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It is possible that arbuscular mycorrhizal fungi play a pivotal role in root development
and Pb phytostabilization in plants grown in Pb-contaminated soil. In this study,
a pot experiment was conducted over 4 months to evaluate the effects of
Funneliformis mosseae strain BGCXJ01A on root characteristics of black locust (Robinia
pseudoacacia L.) seedlings in Pb-contaminated soil. Four Pb treatments (0, 90, 900,
and 3,000 mg kg−1) were applied to soil in the presence and absence of F. mosseae.
Inoculation with F. mosseae prominently improved root length, surface area, volume,
and tip number in the plants across all Pb treatments. The F. mosseae inoculation
also increased root diameter and fork number, especially under high Pb treatments.
The presence of F. mosseae significantly increased the root activity and root tolerance
index. However, there was little difference in specific root length between inoculated
and non-inoculated plants. The biomass of roots, stems, and leaves all increased
following inoculation with F. mosseae. Inoculated plants had greater accumulation and
translocation capacities for Pb in the roots and stems, but lower capacities were found
in the leaves when compared with those in non-inoculated plants. These results highlight
that F. mosseae can alleviate the toxic effects of Pb on root development and can
immobilize Pb in the roots and stems of R. pseudoacacia grown in Pb-contaminated
soil. This study provides a model system for phytoremediation of Pb-contaminated soil
via reciprocal symbiosis between arbuscular mycorrhizal fungi and woody legumes.

Keywords: arbuscular mycorrhizal fungi, Funneliformis mosseae, black locust, root characteristics,
Pb-contaminated soil, phytostabilization

INTRODUCTION

Lead (Pb) is a non-essential toxic metal that exists in the majority of terrestrial ecosystems due
to natural factors (such as the decay of thorium and uranium) and anthropic factors (such as
industrial emissions and transport) (Rodríguez-Seijo et al., 2015). Metallurgy, energy production,
and Pb-containing paints have been the primary sources of Pb in soil (Fahr et al., 2013). Due to its
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long retention time in the soil, Pb ultimately tends to accumulate
in the food chain and generates a grievous threat to biota
(Naik et al., 2012). Thus, the bioremediation of Pb-contaminated
soils has become a global concern. Traditional physicochemical
methods for soil remediation include electrochemical processes,
burial, washing, thermal treatment, physical separation, and
stabilization/solidification (Rajkumar et al., 2012). However,
these methods are usually expensive and could result in damage
to the soil structure accompanied by a reduction in soil bioactivity
and nutrient depletion (Wang et al., 2010).

Phytoremediation is a cost-effective and environmentally
friendly technology that uses plants and their associated
microbes for the extraction, sequestration, or detoxication of
heavy metals (HMs) from contaminated soils (Khan, 2005;
Arshad et al., 2007; Jing et al., 2007; Saleem and Moe, 2014).
Based on the different mechanisms used, phytoremediation
can be divided into five major subgroups: (1) phytoextraction,
using the roots of particular plants to take up toxic HMs
from the soil and transport them to the harvestable parts;
(2) phytodegradation, degrading HM-chelating compounds
by plants and root-associated microbes such as arbuscular
mycorrhizal (AM) fungi; (3) rhizofiltration, utilizing the plant
roots to assimilate, enrich, and deposit HMs (such as Pb),
which can remove a large amount of contaminants from sewage;
(4) phytostabilization, immobilizing, reducing, or transforming
HMs into less toxic forms using particular substances (such as
root exudates and microbial metabolites) in the rhizosphere; and
(5) phytovolatilization, transforming HMs (such as Se, As, and
Hg) into a volatile state and then volatilizing them from the soil
and plant surfaces (Khan, 2005; Arshad et al., 2007; Jing et al.,
2007; Saleem and Moe, 2014).

Many HM-hyperaccumulator plants with resistance to single
or multiple HMs have been reported, but most of them are
characterized by low biomass and limited growth (Khan, 2005).
To guarantee the feasibility of phytoremediation, which is a
slow process, it is necessary to select fast-developing and HM-
tolerant plants with widespread roots. However, plant uptake
of HMs is constantly limited by their bioavailability in the soil.
The rhizosphere microbiota can enhance the phytoremediation
efficiency (Marques et al., 2009). In particular, AM fungi have
been found in HM-contaminated soils where they constitute a
crucial component of the rhizosphere microbiota and contribute
to the revegetation of degraded habitats (Khan, 2005).

