were similar between deposits and produced
water, and lower in the injection water. Looking at the
biodiversity among samples from the same source, both the
samples from produced water and samples from deposits
presented significant variations in the alpha diversity
indices calculated.

Environmental Factors Affecting the Microbial
Community Structure
Non-metric multidimensional scaling ordination analysis
showed differences in the microbial community structure
of the produced water samples (Figures 4A,B). Greater
differences were observed with the RNA-based sequencing
approach, which showed a clear separation of the sampling
points. The two-way PERMANOVA and two-way ANOSIM
tests confirmed that the community structure between
sequencing approaches, as well as among sampling locations
had significant differences (p = 0.0001). We tested the
correlation of physicochemical characteristics and fitted
them onto the ordination to determine what properties were
correlated to the total and active community composition.
The structure of the total community (DNA based) was
strongly influenced by concentrations of TPH (p = 0.001), iron

FIGURE 3 | Alpha diversity indices of microbial communities in the different sampling locations. (A,C,D,F) Richness (Chao1) and diversity (Simpson) indices of the
total communities. (B,E) Richness and diversity indices of the active communities. Boxes are extended from the 25–75th percentiles, the line in the box is plotted at
the median. Whiskers represent the smallest and the largest value. ANOVA followed by Tukey’s multiple comparison tests was used to determine differences among
stations. Samples with the same letter indicate that the diversity indices were not significantly different (p > 0.05).
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FIGURE 4 | Non-metric multidimensional scaling (NMDS) analysis of the
microbial communities. (A) NMDS for total microbial communities in produced
water samples. (B) NMDS for active microbial communities in produced water
samples. (C) NMDS for total microbial communities in all sampling locations.
The analysis was based on weighted UniFrac distance matrices.
Environmental parameters that were significantly correlated (p ≤ 0.05) to
microbial community structure are indicated by arrows.

(p = 0.001), sulfate (p = 0.006), and phosphorous (p = 0.008).
On the other hand, the structure of the potentially active
community (RNA based) was greatly influenced by the
concentration of TPH and calcium (p = 0.002 and 0.007,

respectively), followed by pH and phosphorous (p = 0.022 and
0.033, respectively).

Non-metric multidimensional scaling ordination with all
sampling locations confirmed differences in the microbial
community structure according to the sample source
(Figure 4C). Injection water samples created a separated
cluster away from deposits and produced water samples.
According to the PERMANOVA and ANOSIM tests,
differences were significative (p = 0.004 and p = 0.006,
respectively). Pairwise comparison evidenced that the
significant differences in the microbial structure were only
related to the injection water samples. The comparison of
the microbial structure in produced water and deposits
samples showed no significant differences (p = 0.07).
Correlation between environmental variables with the total
microbial composition of all sampling points showed that
concentration of TPH, nitrogen, phosphorous, TOC, sulfur
and acetic acid impacted considerably the structure of
the total community (p = 0.001, 0.001, 0.004, 0.015, 0.025,
0.031, respectively).

Association Networks of Specific Taxa With Sampling
Location
Association networks indicated that 85% of the total
orders detected in the active community had significant
biserial correlation coefficients with the sampling location
(p ≤ 0.05). Most of the orders were associated with stations
with biocide treatment PW1 and PW2 indicating that the
environment at these locations favors the activity of several
microorganisms (Figure 5A). The majority of the orders
significantly associated with each station belong to the same
microbial groups (sulfate reducing bacteria, fermenting bacteria,
and methanogens).

The correlation-based association analysis of the orders
significantly associated with the sample source (Figure 5B)
was consistent with the multivariate analysis (Figure 4C).
None of the orders that were significantly associated
with the injection water was significantly associated with
another sample source. The majority of the orders were
significantly associated with only one source suggesting
that the microbial community structure in the oilfield is
driven by the specific conditions along the facility. Only
8% of the orders were significantly associated with both
production sample sources.

