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Songnen Plain is originally one of the three major glasslands in China and has now become
one of the three most concentrated distribution areas of sodic-saline soil worldwide. The
soil is continuously degraded by natural and anthropogenic processes, which has a negative
impact on agricultural production. The investigation of microbial diversity in this degraded
ecosystem is fundamental for comprehending biological and ecological processes and
harnessing the potential of microbial resources. The lllumina MiSeq sequencing method
was practiced to investigate the bacterial diversity and composition in saline-alkali soil. The
results from this study show that the change in pH under alkaline conditions was not the
major contributor in shaping bacterial community in Songnen Plain. The electrical
conductivity (EC) content of soil was the most important driving force for bacterial
composition (20.83%), and the second most influencing factor was Na* content (14.17%).
Bacterial communities were clearly separated in accordance with the EC. The dominant
bacterial groups were Planctomycetes, Proteobacteria, and Bacteroidetes among the
different salinity soil. As the salt concentration increased, the indicators changed from
Planctomycetes and Bacteroidetes to Proteobacteria and Firmicutes. Our results suggest
that Proteobacteria and Firmicutes were the main indicator species reflecting changes of
the main microbial groups and the EC as a key factor drives the composition of the bacterial
community under alkaline conditions in saline-alkali soil of Songnen Plain.

Keywords: bacterial community, driving force, electrical conductivity, saline-alkali soil, Songnen Plain

INTRODUCTION

Salinity and/or sodicity is one of the main problems causing soil degradation, which is a
grievous environmental problem with negative impacts on agricultural sustainable development.
All over the world, over 800 million ha of land is estimated to be affected by salinity, which
includes saline and alkaline soil (Yadav et al., 2011). It is reported that ~20% of the agricultural
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land worldwide is salt affected, and there is an increase in
saline land of 1-1.5 x 10° ha worldwide every year (Sumner,
2000; Munns and Tester, 2008). If this continues, about half
of cultivable land will be taken out of production by the
middle of the 21st century (Mahajan and Tuteja, 2005). As
one of the three most concentrated alkaline soil distribution
areas worldwide, the Songnen Plain is located in the northeast
of China (Wang et al.,, 2009). In this region, several environmental
problems such as soil salinization, alkalinization, and
desertification occur due to soil parent material, hydrological
conditions, and overgrazing (Zhou et al., 2011). The annual
rainfall exceeds the potential evaporation and poor management
such as overgrazing and irrational utilization are common in
the area (Gao and Liu, 2010; Liu et al, 2011a); thus, the
affected alkali-saline area has been increasing in size by
20,000 ha per year (Zhang et al, 2015). Not only about
two-thirds of the land in this area is salinized, but also increased
by 1.5-2% annually (Ma et al., 2015). Under increase aridity
and soil alkalization, large areas of croplands have been
abandoned (Shang et al, 2003) and large proportions of
grasslands have degraded seriously to unprecedented levels
(Li et al., 2014).

Soil microorganisms participate in multiple aspects in the
adjustment of ecological processes, for instance, degradation
of organic matter, nutrient element transformations, enzyme
production, and maintenance of soil quality (Sleator et al,
2008). Given that microorganisms are rapidly affected by the
changes of their environment (Jiang et al., 2012), some biological
characteristics (such as microbial diversity, composition, and
structure) of soil are often considered to be sensitive and
early indicators of dynamic environmental changes and soil
ecological stress status (Li et al,, 2011; Liu and Kang, 2014).
For instance, soil microbial diversity was shaped by land-use
changes, such as urbanization, agriculture, deforestation, and
desertification. Many studies have shown that current
environmental factors, for example, nutritional status, metalloid
contamination, soil pH, the plant secretion (Hansel et al.,
2008; Rousk et al., 2010; Xiong et al., 2010), and geographic
distance (Xiong et al., 2012), influence structure and composition
of microbial community.

Among the environmental factors, the pH was proposed
to be a driver force for bacterial horizontal distribution in
the soil (Shen et al., 2013; Liu et al., 2014). As soil salinization
and alkalinization frequently co-occur, meta-analysis has been
conducted merely on microbial diversity and composition
(including bacteria and archaea) in saline soil habitats (Lozupone
and Knight, 2007; Ma and Gong, 2013). Salinity is a dominant
factor in determining bacterial community composition
(Lozupone and Knight, 2007), however, relatively little is
known about how the bacterial community composition
response to the salinity gradients. Especially, the microbial
structure under different salinities at similar pH has not
been investigated.

