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Soil structure, the complex arrangement of soil into aggregates and pore spaces, is a
key feature of soils and soil biota. Among them, filamentous saprobic fungi have well-
documented effects on soil aggregation. However, it is unclear what properties, or traits,
determine the overall positive effect of fungi on soil aggregation. To achieve progress,
it would be helpful to systematically investigate a broad suite of fungal species for their
trait expression and the relation of these traits to soil aggregation. Here, we apply a
trait-based approach to a set of 15 traits measured under standardized conditions
on 31 fungal strains including Ascomycota, Basidiomycota, and Mucoromycota, all
isolated from the same soil. We find large differences among these fungi in their ability to
aggregate soil, including neutral to positive effects, and we document large differences in
trait expression among strains. We identify biomass density, i.e., the density with which
a mycelium grows (positive effects), leucine aminopeptidase activity (negative effects)
and phylogeny as important factors explaining differences in soil aggregate formation
(SAF) among fungal strains; importantly, growth rate was not among the important
traits. Our results point to a typical suite of traits characterizing fungi that are good soil
aggregators, and our findings illustrate the power of employing a trait-based approach to
unravel biological mechanisms underpinning soil aggregation. Such an approach could
now be extended also to other soil biota groups. In an applied context of restoration
and agriculture, such trait information can inform management, for example to prioritize
practices that favor the expression of more desirable fungal traits.

Keywords: soil aggregation, traits, saprobic fungi, random forest, biomass density, leucine amino peptidases

INTRODUCTION

Soil is our most vital resource, with soil and its biodiversity contributing to many ecosystem
processes (Bardgett and van der Putten, 2014), and to human nutrition, health and wellbeing
(Wall et al., 2015). Soil has been described as the most complex biomaterial on Earth (Young and
Crawford, 2004) with soil structure as one of its most important features. Soil structure represents
the three-dimensional arrangement of soil particles into aggregates and associated pore spaces and
is also a crucial parameter for sustainable management of soils (Bronick and Lal, 2005); therefore,
it is of great interest to unravel how soil biota contribute to the process of soil aggregation.

Many soil biota influence soil aggregation (Lehmann et al., 2017b), and among them
are the filamentous fungi. These fungi have a particularly well-documented impact on soil
structure especially at the macroaggregate (>250 µm) scale, as highlighted in a meta-
analysis (Lehmann et al., 2017b). Soil aggregating capability of fungi is hypothesized to
be due to a range of physical, morphological, chemical and biotic traits (Six et al., 2004;
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Bronick and Lal, 2005; Lehmann et al., 2017a). While foraging
and growing through soil, fungi are thought to entangle and
enmesh soil particles and aggregates due to their filamentous
growth form (Tisdall and Oades, 1982). Fungi also exude
extracellular biopolymers which can act as cements and surface
sealants for soil aggregates (Chenu, 1989; Caesar-TonThat and
Cochran, 2000; Daynes et al., 2012), and enzymes degrading
organic matter (Baldrian et al., 2011), which may serve as
aggregate-disintegrating agents. Among the molecules they
release are also hydrophobins, which can modify wettability of
aggregates, likely serving a stabilizing function (Zheng et al.,
2016). While growing through soil, fungi also interact with other
members of the soil community, for example they can be grazed
upon by Collembola, which can also influence soil aggregation
ability (e.g., Siddiky et al., 2012a,b).

Fungi likely differ in many of these traits, and thus also in their
soil aggregation capability. In fact, exploring a global dataset of
fungal contributions to soil aggregation, Lehmann et al. (2017b)
revealed a wide range in soil aggregation effectiveness for the 117
species for which experimental data were available. However, in
this analysis it remained unclear which fungal traits underpin the
observed effects on soil aggregation, simply because the relevant
trait data are unavailable.

There is a need for studies that systematically compare
fungal traits in a set of species and relate these traits to soil
aggregation ability. So far, a relatively limited number of such
studies are available (Supplementary Table S1), representing
pioneering studies that have mainly focused on fungal biomass
and some chemical traits, using specific fungal groups, such
as arbuscular or ectomycorrhizal fungi. Much less is known
for soil saprobic fungi. In all these studies, researchers have
focused on a smaller set of fungi (typically in the range of
3–9 species), which were examined for some selected traits
(no more than three traits). In cases where larger suites of
fungi (up to 85 fungal strains/mutants) were investigated for
their soil aggregation ability, no traits were measured, likely
because of logistical limitations (Supplementary Table S1).
Overall, we are thus not in a position where broadly generalizable
conclusions can be drawn about fungal traits important for
soil aggregation.