Functional Profile Prediction
Tax4Fun analysis applied to infer the metagenomic content
of the total and active communities in produced water
predicted the presence of 6422 KEGG Orthologs (KO)
across all samples (Supplementary Table S5). LEfSe analysis
indicated that 43 from the 280 pathways found, were
significantly different between communities recovered with
both sequencing approaches (Supplementary Table S6). Level
2 KO predicted from the DNA and RNA-based profiling
are presented in Figure 6. Overall, the functional structure
of the communities was dominated by metabolism-related
KEGG pathways, especially that of carbohydrates, amino
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FIGURE 5 | Correlation-based association network between microbial community (order level) and sampling location. (A) Association network of active community
with produced water stations. (B) Association network of total community with sample sources. Only statistical significant microbial orders are visualized (p ≤ 0.05).
The size of each node is proportional to the taxon relative abundance and the edge width corresponds to the association strength of each taxon with the sampling
location. Color of nodes contributes to prominent microbial phyla. Hub nodes and edges are colored according to sampling location.
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FIGURE 6 | Prediction-based abundance of genes involved in KEGG level 2 categories in total and active communities in the produced water samples. Significant
(p ≤ 0.05) biomarkers identified with the linear discriminant analysis (LDA) effect size are indicated by a star (?).

acids, nucleotide, energy, cofactors and vitamins. Other
dominant KEGG categories predicted were environmental and
genetic information and processing, principally in pathways
related to signal transduction, membrane transport, and

translation. Genes related to cellular processes, human
diseases and organismal systems were predicted with lower
abundances. LEfSe analysis at this level showed that metabolic
pathways related to carbohydrate, amino acids, nucleotide and
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biosynthesis of other secondary metabolites were biomarkers
of the DNA-based analysis, whereas energy metabolism
was a biomarker of the RNA-based analysis. Within the
energy metabolism, the methane metabolism pathway was
the most abundant.

Linear discriminant analysis test applied for the identification
of the metabolic KEGG pathways associated with the sample
source showed that 46 of the 139 pathways predicted
were significantly differentially abundant among sources
(Supplementary Table S7). According to the results, pathways
related to the metabolism of amino acids and xenobiotics
were significantly enriched in the deposits and production
water samples, whereas pathways related to the energy and
carbohydrate metabolism were enriched in injection water
samples. It has to be noted, that the results from predicted
functional profile based on 16S rRNA data can deviate from
metagenomics profiling since taxonomic identification does
not necessarily relates to the presence of functional genes.
Additionally, zOTUs derived from unknown taxa limit this
prediction. In this sense, the predicted metabolic pathways
identified here remain to be validated by metagenomics
studies in future.

DISCUSSION

DNA Versus RNA-Based Diversity
Profiling
The comparison between the DNA and RNA-based diversity
profiles indicated that not all the microbial community
members were active and that not all the active members
were detected with the DNA approach. Predominant orders
in the community were recovered with both methodologies,
but significant differences in their relative abundance were
evidenced. One of the main differences detected was the
reduction in the abundances of all thermophilic orders
(Thermotogales, Thermococcales, Thermoanaerobacterales,
Synergistales, Petrotogales, and Kosmotogales) in the RNA
approach. The temperature at the time of sampling in all
analyzed locations was approximately 40◦C, which could
explain the lower abundances of thermophiles in the active
communities. Thermophilic microorganisms are commonly
associated with native populations in oil reservoirs (Ollivier
and Magot, 2005; Song et al., 2017), however, temperature
gradients generated during the production process favor the
growth of mesophilic microorganisms at lower temperatures
(Li et al., 2017b). The effect of the temperature variations
on the community structure of active populations has been
previously evaluated (Salgar-Chaparro et al., 2019). The authors
pointed out that temperature has a significant impact in
shaping the microbial composition of oilfield systems which,
in turns, affects its corrosivity. Other microbial orders that
exhibited a decrease in the relative abundances with the
RNA-based approach were Clostridiales, Rhodospirillales, and
Synergistales. Several species that belong to these taxonomic
groups have been associated with oil degradation, which is
one of the principal metabolisms in oil reservoirs along with

fermentation, methanogenesis and sulfate reduction. It has
been reported that oil-degrading microorganisms need to
be in contact with the petroleum hydrocarbons to be able
to use them as electron donors, while also being in contact
with the water phase for reaching electron acceptors such
as sulfate, nitrate, or ferric iron (Pannekens et al., 2019).
Therefore, considering that the water cut in all sampling
locations was close to 95%, it is inferred that the oil fraction in
the fluid could have been a limiting factor for the microbial
growth of these populations, which might provide an
explanation to their lower abundances in the RNA-based
approach compared to the DNA-based approach. Conversely,
sulfate reducers like Desulfuromonadales, Desulfovibrionales,
and Syntrophobacterales, as well as, methanogens such as
Methanobacteriales, Methanococcales, Methanomicrobiales, and
Methanosarcinales showed an increase in their abundance in the
active communities. Higher abundance of these populations in
the RNA-based analysis suggests that the oil production facility
provides suitable conditions for the metabolic activities of these
particular groups.