The AM fungi of the phylum Glomeromycota have existed for
over 460 million years (Khan, 2005). The mutualistic symbiosis
between AM fungi and plants is ubiquitous (He et al., 2016;
Murugesan et al., 2016). In natural conditions, AM fungi are
associated with at least 80% of terrestrial plants, including
pteridophytes, gymnosperms, and angiosperms (Huang et al.,
2017). Gildon and Tinker (1981) first reported an HM-tolerant
strain of AM fungi (Glomus mosseae) that could increase
HM uptake by clover (Trifolium repens) seedlings in soil
cocontaminated with Zn and Cd. Meier et al. (2012) found
that AM fungi could affect the distribution of HMs at the
soil–fungi–plant interface, eventually alleviating their toxicity
to plants. Following inoculation with AM fungi, various effects
have been observed in phytoremediation. These effects include

increasing the degradation efficiency of HMs and improving
the establishment and development of plants (Khan, 2005). The
AM fungi with abundant aseptate hyphae can be regarded as
an extension of plant roots because they expand soil volume to
strengthen plant water and nutrient uptake (Sheng et al., 2009).
Additionally, the branched tree-like arbuscules of AM fungi
facilitate the transportation of mineral nutrients (Gutjahr and
Paszkowski, 2013). Mycorrhizal plants may increase the uptake
of HMs and transfer them from roots to shoots (phytoextraction)
or immobilize them in soil (phytostabilization) depending on
factors such as the climate, soil properties, and the HM–plant–
fungus combination (Mishra et al., 2017).

Successful phytoremediation mainly relies on the selection
of plants that may potentially have a high biomass and great
tolerance to contamination (Rajkumar et al., 2012). Black
locust (Robinia pseudoacacia L.), a woody nitrogen-fixing
legume, is widely distributed in semiarid regions across the
world (He et al., 2016). Since the 1950s, R. pseudoacacia
forests have been widespread on the Loess Plateau in China,
where they enhance soil aggregate stability and maintain soil
structure (Zhang et al., 2016). Importantly, R. pseudoacacia can
survive and develop intimate symbioses with glomeromycotan
fungi in HM-contaminated soils (Yang et al., 2015). The
leaves of R. pseudoacacia are considered a biomonitor
of HM contamination (Çelik et al., 2005). As a pioneer
tree species, R. pseudoacacia is deemed to be a favorable
candidate for the phytoremediation of HM-contaminated soils.
R. pseudoacacia displays high stress tolerance, rapid plant
growth, efficient nitrogen fixation, and deep root systems
(Vlachodimos et al., 2013).

The root is a crucial organ for stabilization and nutrient
uptake in plants. Moreover, the root plays a critical role in plant
adaptation, health, and nutrition through phenotypic traits, such
as root length, biomass, density, volume, and surface area (Saleem
et al., 2018). Among other characteristics, the root plays a role
in altering rhizosphere breadth, soil chemistry, and recruiting
plant beneficial microbes (Saleem et al., 2018). Thus, it is critical
for woody species to rapidly develop a functional root system
(Berta et al., 1995). Alterations in the root architecture may
be attributed to environmental factors including the presence
of HMs (Keller et al., 2003; Fahr et al., 2013) and AM fungi
(Sheng et al., 2009). AM fungi-induced root system remodeling
is mediated by signal molecules from AM fungi, in addition to
nutrient variation and distribution in the plant roots (Gutjahr
and Paszkowski, 2013). To minimize metabolic costs during the
establishment of fungi–plant symbioses, the root systems must
be highly architecturally plastic and show appropriate responses
and adaptation to the environment. This occurs mainly through
lateral root proliferation (Gutjahr and Paszkowski, 2013). The
development of branch roots could be facilitated by C reserves
in the culture substrate (MacGregor et al., 2008). Since the
plant root system is the primary pathway for the transfer of
HMs into the food chain, it is important to investigate root
development and HM distribution in hyperaccumulator plants.
Currently, how AM fungi affect plant root systems during
the phytostabilization process in Pb-contaminated soil is still
poorly understood.
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Herein, we assessed the possible effects of AM fungi on root
characteristics and Pb accumulation in R. pseudoacacia seedlings
grown in Pb-contaminated soil. A pot experiment was performed
under different Pb treatments, with or without Funneliformis
mosseae inoculation. The differences between inoculated and
non-inoculated plants were then determined in terms of (1) root
activity; (2) plant dry weight, root morphology, specific root
length, and root tolerance index; and (3) plant Pb concentration,
and Pb bioconcentration and translocation factors. This study
will contribute to our understanding of root characteristics in
woody legumes that are in mutualistic symbioses with AM fungi
for the phytoremediation of Pb-contaminated soils.

MATERIALS AND METHODS

Plant and Fungus
Seeds of R. pseudoacacia L. were collected from the campus of
Northwest A&F University (Yangling, Shaanxi Province, China).
Surface sterilization of seeds was performed with a 10% hydrogen
peroxide solution for 10 min, followed by rinses with distilled
water. The seeds were soaked in distilled water overnight and
then pregerminated on BioClean filter paper (Wohua, Hangzhou,
China) in Petri dishes (28◦C for 2 days).

A commercial AM fungus, F. mosseae (BGCXJ01A), was
provided by Beijing Academy of Agriculture and Forestry
Sciences (Beijing, China). Spores of F. mosseae were germinated
with Zea mays on clean fine sand in greenhouse conditions
(35/20◦C, day/night; relative humidity, 60%). Three months later,
the mean mycorrhizal colonization was assessed (91.7%). The
F. mosseae inoculant consisted of spores (∼26 spores g−1), exter-
nal hyphae, and infected root segments in addition to the sand.