One approach to address this issue is by applying a trait-based
approach, especially for saprobic fungi (Lehmann and Rillig,
2015). As opposed to arbuscular mycorrhizal fungi, for which
most work in this context has been done (Rillig et al., 2015), there
are also clear traits for disaggregation ability in saprobic fungi,
which are related to enzymatic traits. In a trait-based approach,
using a reasonably large suite of isolates, organismal traits
can be related to specific functions. Such approaches generally
convert species into points in “trait-space,” thus overcoming some
limitations associated with examining a few selected strains, and
thus allowing for more generalizable inferences (Crowther et al.,
2014; Aguilar-Trigueros et al., 2015), at least within the confines
of the set of fungi chosen for this purpose.

Here, we investigated a set of 31 filamentous fungal strains, all
saprobic fungi isolated from the same soil, and thus representing
one particular ecological context. We compared these strains
under identical conditions in the laboratory; this is an important

advantage compared to literature syntheses, since often isolate-
specific growth media and conditions are used. The 31 strains
are distributed among the Ascomycota, Basidiomycota and
Mucoromycota (Spatafora et al., 2016), and we screened each for
the expression of a suite of 15 traits. With these data, we wished to
determine (i) which morphological, chemical and biotic traits are
most important for soil aggregation and (ii) what characterizes an
efficient or poor soil aggregator.

MATERIALS AND METHODS

Soil and Fungal Strains
Soil samples and fungal strains were obtained from Mallnow
Lebus, a dry grassland in a natural reserve (Brandenburg,
Germany, 52◦ 27.778′ N, 14◦ 29.349′ E) characterized by a sandy
loam soil texture. The collected soil samples were either used
for establishing fungal cultures or were air-dried and stored
until further use in experiments. The isolation of the 31 fungal
strains was previously described in Andrade-Linares et al. (2016).
Briefly, washed and diluted soil was used for the isolation
procedure to minimize spore abundance and to increase the
probability of capturing fungi derived from hyphae attached to
soil particles (Gams and Domsch, 1967; Thorn et al., 1996).
Afterward, soil suspensions were incubated on a variety of media
with applications of different antibiotics (streptomycin, penicillin
G, and chlortetracycline) suitable for cultivation of Ascomycota,
Basidiomycota and Mucoromycota while suppressing bacterial
growth. Isolates were grown on PDA at room temperature
(22◦C). Our final set of fungal strains comprised 20 Ascomycota,
four Basidiomycota, and seven Mucoromycota strains (Figure 1
and Supplementary Table S2).

The inference of the phylogenetic relationships of the 31
fungal strains was based on the complete intergenic transcribed
spacer (ITS) and a part of the large rRNA subunit (LSU)
(Lehmann et al., 2019b). Fungal DNA was extracted using
Qiagen DNeasy PowerSoil Kit (100) or MasterPure Yeast DNA
Purification Kit (Epicenter, Madison, WI, United States) while
following manufacturer’s instructions. We amplified the ITS
and partial LSU regions via ITS1F and LR5 primers. The
internal primers ITS4 and NL4 were used for sequencing
with Sanger technology. We applied the software tool ITSx
(Bengtsson-Palme et al., 2013) to split the rRNA sequences
into the subregions ITS1, ITS2, LSU, and 5.8S. Each region
was aligned independently using AlignSeqs in the R package
DECIPHER 2.0 (Wright, 2015, 2016). Subsequently, the aligned
subregion sequences were concatenated and pairwise distances
calculated via JC69 evolutionary model. We then constructed
a neighbor-joining tree (Figure 1) by applying the dist.ml()
and NJ() functions, respectively, of the R package “phangorn”
2.5.5 (Schliep, 2011). The root was placed at the midpoint of
the longest path between any two tips. Finally, we inferred the
taxonomic annotations of the fungal isolates based on each
subregions by appliying the Naive Bayesian Classifier (Wang
et al., 2007) implemented in the R package “dada2” (Callahan
et al., 2016). For ITS1 or ITS2 sequences, we investigate the
UNITE database (Nilsson et al., 2019), while for LSU sequences
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FIGURE 1 | Overview of fungal strains. Phylogenetic tree (maximum clade-credibility tree) of the 31 saprobic fungal strains comprising members of the phyla
Ascomycota, Basidiomycota, and Mucoromycota. Following the order of the tree, images of 4 week old colonies grown on PDA are assigned to the tree. Further
information about phylogeny and accession numbers of the 31 fungal strains are available in Supplementary Table S2. Strains performing best and poorest are
marked; blue symbols represent good and red symbols poor aggregators.

we used the RDP LSU database (Cole et al., 2011). We verified
the annotations following a confidence threshold approach
incorporating bootstrap analysis; an annotation was valid if it was
supported in 80% of the bootstraps. We chose the best-resolved
taxonomic annotation among the investigated regions. In case of
conflicting taxonomic annotations for the different investigated
regions, we gave priority to ITS1 or ITS2 over LSU since the
UNITE database is more complete than the RDP LSU database.
We followed the phylum classification by Spatafora et al. (2017)
(Supplementary Table S1).