Several recent studies on the composition of soil microbial
diversity in saline soils revealed that soil salinization had
negative effects not merely on soil biochemical properties, but
also on the structure of microbial communities (Foti et al., 2007;

Yuan et al,, 2007; Hidri et al., 2013; Wang et al., 2014; Zhang
et al,, 2015). Regarding the soil microbial community in saline
soils of Songnen Plain, only some representative new species
of halophilic and halotolerant bacteria and archaea have been
reported by pure culture methods (Wu et al, 2008; Wang
et al, 2010; Liu et al, 2011b; He et al, 2014; Pan et al,
2016). These microorganisms have gradually formed adaptations,
including unique structures and physiological functions, such
as the accumulation of osmotic adjustment-related substances
(Yan and Marschner, 2012). However, physical and chemical
properties in saline-alkaline environments and microbial
composition in Songnen Plain have not been sufficiently explored.

Systematic analysis of microbial diversity and composition
in saline-alkaline soil of Songnen Plain is essential for gaining
insight into the biological and ecological processes, saline
adaption mechanisms, and digging the potential microbial
resources from such environments. We collected 29 soil
samples with different salinities across Songnen Plain and
performed high throughput sequencing (Illumina MiSeq
sequencing) to investigate the microbial diversity and
composition in this under-studied system and to identify
the key factors controlling the distribution of bacterial
communities. The aim was to clarify the direct effects of
environmental factors in shaping bacterial communities under
geographic scale.

MATERIALS AND METHODS

Site Description

The study area locates in the Songnen Plain (42°30'-51°20'N,
121°40'-128°30'E), Northeast China and belongs to a
transitional zone between semi-humid and semi-arid regions,
and is typically influenced by continental monsoon climate
with mean annual temperature of 4.7°C (Shang et al., 2003;
Yang et al., 2010). The average annual evaporation in this
region is four times greater than the annual precipitation.
The groundwater average mineral content is 2-5 g/L, with
a maximum of 10 g/L, and the major anions present are
CO;* and HCO;™ (Zhang, 2014). The saline-sodic soils are
characterized by a high pH (up to 10) and a large exchangeable
Na percentage (Chi and Wang, 2010). The dominant zonal
soils include meadow carbonate chernozem, deep chernozem,
sodium carbonate-salinized soil, and dark chestnut soil. These
soils are mainly distributed in the west part of Jilin and
Heilongjiang provinces (Chi et al., 2011), including Zhenglai,
Daan, Changling, Qianguo, and Tongyu prefectures in Jilin
province, and Zhaoyuan, Zhaozhou, Dumeng, Daqing, and
Anda prefectures in Heilongjiang province (Wang et al., 2009).
There are no naturally growing tree species because of
salinization, only some salt/sodium-tolerant grass species such
as Leymus chinensis, Puccinellia tenuiflora, and Suaeda
corniculata are able to grow in the study area.

Site Selection and Soil Sampling
A total of 29 soil samples (with a mean depth of 0-15 cm)
with GPS located site information from 12 counties (cities)
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across Jilin and Heilongjiang provinces were randomly collected
in September 2013 (Figure 1). At each site, the analyzed soil
samples mixture was from three soil samples collected in the
vertices of 1 m side equilateral triangle. Then, the soil sample
mixture from each site was divided into two subsamples: one
was air dried, 2 mm sieved for soil physical and chemical
analysis, and the other subsample was stored at —80°C for
subsequent high-throughput sequencing.

Soil Physical and Chemical Analysis

Soil organic carbon (SOC) was measured on a Total Organic
Carbon (TOC) Analyzer (Multi N/C2100, Analytik-Jena,
Germany). The electrical conductivity of the saturated paste
extraction (EC) was measured using a conductivity meter
(DDS-307A, REX, Shanghai), and pH was determined with
air-dried soil (soil:water, 1:5) by pH meter (PHS-3C, REX,
Shanghai). Soil exchangeable sodium(ammonium acetate
exchange method) was determined by an atomic absorption
spectrophotometer (TAS-990, Persee, Shanghai). Potentiometric
titration was used to determine CO;*>, HCO, , Cl;, and
SO, with air-dried soil (soil:water, 1:5). The cations Ca*
and Mg* were detected using Ethylenediaminetetraacetic
acid (EDTA) titration and Na* and K* were measured using
an atomic absorption spectrophotometer (TAS-990, Persee,
Shanghai). Total content of dissolved salt (TDS) was determined
by the drying-weighing method. The soil:water 1:5 tilt
rate was placed in an oven at 105°C until constant weight
was reached.