Growth Substrate
Topsoil (0–30 cm) was collected from Northwest A&F
University. The soil was air-dried and homogenized in a
ceramic mill. The soil was then passed through a 2-mm sieve to
remove stones and other debris. Subsequently, the soil was mixed
with thoroughly washed fine sand at a sand-to-soil ratio of 1:2
(v/v). After autoclaving (at 121◦C for 2 h), the basic properties
of the mixture were analyzed according to the standard testing
methods of Bao (2000). The substrate had a pH of 7.66 in a 1:2.5
(w/v) soil–water suspension ratio. The substrate contained (on a
dry weight basis): 14.85 g kg−1 organic matter; 25.77 mg kg−1

nitrate-N, 7.37 mg kg−1 ammonium-N, 11.48 mg kg−1 available
P, 128.96 mg kg−1 soluble K, and 6.58 mg kg−1 total Pb.

To prepare the Pb-contaminated growth substrate, the
mixture of soil and sand was sprayed with lead nitrate
(Pb[NO3]2) solutions to obtain gradient concentrations of
Pb: 0 (control), 90, 900, and 3,000 mg Pb kg−1 soil. These
concentrations were chosen based on the results of a preliminary
experiment. The concentrations of Pb added corresponded to
common levels of Pb contamination according to the soil
environmental quality standard in China. The quantity of nitrate
added as Pb(NO3)2 was offset by supplying a reduced amount
of ammonium nitrate [NH4NO3]. After mixing thoroughly, the
growth substrate was allowed to stabilize for 1 month before use.

Experimental Procedure
A pot experiment was conducted in a conservatory over 4 months
from March to July, 2014. Four different Pb treatments (0, 90, 900,
and 3,000 mg kg−1 Pb) were applied in the presence or absence
of F. mosseae. The experiment used a completely randomized
factorial block design, with 30 replicates for each Pb treatment.
Plastic pots (diameter = 10 cm, height = 8 cm) were filled with
approximately 450 g of growth substrate each and divided into
two groups. In the inoculated group, a small hole (diameter
and depth = 3 cm) was dug at the surface of the substrate,
followed by inoculation with 20 g of newly prepared F. mosseae
inoculant. The non-inoculated group received 20 g of sterilized
F. mosseae inoculant containing 10 mL of fungus-free leachate
(pore size = 10 µm) from the F. mosseae spore suspension culture
(sand:water = 1:10, w/v).

Following inoculation, four pregerminated seeds of uniform
size were sown in each hole and covered with the substrate.
Ten days after germination, one seedling was kept in each
pot. All pots were maintained at room temperature under
a natural illumination regimen throughout the experimental
period: 35◦C in the daytime and 20◦C during the night. Soil
humidity was measured with a TDR 100 tensiometer (Spectrum
Technologies Inc., Chicago, IL, United States). To maintain the
field capacity at a relatively stable level (∼60%), all pots were
measured separately; water loss was recorded, and tap water
was supplemented accordingly. Specifically, 35 mL of tap water
was supplied to each pot every day, and 35 mL of 1/4 × fresh
Hoagland’s nutrient solution was applied weekly right after
preparation (Hoagland and Arnon, 1950) during the course of
the whole growth period.

Sampling and Analysis
Three seedlings aged 4 months old were randomly selected and
harvested from each treatment group. The whole plants were
gently washed with tap water, followed by rinses with deionized
water and drying with paper towels. Then, the roots were
separated from the aboveground parts and split into three groups:
one to be used for the analysis of mycorrhizal colonization rate
and root activity, one for the evaluation of root morphological
characteristics, and one for the measurements of root biomass
and Pb concentration. Additionally, the aboveground parts were
divided into stems and leaves for Pb analysis.

The extraradical hyphae and spores of fresh roots were
observed with an SZ2-ILST light- stereomicroscope at
25 × magnification (Olympus, Tokyo, Japan). Mycorrhizal
colonization of fresh fine roots (0.5 g) was determined with a
BX51 optical microscope at 200 × magnification (Olympus,
Tokyo, Japan) as described by Phillips and Hayman (1970). The
root activity of fresh fine roots (0.5 g) was measured using a
2,3,5-triphenyltetrazolium chloride assay (Sheng et al., 2009).

To characterize root morphology, the roots were soaked with
tap water, evenly dispersed in root disks, and scanned with an
Epson Expression 1680 Pro scanner (Epson, Nagano, Japan) at
300 dpi. Root parameters including total length (RL), volume
(RV), surface area (RA), average diameter (RD), tip number (RT),
and fork number (RF) were estimated using Win-RHIZO Pro
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version 2003b (Regent Instruments Inc., Canada). The specific
root length (SRL) and the root tolerance index (RTI) were
calculated using the following equations: SRL = root length/root
dry weight; and RTI = root length in the treatment group/root
length in the control group.

To desorb extracellular and apoplastic Pb, the roots were
immersed in an ethylenediaminetetraacetic acid disodium
solution (20 mM Na2EDTA) for 15 min. The roots were then
dried at 70◦C in an oven until a constant weight was reached.
The dry weights of the roots, stems, and leaves were recorded.
For the analysis of Pb in the plants, the subsamples of dried
roots, stems, and leaves were ground and sieved through a
100-µm nylon mesh. The fine powder materials were digested
in concentrated acids (HNO3:HClO4 = 4:1, v/v). The Pb
concentration was measured using an AA-6300C flame atomic
absorption spectrophotometer (Shimadzu, Kyoto, Japan) and
expressed on a dry weight basis.