Alpha and beta diversity analysis of the total and active
populations confirmed that differences in communities recovered
with both sequencing approaches were significant. Higher
diversity values obtained with the DNA-based analysis are
the result of recovering active, dormant and dead cells when
studying the DNA molecule. Conversely, RNA-based analysis
only retrieves information about the active cells, thereby
lower values of biodiversity are often obtained. Similar results
have been described in other studies where a comparison
of the DNA and RNA sequencing profile was carried out
(Angel et al., 2013; Kim et al., 2013; De Vrieze et al.,
2016; Inkinen et al., 2016; Li R. et al., 2017). Dissimilarities
in the diversity profile of total and active communities
were also reflected in the predicted functional capability.
Fundamentally, genes involved in energy metabolism, principally
the genes related to methane metabolism were significantly
enriched in the RNA-based sequencing approach. Higher
capability for using methane pathways resulted from the
increase in the relative abundance of methanogens in the
active communities.

Differences between the DNA and RNA-based results
highlighted the importance of using a complementary
methodological approach for studying microbial populations.
It has to be noted that RNA-based methods have disadvantages
linked to more laborious extraction procedures, the susceptibility
of RNA to degradation, presence of multiple copies of
ribosomes per cell, and the existence of rRNA reserves in
dormant cells (Angel et al., 2013). Even considering these
drawbacks, RNA-based methods can better reflect the active
members of oilfield communities compared to DNA surveys,
which is essential for assessing the potential involvement
of microorganisms in corrosion since only metabolically
active microorganisms can cause MIC. Identification of active
microorganisms in oilfield systems also provides relevant
information with regards to the efficacy of biocide treatments.
The detection of active microorganisms after exposure to
biocide treatments indicates inefficiency of treatments or
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inadequate treatment dosages, which can lead to the emergence
of resistant communities. Therefore, early detection of microbial
activity in industrial facilities would help optimize mitigation
strategies to control MIC.

Microbiological Assessment in the Oil
Production Facility
The microbial community recovered from the water and deposits
samples provided a general representation of the planktonic
and sessile populations inhabiting the production system.
Microbiological characterization using the complementary
approach indicated that total and active microbial communities
in the oilfield were dominated by bacteria in a proportion
that ranged from 50 to 80%. Taxonomic identification of the
sequencing reads revealed that several of the microorganisms
present in the oil facility have been previously reported in other
oil production facilities and corrosive environments.

Main corrosion damages in the oil facility have been reported
downstream satellite stations and water-oil separation. As
mentioned before, systems with major corrosion problems are
under chemical treatment with biocides (THPS or Acrolein) to
reduce the risk of MIC. Nonetheless, produced water samples
with THPS treatment showed similar microbial composition
to the samples without biocide treatment. Likewise, microbial
enumeration showed a similar concentration of microorganisms
in treated and non-treated stations. In the same way, deposits
samples that are treated with Acrolein reported the same
or greater microbial concentrations than produced water. All
these findings suggest that the biocide treatments, which are
intended to inactivate all microorganisms present, are not
effective against microorganisms in the facility. THPS biocide is
widely used in the industry due to its adequate characteristics
such as low toxicity, broad-spectrum activity and ability to
dissolve ferrous sulfide deposits (Conlette, 2014). However, it
is known that the persistent use of the same biocide chemical
will lead to the selection of resistant microorganisms over
time (Li et al., 2016). Moreover, biocide chemicals can adsorb
onto deposits, which will result in underdosing of chemical
treatments, therefore reducing the biocide residual concentration
required to maintain microbiological control. Likewise, there
are microorganisms that can degrade THPS at sub-lethal
concentrations, using it as a nutrient for growth (Vorholt
et al., 2000). THPS degradation produces formaldehyde under
aerobic conditions and methanol under anaerobic conditions
(Sharma et al., 2018). Since oil production systems are anaerobic
environments, methanol is the most probable byproduct in
THPS degradation. This molecule can be used as a carbon
source by several of the methanogens detected in the oilfield.
Additionally, THPS dissociation releases sulfate and phosphorus
to the environment, both also used by many microorganisms
in their metabolic functions (Sharma et al., 2018). In fact,
station PW2 that undergoes biocide treatment had a higher
phosphate concentration compared to other stations and was
the sole station where sulfate was detected. It can be speculated
that the presence of these additional components in the
produced water treated with THPS is associated with the