Soil DNA Extraction

The total DNA was extracted from 0.25 g soil samples using the
Power Soil DNA Isolation Kit (Mo Bio Laboratories Inc., Carlsbad,
CA, USA), followed by electrophoresis using a 1% agarose gel.
The quality and quantity of DNA extracts (final volume, 100 pl)
were examined using a Nano Drop spectrophotometer (Nano
Drop Technologies, Wilmington, DE, USA).

lllumina Sequencing for
Communities of Bacteria
The primer pair 515F (5-GTGCCAGCMGCCGCGG-3")/907R
(5"-CCGTCAATTCMTTTRAGTTT-3') was used to amplify the
V4-V5 region of bacterial 16S rRNA genes (Yao et al., 2017).
A 6-bp unique barcode unique to each sample was added into
the reverse primers. Amplicon sequencing was performed using
the Illumina MiSeq platform at Majorbio Inc. (Shanghai, China).
The sequencing data analysis was performed according to
previous study (Zhu et al., 2016). Briefly, raw high-throughput
sequencing data was processed using QIIME toolkit and the
UPARSE pipeline (Caporaso et al., 2010; Edgar, 2013). After
filtering DNA sequences using quality files, the remaining
sequences were trimmed to remove barcodes and forward
primers. The low quality (quality score < 20, length < 300 bp)
sequences were excluded. The sequencing data were pre-treated
to remove the chimeras from the datasets. After optimizing
the sequences, the UPARSE pipeline was used to make an
operational taxonomic unit (OTU) table. The identity threshold
to bin the sequences into OTUs was 97%, and the most
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FIGURE 1 | Sampling positions in Jilin Province [including Zhenglai (Jz), Da’an (Jd), Qianguo (Jg), Changling (Jc), Songyuan (Js), and Tongyu (Jt) prefectures], and
in Heilongjiang Province [including Dumeng (Hdu), Lindian (HI), Daging (Hda), Anda (Ha) Zhaodong (Hz1), and Zhaozhou (Hz3) prefectures].
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abundant sequence from each OTU was selected as the
representative sequence for that OTU. The assignment of
taxonomic data to microbial representative sequences was based
on the Ribosomal Data Project (RDP) database. All sequencing
data were deposited in the NCBI Sequence Read Archive (SRA)
database (accession number: SRP172399).

Statistical Analysis
Analysis of variance was performed for each measured soil variable,
and variance was compared between groups by a Fishers least
significant difference test (« = 0.05). The richness index (Chaol
index), a-diversity (Shannon diversity) index, and rarefaction
curves of soil samples were calculated by QIIME with normalized
data. Non-metric multidimensional scaling (NMDS), and one-way
PERMANOVA were used to analyze the B-diversity of bacteria
in different treatments according to Bray-Curtis distance and
Canonicla Correlation Analysis (CCA) was used to examined
the relationships between the environmental factors and bacterial
community structure with the R (2.15.3) packages ape and vegan.
Aggregated boosted tree (ABT) analysis (De'ath, 2007), was
performed using the gbmplus package (with 500 trees used for
the boosting, 0.02-fold shrinkage rate and three-way interactions)
to determine the relative influence of environmental variables
on bacterial community composition (NMDS axis 1).
Network analyses were used to dissect the interrelationship
and interaction between bacterial species along the different
electrical conductivity (EC) gradients. All pair wise Pearson
correlation coeflicients were calculated by Mothur (version
1.29.2) for analysis of the networks. The correlation coefficient
of Pearson correlation was further filtered with the cut-off as
an absolute value of 0.6-0.93. After applying multiple hypothesis
correction by the BH method (Benjamini and Hochberg, 1995),
edges with adjusted values of p below 0.05 were kept and
were further used to improve the veracity of the networks.
Interactive networks were visualized by Gephi with a
Fruchterman-Reingold layout (Bastian et al., 2009). The average
clustering coefficient, average path length, and modularity of
the network were calculated (Newman, 2006). We referred to
the active species as the species that most strongly interacts
with the other species within the networks (Magurran and
Henderson, 2003; Montoya et al., 2006; Barberan et al., 2012).
According to the network analysis, we selected the first 10
hubs under different salinity treatments. Times of iteration
were 10,000. The indicator status of OTUs from each of the
salinity treatments was assessed, and indicator of a treatment
was conducted under the significance threshold of 0.05.