The Pb accumulation and tolerance in plants were evaluated
using the bioconcentration factor (BCF) and translocation factor
(TF), respectively, which were calculated as follows: BCF = plant
Pb concentration/soil Pb concentration; and TF = shoot Pb
concentration/root Pb concentration (Wei et al., 2012).

Statistical Analysis
Values are presented as means of triplicate measurements ±
standard deviation (SD). Data normality and homogeneity
of variance were examined using the Kolmogorov-Smirnov
test and Levene test, respectively. All of the raw data sets
conformed to a Gaussian distribution. Possible differences in
group means among the Pb treatments were assessed using
a one-way analysis of variance (ANOVA), and significant
differences were identified at P < 0.05 using Duncan’s
multiple range test. An independent-sample t-test was used
to analyze the significant variations in root characteristics
between the plants with and without F. mosseae inoculation
for each Pb treatment. Statistical analyses were completed using
SPSS 22.0 (IBM SPSS, Somers, United States), and diagrams
were drawn using SigmaPlot 10.0 (Systat Software, San Jose,
CA, United States).

RESULTS

Mycorrhizal Colonization
In the non-inoculated plants, root colonization ofR. pseudoacacia
seedlings by the inoculum F. mosseae was not observed
(Figures 1A,C). In the inoculated plants without Pb addition, the
mutualistic symbiosis between F. mosseae and R. pseudoacacia
was evident. There were fungal hyphae and spores outside the
roots and arbuscules inside the roots (Figures 1B,D). Four
months after inoculation, the hyphal, arbuscular, vesicular, and
total colonization rates in plants treated with 0 mg kg−1 Pb were
79.9, 44.1, 55.9, and 88.2%, respectively. With increasing Pb level,
the hyphal, arbuscular, vesicular, and total colonization rates all
decreased substantially. The lowest colonization rates (41.2, 24.4,
39.5, and 49.8%, respectively) were observed in plants treated
with 3,000 mg kg−1 Pb (Figure 2).

Root Activity and Root Morphology
Under the control conditions (0 mg kg−1 Pb), there were
significant differences in the root activity of R. pseudoacacia
seedlings between inoculated and non-inoculated plants. There
was a 9.8% increase in the former compared with the latter
group (Table 1). Compared with the controls, the root activity of
both inoculated and non-inoculated plants significantly increased
under 90 mg kg−1 Pb (Figure 3). A larger increase in root activity
was found in inoculated plants than that in non-inoculated plants
(13 versus 8%). In contrast, pronounced decreases in root activity
occurred under Pb levels of 900 and 3,000 mg kg−1. The decrease
was smaller for inoculated plants relative to non-inoculated
plants (15 versus 22% under 3,000 mg kg−1 Pb).

The root morphological parameters of R. pseudoacacia
seedlings across different treatments are shown in Figure 4.
The RL, SA, RV, RT, and TF were all greater in plants treated
with 90 mg kg−1 Pb relative to the controls; however, further
increases in the Pb level led to obvious decreases in the parameter
values. Additionally, the RD in all treated plants increased with
increasing Pb level. Among these results, the RL, SA, RV, RT,
and TF of inoculated plants decreased less than those of non-
inoculated plants across all Pb treatments. For example, the RL,
SA, RV, RT, and TF decreased by 23 versus 34%, 18 versus 29%, 11
versus 20%, 29 versus 49%, and 20 versus 36%, respectively, under
3,000 mg kg−1 Pb. The variation in the RD of inoculated plants
was much smaller than that of non-inoculated plants across
different Pb levels (27 versus 70% under 3,000 mg kg−1 Pb).

Plant Biomass
The dry weights of roots, stems, and leaves for all R. pseudoacacia
seedlings are summarized in Table 2. When treated with low Pb
of 90 mg kg−1, a distinctly increasing trend was observed in the
biomass of all plant tissues, with the exception of leaves in non-
inoculated plants. Under medium to high Pb levels of 900 and
3,000 mg kg−1, plant biomass clearly decreased in all plant tissues
compared with those in the respective controls. For example, the
plant biomass decreased by 24.1 and 40.2% in the roots of non-
inoculated plants under 900 and 3,000 mg kg−1 Pb, respectively.
For the same Pb treatment, the biomass of inoculated plants was
always higher than that of non-inoculated plants (18.4% higher
in leaves under 3,000 mg kg−1 Pb).

Root Tolerance and Specific Length
Low Pb significantly increased the RTI in both inoculated
and non-inoculated R. pseudoacacia seedlings compared with
those in their respective controls. The increase of RTI in
the inoculated plants was significantly greater than that in
the non-inoculated plants. In contrast, high Pb significantly
reduced the RTI in all plants with or without inoculation. The
inoculated plants had significantly smaller relative reduction in
their RTI relative to the non-inoculated plants (85 versus 94%
under 900 mg kg−1 Pb and 66 versus 77% under 3,000 mg
kg−1 Pb; Figure 5A).