higher richness values measured compared to stations without
chemical treatment.

Microbiological analysis of the deposits samples recovered
from different locations in the produced water pipework showed
significant variations in the community structure among samples.
Differences were also detected in the chemical composition
of the deposits, particularly relating TPH, iron, sulfur, and
sulfate concentrations. It is known that a non-homogeneous
environment generates microniches with dominant populations
adapted to the local conditions (Korona, 1996), which could
explain the variability in the microbial communities recovered
from the same system. Compared to produced water samples,
deposits samples presented a higher number of zOTUs and
richness values. More zOTUs in the deposits may be related
to species accumulation over time in the biofilm communities
living in the deposits, whereas water samples only reflect the
community in the fluid at the time of sampling. In addition,
other studies have shown that extracellular DNA (eDNA) can
potentially be adsorbed in deposits or surfaces over time.
eDNA can remain in the environment as part of sediment
particles that can preserve it from degradation (Dell’anno
and Corinaldesi, 2004; Torti et al., 2015; Corinaldesi et al.,
2018). Indeed, corrosion products have been nominated as a
repository of eDNA in the Makama et al. (2018) investigation,
who found eDNA in biofilm-free corroded surfaces. Due
to the difficulty of extracting good quality RNA from the
deposits samples, it was not possible to determine if the
higher richness detected in these samples was a consequence
of recovering eDNA preserved in the schmoo. According to
the chemical composition, deposits had high levels of metals
which correlates with active corrosion evidenced in the produced
water recovery system. Likewise, high levels of total sulfur
and sulfur compounds including sulfate, thiosulphate were
detected in deposits. The source of these sulfur compounds
remain unclear since both produced and injection waters
did not have considerable concentrations of such compounds
(<10 ppm of sulfate/thiosulphate). It is plausible to expect
that small amounts of those compounds can also be adsorbed
and accumulate in deposits over time (Suarez et al., 2019b).
It has been documented that high doses of THPS can lead
to the precipitation of the sulfate introduced by the THPS,
which cause scale formation downhole (Li et al., 2016). The
presence of these additional nutrients in the deposits is expected
to attract more species and result in higher richness, as
evidenced in this study.

As mentioned before, the production facility has been flooded
for over 30 years to stimulate the reservoir and increase oil
recovery. Long-term water injection can modify the indigenous
microbial community structure in oil systems (Zhang et al.,
2012; Lenchi et al., 2013; Gao P. et al., 2015). Apart from the
microbiological contamination, water injection is problematic to
oil reservoirs by providing nutrients and electron acceptors to
the resident microorganisms (Magot et al., 2000; Varjani and
Gnansounou, 2017). For evaluating the impact of this practice
in the indigenous oilfield microbial community, and determining
if the populations detected were the result of microbial
contamination during water injection, the source water used
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in the injection system was also characterized. Microbiological
analysis showed a clear difference in the microbial structure
between production water and injection water which suggests
that the secondary recovery practices have not had a significant
impact on the community widespread in the facility. Moreover,
species association analysis confirmed that none of the orders
found in the injection water sample was significantly associated
with the produced water or the deposits samples. Similarly,
chemical analysis of the samples showed that source water
contains lower levels of ions, metals and organics compared
to produced water; therefore, it is not providing additional
nutrients to the community in the reservoir. These results are in
disagreement with similar investigations in other oilfields, where
significant changes in the microbial structure of the oil reservoir
were evidenced after the water injection (Gao P. et al., 2015; Gao
P. K. et al., 2015). The likely explanation of this phenomenon is
that the ratio of an external source for water injection is only 5:95
source water:produced water. The above indicates that potentially
corrosive microbial populations found in the oil production
facility are likely coming directly from the reservoir.