RESULTS

Physical and Chemical Properties for All
Collected Samples

To explore the soil factors that affect bacterial community
composition, we first survey the physical and chemical properties
in over 29 soil samples in different salinities collected from
Jilin and Heilongjiang provinces (Figure 1). In all the studied
sites, soil samples showed differences in pH. One sample from

Ha2 had a pH of 8.84, whereas the pH of others was ranged
from 9.89 to 10.66. However, the remaining physical and chemical
properties, including various ion concentrations (Cl-, Na*, SO,
CO;*, HCOy, Ca®, Mg*, and Na*), SOC, EC, and SAR, varied
more substantially than the pH. In particular, the lowest
concentration of SO,*” was 0.480 g/kg from Hal, and the highest
was 21.6 g/kg in Hda3, a difference reached 48 times. The
same conspicuous change was observed in EC, the highest EC
(Hda4: 10.867 ms/cm) was 26.3 times higher than the lowest
value (Jcl: 0.413 ms/cm) (Supplementary Table S1).

Bacterial Community Analysis

The widespread change of the physical and chemical properties
leads us to ask whether these properties would be associated
with bacterial community in the salinity soils. The soil bacterial
communities under different salinization levels were compared
by sequencing of the bacterial 16S rRNA amplifications. Therefore,
we sought to identify environmental factors that contribute to
the ecological variation of bacterial community by analyzing
characteristics of different soil samples (Supplementary Table S1),
and creating ABT models to evaluate the relative impact of
environmental factors on the bacterial composition NMDS axis
1. The NMDS result showed that the bacterial community
structure was significantly separated in three EC levels
(PERMANOVA, F = 0.2248, p < 0.001) (Figure 2). Soil EC
was the most important driving force for microbial composition
(20.83%, Figure 3), and the second most influencing factor
was Na* (14.17%) followed by CI". Given the key role of salinity
in shaping the bacterial community, we tentatively divided all
samples into three groups depending on the EC level as low
(L)-, medium (M)- and high (H)-level treatment. The L, M,
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FIGURE 2 | Non-metric multidimensional scaling (NMDS) ordination plot of
soil bacteria community structure based on the number of OTUs detected by
sequencing.
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and H treatments represent EC of 0-2, 2-4, and >4 ms/cm,
respectively. However, there was no significant diffidence in
the a-diversity, including Chaol index and Shannon index,
among the three different salinity levels (Figure 4).

The Co-occurrence of Bacteria in
Three-Salinity Gradient Treatments

Bacterial species usually work corporately to regulate soil properties.
Based on the abovementioned statement about dividing the samples
into three groups, we divided all samples into three salinity

treatments (L, M, and H treatments) and the three treatment
groups were used for network analysis. The network parameters
of the three salinity levels were showed significant differences
(Figure 5). In the L treatment, the network had 1,208 nodes
and 29,183 edges, and the modularity was 0.72, with 10 modules.
For the M treatment, the network presented 982 nodes and
12,819 edges, and the modularity was 0.82, with 9 modules.
Finally, 878 nodes and 10,871 edges were found in the H treatment,
for which the modularity was 0.74, with 7 modules. Nodes, edges,
modularity, and modules all declined with increasing salinity,
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A
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OTU1147
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OTU430

B OTU77

OTU311

OTU511 OTU945
OTU19 OTUS508
QTUI0 OTU114

FIGURE 5 | Network analysis of the three different salinity rates treatments
based on Pearson correlations. The different color edges belong to different
modules. (A) Low-salinity treatment (EC: 0-2) with modularity resolution of
0.72 and 10 modules; (B) middle-salinity treatment (EC: 2-4) with modularity
resolution of 0.82 and 9 modules; and (C) high-salinity treatment (EC: >4)
with modularity resolution of 0.74 and 7 modules. The black nodes indicate
the OTUs belonging to active hubs in the network.

suggesting that a higher concentration of salt led to reducing
connectivity of the bacterial network (Figure 5).