Under the control conditions, the inoculated plants
yielded the SRL of 2,111.67 cm g−1 on average, which was
substantially higher than the average of non-inoculated plants
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FIGURE 1 | Microphotographs showing the symbiotic relationships between Funneliformis mosseae and Robinia pseudoacacia seedlings grown under the control
Pb treatment (0 mg Pb kg-1 soil) for 4 months. (A) Roots of non-inoculated plants without any extraradical hyphae and spores. (B) Roots of inoculated plants with
extraradical hyphae and spores. (C) Root cells of non-inoculated plants. (D) Intraradical hyphae and arbuscular in the root cells of inoculated plants. (A,B)
25 × magnification; (C,D) 200 × magnification.

(Table 1). With increasing Pb level, the SRL values of both
inoculated and non-inoculated plants significantly increased
(2,143.59 cm g−1 and 1,588.36 cm g−1 under 90 mg kg−1

Pb versus 2,436.06 cm g−1 and 1,856.12 cm g−1 under
900 mg kg−1 Pb). However, the relative increases in SRL
did not differ significantly between plants with and without
inoculation (Figure 5B).

Plant Pb Concentration
The Pb concentrations in different tissues of all R. pseudoacacia
seedlings significantly increased with increasing Pb level
(Table 2). Under 900 and 3,000 mg kg−1 Pb, the inoculated
plants had significantly higher root and stem Pb concentrations
compared with those in the non-inoculated plants (by 95.7 and
21.6% in roots, respectively). In contrast, the corresponding leaf
Pb concentrations in inoculated plants were significantly lower
(P < 0.05) than those in non-inoculated plants under high Pb
level (35.0% lower under 3,000 mg kg−1 Pb).

Bioconcentration and Translocation of Pb
Compared with the respective controls, the BCF values in
different plant tissues first increased under low Pb level and then
decreased toward higher Pb levels (Table 2). The BCF values
in the roots were higher than those in the stems and leaves for
both inoculated and non-inoculated plants. Under the same Pb
level, the inoculated plants had significantly higher BCF values
in the roots and stems compared with those in non-inoculated
plants. For example, under 900 mg kg−1 Pb, the BCF value
in the roots was 100.0% higher in the inoculated plants than
that in non-inoculated plants. However, under the same Pb
level, the inoculated plants had lower BCF values in the leaves
compared with those in non-inoculated plants. For example,
under 900 mg kg−1 Pb, the leaf BCF value was 33.3% lower in
inoculated plants.

The TF values showed obvious variation across the different
treatments (Figure 6). The stem/root TF values showed a
decreasing trend with increasing Pb level; the lowest values
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FIGURE 2 | Root colonization of Robinia pseudoacacia seedlings by Funneliformis mosseae being subjected to different Pb levels for 4 months. (A) Hyphal
colonization; (B) Arbuscular colonization. (C) Vesicular colonization. (D) Total colonization. Shown are means ± SD (n = 3). Different lowercase letters indicate
significant differences among different Pb levels within the inoculated treatment (P < 0.05; ANOVA with post hoc Duncan).

appeared under 3,000 mg kg−1 Pb. The leaf/root TF values in
the non-inoculated plants first peaked under 90 mg kg−1 Pb
(TF = 0.24) and then substantially decreased with increasing Pb
level. However, in the inoculated plants, the leaf/root TF values
markedly and continuously decreased with increasing Pb level.
Generally, inoculated plants had lower stem/root and leaf/root
TF values compared with those in non-inoculated plants across

TABLE 1 | Root activity and morphological parameters of Robinia pseudoacacia
seedlings inoculated with or without Funneliformis mosseae and grown under the
control Pb treatment (0 mg Pb kg−1 soil) for 4 months.

Parameter Non-inoculation Inoculation

Root activity (µg g−1 h−1) 156.02 171.32∗∗

Root length (cm) 3, 134.62 ± 242.16 4, 798.53 ± 662.27∗

Root surface (cm2) 398.95 ± 23.84 718.18 ± 67.13∗∗∗

Root volume (cm3) 4.27 ± 0.37 5.72 ± 0.99NS

Number of root tips 16, 533.33 ± 175.25 33, 782.67 ± 3, 271.34∗∗∗

Root diameter (mm) 0.33 ± 0.02 0.45 ± 0.02∗∗∗

Number of root forks 35, 009.67 ± 2627.45 40, 368.33 ± 6, 970.8NS

Specific root length (cm g−1) 1, 575.23 ± 121.47 2, 111.67 ± 261.45∗

Shown are means ± SD (n = 3). Asterisks indicate significant differences between
inoculated and non-inoculated groups under 0 mg kg−1 Pb (∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.000; t-test). NS: no significance.