Soil Aggregate Formation
The soil aggregate formation (SAF) assay used here aimed to test
for de novo aggregate formation by fungi. This technique was
modified from Tisdall et al. (2012). Here, we filled 6 cm petri
dishes with a 5 mm layer of agar (1.5%, Panreac AppliChem,
Darmstadt, Germany) to provide moisture, and this layer was
covered with 10.0 g of soil. The soil was gently poured onto
the agar to avoid any artificial compaction. Prior to this, the
soil (from the field site from which the fungi were originally

isolated) was sieved to a fraction <1 mm and autoclaved two
times in a dry cycle. The soil was then allowed to equilibrate
for 2 days on the agar before inoculation. During this time, the
soil was rewetted by capillary action. This way, we provided a
moist but not waterlogged environment for the fungal strains.
The fungal strains used for inoculation were cultured on PDA
and incubated with sterilized poppy (Papaver somniferum) seeds
as carrier material. Colonized poppy seeds were transferred to
soil – with two seeds per species added per soil plate. For the
controls, non-colonized poppy seeds incubated on PDA were
transferred to the soil plates. Finally, plates were sealed and
stored at room temperature (22◦C, the culturing temperature of
our fungal strains) in the dark for 6 weeks until harvest. The
experiment consisted of ten replicates for 31 fungal strains and
a control, resulting in 320 experimental units.

We visually confirmed for every strain (on two replicates) that
hyphae were not just growing on the surface of the soil, but that
the mycelium was present inside the soil. At harvest, the plates
were opened and dried at 60◦C overnight. Subsequently, the soil
was carefully extracted from the Petri dishes, passed through a
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1 mm sieve to extract all aggregates larger than 1 mm, which were
formed during the experiment. To do so, we vertically moved the
sieve two times to allow separation while avoiding abrasion of
soil aggregates. Additionally, we tapped against the sieve frame.
By this, we increased the likelihood of passing aggregates and
particles <1 mm captured by hyphae through the mesh. The
weight of the soil fraction >1 mm was used for the calculation of
the SAF for our 31 fungal strains and the corresponding controls
following the equation: % SAF = (aggregates> 1 mm/10.0)× 100.

This approach offers the opportunity to test SAF for an a priori
size fraction (here 1 mm). However, this design does not capture
any dynamics for the <1 mm soil fraction. Hence any impact of
the 31 fungal strains on e.g., microaggregate formation could not
be evaluated here.

Trait Measurements
To build a trait database, we investigated 15 different traits
capturing morphological, chemical and biotic features of our
31 fungal strains (Lehmann and Rillig, 2015; Lehmann et al.,
2017a). The traits were chosen to characterize different aspects
of the fungal mycelium and its products by which the fungus
interacts with its environment. Additionally, the traits had to
be measurable for all 31 strains, using methods that worked for
all of them. The trait data were either obtained from dedicated
new experiments or collected from previously published studies
(Zheng et al., 2018; Lehmann et al., 2019b) using the set of 31
fungal strains; data origin is given in the text.

With the exception of hyphal length, all traits were measured
under standardized in vitro conditions which were suitable
for all our fungal strains. It was not feasible to realize
trait measurements in soil since it is an opaque and highly
heterogeneous substrate. Instead we used potato dextrose agar,
a widely used standard growth medium for fungi. By this, we
ensure a consistent environmental setting for trait measurements
(Aguilar-Trigueros et al., 2015; Lehmann and Rillig, 2015).

Morphological Traits
We measured hyphal length in soil (in m g−1 soil); for this we
used soil samples from the SAF assay; hence we had ten replicates
for each fungal strain and the control. For extracting hyphae
and measuring hyphal length, 4.0 g of the experimental soil were
used, and hyphae counted at 200×magnification (Tennant, 1975;
Jakobsen et al., 1992). The hyphal length found in the controls
was set as the background; that is, dead hyphae that were present
in the soil after autoclaving.

In order to measure colony radial growth rate (in µm h−1),
the 31 fungal strains were cultivated on full strength PDA – a rich
medium generally preventing growth limitations in our fungal
strains. For each fungal strain five replicates were used. For the
set-up, a pre-sterilized poppy seed colonized by a fungal strain
was placed in the center of a PDA plate which was then incubated
for 4 weeks in the dark at room temperature (22◦C). At day 0,
3, 5, 7, 14, 21, and 28, all plates were scanned from the back
with an Epson Perfection V700 Photo Scanner (300 dpi, 16-bit,
color). The pictures were analyzed in ImageJ (Schneider et al.,
2012) (1.51j8) by measuring the radius in four directions (0◦,
90◦, 180◦, and 270◦) with the poppy seed as center point to the

colony rim. The four values were averaged. For each replicate, the
mean colony radius was plotted over time to identify the linear
growth phase. The slope of the linear growth phase represents the
colony radial growth rate and was estimated by linear regression
standardized by the length of the linear growth phase.