Dominant microorganisms found active in the facility belong
to three microbial groups, sulfate reducers, fermenters, and
methanogens; all of these previously associated with MIC
processes (Machuca et al., 2017; Machuca and Polomka, 2018;
Vigneron et al., 2018; Suarez et al., 2019a). Microbial interactions
among these populations have been previously studied (Raskin
et al., 1996; Morris et al., 2013; Ozuolmez et al., 2015; Sela-
Adler et al., 2017). Syntrophic interactions between fermenters
(H2 producing microbes) and methanogens (H2 consuming
microbes) are widely known. Due to the physiological versatility
of several sulfate reducers, similar interactions can occur between
fermenters and sulfate reducers, which can use the H2 produced
by fermenters as electron donor in respiration, or methanogens
and sulfate reducers, which can also have the capability to
obtain energy from fermentation providing nutrients such as
H2 and acetate to methanogenic species (Morris et al., 2013).
Co-existence of methanogens and sulfate reducers is usually
reported in oil production facilities (Lenchi et al., 2013; Lin
et al., 2014; Varjani and Gnansounou, 2017), however, microbial
interactions appear to be affected by the presence of sulfate
(Oremland and Polcin, 1982; Okoro and Amund, 2018). In the
presence of high sulfate concentrations, sulfate reducers compete
with methanogens for the availability of nutrients. Conversely,
low sulfate content environments, such as the produced water
studied here, favor syntrophic interactions (Paulo et al., 2015).
Thus, the increase in the relative abundances of methanogens and
sulfate reducers in the active communities might be related to a
symbiotic relationship.

Multispecies biofilms formed by same microbial groups found
in this investigation have been reported to accelerate UDC of
steel (Larsen and Hilbert, 2014; Machuca et al., 2017; Shukla
and Naraian, 2017; Suarez et al., 2019a). It is known that
different interactions between microorganisms might induce
a cascade of biochemical reactions that cause more severe
corrosion than single-species biofilms (Kip and Van Veen, 2015).
In the presence of deposits, microbial cells are attracted to
these particles as they provide nutrients, a suitable environment

for the synergistic interactions of sessile communities, and also
protection from shear forces and biocides (Kagarise et al., 2017).
Microbial communities can interact with the deposits changing
their properties, such as making them more electroactive or
precipitating new corrosive species in the metal surface, which
favors the formation of microenvironments and differential cells
that can cause localized corrosion (Machuca et al., 2011). The
existence of a schmoo layer previously suggested that corrosion
is taking place in the oilfield assets by UDC mechanisms.
Nonetheless, the detection of active microbial populations with
reported corrosive metabolisms in this investigation provided
more evidence to the hypothesis that the corrosion processes
in the facility may be the result of UDC enhanced by MIC
mechanisms. Further laboratory investigations simulating the
oilfield conditions are required to study the possible MIC-UDC
mechanisms involved.

CONCLUSION

Complementary analysis of DNA and RNA-based amplicon
sequencing allowed to assess differences in the microbial
composition of total and active communities in the oil facility.
It was demonstrated that DNA results alone could lead
to underestimation of active members in the community.
By implementing the RNA-based sequencing, it was found
that not all microorganisms in the communities were active
whereas other community members showed an increase in their
relative abundances, which is proposed to be related to higher
activity. A better characterization of active microorganisms
can improve the understanding, mitigation and prediction of
MIC processes. Moreover, this methodological approach can
be used to evaluate the impact that operational conditions like
temperature and water chemistry have on microbial activity and
community structure. The reduction on the relative abundances
of thermophilic species in the active community seen in this study
was likely to be related to the decrease in temperature from the
reservoir to the oil production facility. In addition, this study
showed the detection of active microorganisms at biocide treated
locations, which added to the identification of similar microbial
composition and cells concentration in locations without biocide
treatment suggesting poor efficacy of the mitigation treatments.
Bias in the DNA-based analysis resulted in an underestimation
of the predicted capability of the community for using methane
pathway in the energy metabolism, which was correlated with
the lower abundance of the methanogenic microorganisms in
the total community. The detection of active microorganisms
with reported corrosive metabolisms provided more evidence
that microorganisms might have been involved in the localized
corrosion detected in oil production assets.
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