FIGURE 3 | Relative changes in root activity of Robinia pseudoacacia
seedlings grown with or without Funneliformis mosseae and subjected to
different Pb levels for 4 months. Shown are means ± SD (n = 3). Asterisks
indicate significant differences between inoculated and non-inoculated
seedlings within each Pb treatment (∗P < 0.05, ∗∗P < 0.01; t-test). Different
lowercase letters indicate significant differences among different Pb levels
within inoculated or non-inoculated treatment (P < 0.05; ANOVA with
post hoc Duncan).
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FIGURE 4 | Relative changes in root morphology of Robinia pseudoacacia grown with or without Funneliformis mosseae and subjected to different Pb levels for
4 months. (A) Root length. (B) Root surface area. (C) Root volume. (D) Number of root tips. (E) Average root diameter. (F) Number of root forks. Shown are
means ± SD (n = 3). Asterisks indicate significant differences between inoculated and non-inoculated seedlings within each Pb treatment (∗P < 0.05, ∗∗P < 0.01;
t-test). Different lowercase letters indicate significant differences among different Pb levels within inoculated or non-inoculated treatment (P < 0.05; ANOVA with
post hoc Duncan).

the different Pb treatments (for example, 0.23 versus 0.31 for the
stem/root TF under 900 mg kg−1 Pb).

DISCUSSION

In this study, Pb-tolerant R. pseudoacacia seedlings were grown
in pots with or without the AM fungus F. mosseae and
subjected to different Pb treatments. Based on the analysis of
root characteristics and the Pb distribution in plant tissues,
we investigated the effects of F. mosseae inoculation on root

development and Pb phytostabilization in R. pseudoacacia
seedlings under Pb stress. The results highlight the possibility
of using F. mosseae to alleviate soil Pb toxicity and enhance
Pb immobilization in R. pseudoacacia. Since plant roots are a
crucial organ for the uptake of HMs and nutrients from soil, this
study provides a model system for the phytoremediation of Pb-
contaminated soil via reciprocal symbiosis between AM fungi
and woody legumes.

Plant health can be affected by soil HMs via direct or
indirect mechanisms (Mishra et al., 2017). In the present
study, high Pb levels (≥900 mg kg−1) substantially reduced
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TABLE 2 | Plant dry weight, Pb concentrations, and bioconcentration factor of Pb in various tissues of Robinia pseudoacacia seedlings in response to different Pb levels
(0, 90, 900, and 3,000 mg Pb kg−1 soil) for 4 months.

Plant Pb(II) level Dry weight Plant Pb Bioconcentration

tissue (mg kg−1) AMF (g plant−1) (mg kg−1, DW) factor

Roots 0 −M 1.99 ± 0.03c 0.61 ± 0.03g 0.09 ± 0.01f

+M 2.27 ± 0.06b 0.56 ± 0.03g 0.08 ± 0.01f

90 −M 2.44 ± 0.11b 78.98 ± 0.56f 0.88 ± 0.02b

+M 2.87 ± 0.28a 101.44 ± 2.16e 1.13 ± 0.02a

900 −M 1.51 ± 0.15de 253.81 ± 9.91d 0.28 ± 0.02d

+M 1.72 ± 0.02de 496.69 ± 5.96c 0.56 ± 0.02c

3,000 −M 1.19 ± 0.02f 666.93 ± 24.51b 0.22 ± 0.02e

+M 1.37 ± 0.06ef 810.77 ± 9.98a 0.27 ± 0.02d

Stems 0 −M 0.58 ± 0.02d 0.25 ± 0.02f 0.04 ± 0.01g

+M 0.66 ± 0.02c 0.19 ± 0.02f 0.03 ± 0.01g

90 −M 0.78 ± 0.03b 27.60 ± 1.11e 0.31 ± 0.01b

+M 0.85 ± 0.03a 29.15 ± 1.45e 0.32 ± 0.01a

900 −M 0.51 ± 0.01e 79.09 ± 1.43d 0.09 ± 0.01d

+M 0.56 ± 0.01d 118.66 ± 5.54c 0.13 ± 0.01c

3,000 −M 0.32 ± 0.01f 158.28 ± 6.21b 0.05 ± 0.01f

+M 0.33 ± 0.01f 182.02 ± 3.23a 0.07 ± 0.01e

Leaves 0 −M 2.16 ± 0.03c 0.14 ± 0.01f 0.02 ± 0.01e

+M 2.33 ± 0.02b 0.13 ± 0.02f 0.02 ± 0e

90 −M 2.29 ± 0.01bc 18.61 ± 1.15e 0.21 ± 0.01a

+M 2.48 ± 0.16a 16.33 ± 1.40e 0.18 ± 0.01b

900 −M 1.35 ± 0.11e 50.84 ± 2.87c 0.06 ± 0.01c

+M 1.55 ± 0.06d 39.99 ± 1.67d 0.04 ± 0d

3,000 −M 1.14 ± 0.06f 101.72 ± 2.01a 0.03 ± 0.01d

+M 1.35 ± 0.04e 66.08 ± 4.19b 0.02 ± 0.01e

AMF, arbuscular mycorrhizal fungus Funneliformis mosseae; +M, inoculated group; −M, non-inoculated group. Shown are means ± SD (n = 3). Different letters within
each group indicate significant differences among different Pb levels between inoculated and non-inoculated treatment (P < 0.05; ANOVA with post hoc Duncan).