We defined the 10 nodes with largest number of edges as
network hubs, which were active mediators in the bacterial
community network (Supplementary Table S2). Taken as a
whole, Planctomycetes, Proteobacteria, and Bacteroidetes were
the three dominant phyla among the different salinity rate
treatments, including 63.3% network hubs at the phylum level
(Figure 6). Half of the network hubs in the L treatment
belonged to Planctomycetes and Bacteroidetes, such as OTU513,
OTU106, OTU63, OTU781, and OTU1147. The hubs of M
treatment had similar phylogenetic classifications to the L
treatment, with half assigned to Planctomycetes and Bacteroidetes.
However, at the highest salinity, more than half hubs were
classified as Proteobacteria, for instance, OTU713, OTU274,
OTU572, OTU555, and OTU783. However, only one indicator
(OTU144) belonged to the classification of phyla at low salt
concentrations, while a second indicator (OTU777) belonged
to the classification of phyla in moderate salt concentrations,
which were identified as Planctomycetes and Bacteroidetes,
respectively. As the salt concentration increased, the indicators
changed from Planctomycetes and Bacteroidetes to Proteobacteria
and Firmicutes. Supplementary Figure S2 shows that the
Rhodospirillaceae, belonging to a family of Proteobacteria, had
a strong correlation with the EC (R* = 0.3365, p < 0.001). At
the higher taxonomic level, the genus of Marinicella, assigned
to Proteobacteria, also had a positive correlation with EC. The
results revealed that multiple microbes belonging to Proteobacteria
are well adapted to the high-salinity environment.

DISCUSSION

Driving Force for Microbial Community
Composition in Saline Soils
We collected a total of 29 soil samples from Jilin and Heilongjiang
provinces to investigate the distribution characteristics of
microbes and reveal the general rule of microbial community
composition under different salinities. Saline soils are
characterized by high salt concentrations as well as an uneven
temporal and spatial water distribution. The high salt
concentrations shape the special environment patterns for
microbes, causing the microbes in saline soils to vary from
those found in the non-saline environment (Canfora et al,
2014). Firstly, we have analyzed the physical and chemical
properties among the samples with different salinities. Although
pH is a potential important determinant of salinity, we found
that pH does not vary substantially among these samples, while
the concentration of CO,* varies greatly, from 0.01 to 2.82 g/
kg. Besides, the concentration of other ions, SOC, EC, and
SAR are all different to some extent in the 29 soil samples,
encouraging us to investigate whether the variation of physical
and chemical properties was associated with salinity.
Identifying environmental factors contributing to the variation
of microbial communities is a central aim in ecology. Several
studies have shown that environmental factors, including soil
pH (Rousk et al., 2010) and trophic status (Hansel et al., 2008;
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Xiong et al., 2010) affect the microbial community. As pH is
the most important driver in bacterial community change (Shen
et al, 2013; Liu et al, 2014), the explanation of pH for
community variation only accounted for 4.80% in this study.
ABT models were used to analyze the influence of the
environmental factors on the bacterial community composition.
EC content of soil was the most important driving force for
microbial community composition (Figure 3) rather than soil
pH. In CCA analysis, the EC value was the highest factor
explaining the bacterial community by Monte Carlo permutation
(Supplementary Table S3). This result showed gradient
distribution of salinity along our sampling sites. Thus, EC could
be the major factor controlling the differences. It has been
reported recently that both low and high EC will affect bacterial

growth in high-salinity soils (Rath et al., 2019), the influence
of EC might be different among bacterial species, supporting
our finding that EC is a causal factor for bacterial community
in our salinity soil samples.

A previous study has shown that bacterial composition was
associated with pH changes in both acidic soils and alkaline
lake sediment (Xiong et al, 2012). While the current study
shows that pH is unlikely to be the principal contributor to
the considerable microbial community changes according to
the ABT model. It should be noted that effect of pH in shaping
bacterial communities is affected by local features. It is well
known that salinization consists of salt accumulation by one
or more natural processes including high salt content of the
parent material or in groundwater, and human interventions
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such as inappropriate irrigation practices or inappropriate use
of fertilization regimes. However, no matter which way, Na*
is a type of salt, which is the main component. For alkaliphilic
bacterial taxa, the Na* could serve as important proton
replacement to cope with the high external pH (Canfora et al,,
2014). As the relative abundance of these microbes are associated
with the carbon mineralization rate in the soil (Fierer et al.,
2007), we speculate the changes of dominant taxa that occur
across the salinity gradient probably play a role in regulating
ecosystem functions.

Changes in Diversity and Structure of
Microbial Community in Saline Soils

In general, soil microbial diversity changes distinctly in response
to environmental variations (Liu and Kang, 2014). However, in
this study, the a-diversity did not change remarkably, whereas
there was significant variation in f$-diversity under the different
salinity. Moreover, some studies have reported that a-diversity
and p-diversity did not change simultaneously p-diversity
transforms prior to a-diversity (Van Diepen et al,, 2011; Xiong
et al, 2012; Zhu et al,, 2016). Furthermore, some researchers
have suggested that the change of community structure (p-diversity)
was typically correlated with shifts in functional behavior (Van
Diepen et al., 2011; Fierer et al, 2013; Griffiths and Philippot,
2013). We speculated that the function responds sensitively and
rapidly in the environment, which shows through p-diversity
rather than o-diversity. In summary, these results suggest that
the microbial community functions and structure respond initially
to the environment variations, and then it takes a longer time
for microbial a-diversity to change in the saline-alkali soils.