FIGURE 5 | Relative changes in root tolerance index and specific root length of Robinia pseudoacacia seedlings grown with or without Funneliformis mosseae and
subjected to different Pb levels for 4 months. (A) Root tolerance index. (B) Specific root length. Shown are means ± SD (n = 3). Asterisks indicate significant
differences between inoculated and non-inoculated seedlings within each Pb treatment (∗P < 0.05, ∗∗P < 0.01; t-test). Different lowercase letters indicate significant
differences among different Pb levels within inoculated or non-inoculated treatment (P < 0.05; ANOVA with post hoc Duncan).

root activity in R. pseudoacacia seedlings. Similar results have
been reported in maize seedlings by Liu et al. (2014). The
root system interacts with HMs in the soil and modulates

its morphological characteristics and physiological functions to
maintain assimilation and subsistence (Fahr et al., 2013). As the
root is the foremost organ of the plant to receive HM ions in
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FIGURE 6 | Translocation factor of Pb in Robinia pseudoacacia seedlings grown with or without Funneliformis mosseae and subjected to different Pb levels for
4 months. (A) Stem/root translocation factor. (B) Leaf/root translocation factor. Shown are means ± SD (n = 3). Different lowercase letters indicate significant
differences among different Pb levels in inoculated or non-inoculated treatment (P < 0.05; ANOVA with post hoc Duncan).

the soil, the sensitivity of the roots to HMs can be much higher
than that of aboveground plant parts (Lu et al., 2013). Root
morphological characteristics such as RL, RS, RD, and RV may
differentially affect plant adaptation, health, and productivity
(Saleem et al., 2018). This is because these characteristics are
closely associated with plant uptake of water and nutrients
(Ding et al., 2014). However, in HM-contaminated soils, root
development can be affected by the toxicity of the HMs to the
plant. The inhibition of root elongation is taken as the first
evidence of any adverse effects (Munzuroglu and Geckil, 2002).
Direct contact between plant roots and HMs can lead to changes
in the morphological traits and physiological functions of the
roots (Mishra et al., 2017). Here, the decreases in the values of
the root morphological parameters including RL, RS, RD, and
RV in R. pseudoacacia seedlings were in accordance with the
reduced root activity observed under high Pb treatments. Such
root modifications were most likely associated with alterations in
plant metabolism.

Microbial interactions in the soil can facilitate plant growth
and function for ecosystem health and productivity (Saleem and
Moe, 2014). In particular, fungi play a role in improving plant
growth and stress tolerance in harsh environments (Chen et al.,
2017; Qin et al., 2017). The AM fungi constitute one of the
most prominent groups of soil fungi, and they can colonize
the root cortex in most plant species (He et al., 2016). In the
current study, the results showed that F. mosseae could establish
symbioses with R. pseudoacacia in Pb-contaminated soil. The
AM fungus successfully colonized the roots of R. pseudoacacia
seedlings under different Pb treatments. Root colonization by
AM fungi may be either tightly related to Andrade et al. (2004),
Chen et al. (2005) or relatively unaffected by Liu et al. (2005)
HM concentrations in the soil. Here, it was found that F. mosseae
colonization was stimulated at a low Pb level (90 mg kg−1) but
was substantially inhibited under higher Pb levels (≥900 mg
kg−1). This decreased colonization may be attributed to the
sensitivity of AM fungi to higher HM concentrations in the
soil (Andrade et al., 2004). Similar results have been reported

in several plant species including Kummerowia striata (Thunb.)
Schindl and Lolium perenne L. (Chen et al., 2005).

Mycorrhizal symbioses can contribute to growth stimulation
and higher HM uptake in plants under HM stress (Galli et al.,
2010). Application of HM-tolerant AM fungi could assist host
plants with growth regulation, root development (Berta et al.,
1995), and HM accumulation (Chen et al., 2005). In the present
study, the R. pseudoacacia seedlings inoculated with F. mosseae
yielded higher biomass in various tissues (leaves, stems, and
roots) compared with those in the non-inoculated plants across
different Pb treatments. The positive effects of AM fungi on host
plant growth may be attributed to the following factors: improved
uptake of soil nutrients (such as P) (Wu et al., 2016), adjusted
balance of endogenous plant hormones (such as cytokinins and
gibberellins) (Liu et al., 2016), and the enhanced release of
root exudates (such as polysaccharides) (Zangaro et al., 2005).
The growth stimulation may have also been related to a high
metabolic activity in the affected roots (Langer et al., 2010), which
is in accordance with the higher root activity observed in the
inoculated seedlings.

Early colonization by AM fungi is beneficial to the root
morphology and performance of mycorrhizal seedlings (Berta
et al., 1995). The AM associations could induce modifications
in the root system in a textural, dimensional, quantificational,
and impermanent manner (Sheng et al., 2009). For instance,
Wu et al. (2011) have indicated that the mycorrhizal seedlings
of Poncirus trifoliata have a greater RL, RA, and RV but a
smaller RD than those in non-mycorrhizal plants. The RL is
relevant to the plant’s capacity to uptake water and nutrients
from the soil (Di Salvatore et al., 2008). In the current study,
the RL of R. pseudoacacia seedlings was longer in plants
inoculated with F. mosseae than that in non-inoculated plants.
This result suggests a remission effect of AM fungi on the
depolymerization of cytoskeletal structures and chromosome
aberrations (Liu et al., 1994) and indicates that mycorrhizal
plants have a higher capacity for resource acquisition (Wu
et al., 2016). In adverse environments (such as those with salt
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stress, high temperature, or drought stress), AM fungi influence
root morphology and play a positive role in plant growth.
Similarly, endomycorrhizal symbiosis can primarily function to
protect the root system of plants from HMs (Galli et al., 2010).
Generally, the presence of HMs can facilitate the formation of
shorter yet thicker main and lateral roots in plants grown in
contaminated soils (Arduini et al., 1995). However, in the present
study, a low Pb concentration (90 mg kg−1 Pb) led to increases
in the RL, SA, RV, RT, and TF in R. pseudoacacia seedlings
compared with those in the control plants grown without Pb.
It is possible that this growth promotion effect is related to
a stimulated metabolism (such as photosynthesis) or enzyme
activities (such as superoxide dismutase) under low Pb treatment
(Schützendübel and Polle, 2002).

The RD can respond to changes in soil physical conditions
(Atkinson, 2000), and roots with a larger relative RD tend to
have higher penetration capacity (Materechera et al., 1992). Wu
et al. (2011) demonstrated that F. mosseae and Glomus versiforme
inoculations appeared to reduce the RD in Poncirus trifoliata
seedlings. However, in the present study, F. mosseae inoculation
increased the RD in R. pseudoacacia seedlings relative to the
non-inoculated plants under different Pb treatments. Similarly,
Zangaro et al. (2007) observed a positive correlation between
AM colonization and rootlet diameter in 12 local arboreal plants
in both fertile and infertile soils of south Brazil. The larger
RD observed in F. mosseae-inoculated plants under Pb stress
was probably due to an increased parenchyma cell size, and
accrescent cortical tissues resulted from the infection by AM
fungi with increasing resistance to adverse habitat (Sheng et al.,
2009; Lu et al., 2013). An increased density of root tips indicates
more intensive exploitation of the substrate. Here, it was found
that the RT in R. pseudoacacia seedlings decreased under Pb
stress, irrespective of F. mosseae inoculation. The decreased RT
under the Pb treatments suggests a diminishing capacity of
R. pseudoacacia seedlings to acquire resources because the root
tips are the closest part of the plant to free Pb2+ ions in the soil
(Lu et al., 2013). However, the inoculated seedlings had a greater
RT than that in non-inoculated seedlings, suggesting that F.
mosseae could alleviate the reduction in lateral root proliferation
and resource acquisition capacity.

Moreover, F. mosseae inoculation increased the root biomass
and root Pb concentration in R. pseudoacacia seedlings when
compared with those in the non-inoculated seedlings. With
increasing Pb concentration, F. mosseae inoculation promoted
plant growth and Pb uptake possibly by facilitating P uptake and
mitigating Pb toxicity, with more Pb segregation in the roots
(Chen et al., 2005; Andrade et al., 2010). The RA can affect
the uptake efficiency in plants (Keller et al., 2003). Therefore, a
plausible reason for the increased biomass and Pb uptake is that
the presence of the external hyphae of F. mosseae expanded the
RA of R. pseudoacacia seedlings, through which soluble mineral
nutrients (especially P) could be assimilated (Andrade et al.,
2010). However, non-inoculated seedlings display hindered and
slow root development even with proper mineral (such as P)
nutrition in the soil (Andrade et al., 2010).

Plant Pb analysis revealed that F. mosseae inoculation
reduced Pb concentrations in the leaves while increasing Pb

concentrations in the stems and roots of R. pseudoacacia
seedlings compared with those in non-inoculated plants. This
result indicates a differential Pb distribution in various tissues of
plants that are grown with or without F. mosseae. Additionally,
there were significant differences in Pb accumulation between
inoculated and non-inoculated seedlings. The BCF values
indicate the ability of plants to accumulate HMs (Wei et al.,
2012). Under the same Pb treatment, F. mosseae inoculation
obviously increased BCF values in the roots and stems but
reduced BCF values in the leaves of R. pseudoacacia seedlings
when compared with those in non-inoculated plants. Moreover,
F. mosseae inoculation resulted in lower stem/root and leaf/root
TF values in R. pseudoacacia seedlings. These results imply that
the association of F. mosseae with R. pseudoacacia could enhance
Pb phytostabilization in Pb-contaminated soil.

CONCLUSION

The present study demonstrated the beneficial effects of
F. mosseae inoculation on plant growth (especially root
development) and Pb phytostabilization in R. pseudoacacia
seedlings subjected to Pb stress. Compared with non-inoculated
plants, inoculated plants yielded higher biomass, root activity,
root morphological parameters (including RL, RA, RV, RD, RT,
and RF), tolerance indices, and specific root lengths across
the different Pb treatments. Moreover, F. mosseae inoculation
increased Pb immobilization in the roots and stems but decreased
Pb concentration in the leaves of R. pseudoacacia seedlings. These
results indicate that F. mosseae may convey R. pseudoacacia with
a higher tolerance and Pb uptake capacity in Pb-contaminated
soil. The inoculated plants had better root development, higher
biomass yield, and more Pb accumulation in particular tissues
when subjected to Pb stress. It is necessary to explore whether
root exudates or plant hormones from R. pseudoacacia seedlings
participate in their responses to Pb stress.
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