It has been a great challenge to dissect the association
between microbial community structure and soil ecosystem.
In this study, we used co-occurrence network analysis based
on correlation to thoroughly dissect the microbial associations
under salinity (Barberan et al, 2012; Faust and Raes, 2012;
Friedman and Alm, 2012). Network analyses were conducted
to reveal positive and negative interactions among different
OTUs. A microbial community in the low-salinity soil was
found to have a network with higher connectivity, suggesting
more operational community with a greater number of
functionally interrelated members (10 major modules) compared
to the microbial community network in the high-salinity soil
(7 major modules) (Figure 5). Given that the highly connected
microbes within a module that co-occur might share similar
ecological characteristics within communities (Chaffron et al.,
2010; Williams et al., 2014; Yao et al., 2014), our results suggest
that the high-salinity soil could harbor less ecologically similar
functional groups.

Another important benefit of network analysis in microbial
ecology studies is the ability to identify central organisms in
maintaining soil ecosystems, according to the network theory,
the “hub” species, as hotspots of connections in the microbial
network, are the most important mediators for the complicated
interactions among different species constituting the soil ecosystem
(Montoya et al., 2006). According to the method described by
the previous study (Zhu et al,, 2018), 10 nodes with the most
edges were defined as network hubs. Planctomycetes, Proteobacteria,

and Bacteroidetes were the predominant phyla occupying 63.3%
of the network hubs among the different salinity treatments
(Figure 6). Ma and Gong (2013) reported that six phyla
(Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, and
Bacteroidetes) contained 90% of the bacterial sequences in saline
soils; here, we detected five out of the six major phyla, with
the exception for Acidobacteria. Proteobacteria, one common
bacterial taxa in saline soil identified by a previous study
(Valenzuela-Encinas et al., 2009), was the common denominator
in our experimental sites, being especially dominant in highly
saline soils, with 50% frequency in the indicators. In addition,
Proteobacteria was reported as “salinity related” in a previous
study (Yang et al., 2018), our results confirmed this finding,
as Rhodospirillaceae and Marinicella, assigned to Proteobacteria,
had good correlation with salt concentration. In addition,
Firmicutes can also be considered special indicators specifically
for the high salinity rate soil, which was absent in various
hyper saline environments in previous studies (Demergasso
et al, 2004; Ramette, 2007). Bacillus stands out among the
prevailing genera assigned to Firmicutes, as it has shown to
be an important resource for exploring halophilic enzymes and
metabolic pathways for pollutant remediation in saline soil
(Liszka et al., 2012). Species within Proteobacteria and Firmicutes
may be good indicators, reflecting changes of the main microbial
groups in saline-alkali soil. Although other studies have reported
Gemmatimonadetes and Bacteroidetes to be an important
participant in biogeochemical transformations in soils under
salinity (Fierer et al, 2012; Ma and Gong, 2013), they were
not detected in the high salinity soils of the current study.
Different regions form different ecological environments, resulting
in various microbial compositions. Therefore, our result suggests
the requirement of future study on a wide range of spatial scales.

Our examination on the variability of the microbial community
in saline soils successfully revealed microbial community
subdivision across micro-environmental gradients. We expect
future studies using metagenome sequencing data could identify
similar patterns of bacterial composition variation at finer
taxonomic resolution.

CONCLUSION

Taken together, this study presents an attempt to explore bacterial
composition in saline-alkali soils across Jilin and Heilongjiang
provinces. We show that bacterial p-diversity and community
structure correlate with the salt gradient. We demonstrate that
EC, instead of pH predicts bacterial community structure in
saline-alkaline soils. Microbes belonging to the phyla
Proteobacteria and Firmicutes were predominant and may be good
groups of indicator species, reflecting changes of the main
microbial groups in saline-alkali soil. Our results revealed local
geochemical features as driving force of bacterial composition
in the soil, whereas the EC as a key dominant factor in regulating
microbial composition at a regional spatial scale. Correlating
population of microbes with environmental parameters could
facilitate reconstructing the formation of bacterial communities
under specific environmental conditions like salinity. In this
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study, we provide a framework for future research to deeply
analyze microbial composition in extreme environments.
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