The data for colony biomass density (in µg mm−2) were
obtained in an experiment in which fungal colonies were
grown on PDA covered with sterilized cellophane, allowing
easy extraction of fungal biomass. For each fungal strain, six
replicates were set up using colonized poppy seeds, as above.
When fungi reached half of their linear growth phase, colony area
was measured, then biomass was harvested, dried at 45◦C and
weighed. Finally, the biomass was standardized by the colony area
(Reeslev and Kjoller, 1995).

Furthermore, we included data on hyphal branching angle
(BA), hyphal internodal length (IL), hyphal diameter, mycelial
complexity (box counting dimension, describing the degree of
detail of a pattern), and mycelium heterogeneity [lacunarity,
i.e., the gappiness or “rotational and translational invariance”
in a pattern (Karperien, 1999-2013)] and hyphal surface area
(HSA) which were collected by Lehmann et al. (2019b). For
further information on experimental set-up and measurements
see Supplementary Material.

Chemical Traits
We measured hydrophobicity of the fungal surface for fungal
material using the same approach as applied for biomass density
measurements, with six replicates per fungal strain. This allowed
us to use medium-free fungal material. Half of an individual
colony was used for the hydrophobicity test, which was done
using alcohol percentage tests. This is a rapid and simple way of
quantifying hydrophobicity (Chau et al., 2010). Briefly, a series
of ethanol droplets (8 µl) with a concentration gradient were
placed on the fungal surface to find the maximum concentration
at which the droplet can retain its shape for longer than 5 s
(Zheng et al., 2014).

Additionally, we included here the enzymatic activity data
for laccase, cellobiohydrolase, leucine aminopeptidase and acid
phosphatase, previously measured by Zheng et al. (2018). For
further information, see Supplementary Material.

Biological Trait
The palatability of the 31 fungal strains was tested in a
feeding experiment with the collembolan Folsomia candida. We
measured palatability as a proxy for assessing likely persistence of
hyphae in the environment, as a way to assess possible interaction
with other soil biota. Fungal mycelium was grown on glass fiber
filter papers (696, VWR European Cat. No. 516-0877) cut into
1 cm2 pieces of which four were placed in Petri dishes filled with
plaster of Paris and charcoal (3:1 mixture). There were 31 fungal
treatments and a non-fungal control (glass fiber filters only),
each with eight replicates resulting in 256 experimental units.
The experiment started with the addition of ten individuals of
Collembola of the same age and developmental stage; the animals
were previously starved for 7 days. After 3 days of incubation in
the dark at room temperature (22◦C), experimental units were
checked for numbers of alive Collembola and subsequently were
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frozen at −20◦C to stop any activity. Finally, the number of fecal
pellets per dish were measured and standardized by number of
surviving Collembola (fecal pellets× no. of individuals−1).

Statistics
First, for investigating SAF capability of the 31 fungal strains,
we tested fungal performances against the corresponding control
samples using a generalized least square model (gls with
n = 10 × 32 = 320) in the “nlme” package (Pinheiro et al.,
2018); we accounted for heteroscedasticity by implementing
different variances per stratum for fungal strains by using the
varIdent function (Zuur et al., 2009). To test for differences
in SAF performance of different phyla we used analysis of
variance (n = 31) with subsequent pairwise comparisons via
TukeyHSD() function. For all models, we tested for normality
and homogeneity of model residuals.

Second, we applied principal components analysis to
investigate the 15-dimensional trait space and the distribution of
fungal strains therein. For this, we used the prcomp() function
in the basic “stats” package; we used z-transformed data. To
reduce the dimensionality of our dataset we tested for PC
axis significance via the function testdim() (Dray, 2008) in
the package “ade4” (Chessel et al., 2004; Dray and Dufour,
2007; Dray et al., 2007). We found that the first two axes were
significant and hence used these for the PCA biplot. We added
species occurrence probability information to the biplot by
applying the kernel density estimation following the approach
of Diaz et al. (Diaz et al., 2016). For this, we used the kde()
function in the package “ks” (Duong, 2018) and implemented
an unconstrained bandwidth selector via the function Hpi() for
our first two PC axes. We estimated contour probabilities for
0.5, 0.95, and 0.99 quantiles with the function contourLevels().
Additionally, we tested for collinearity between our 15 trait
variables by using Pearson’s rho. A threshold of | rho| >0.7 was
defined as an indicator of collinearity (Dormann et al., 2013).

Third, we applied a permutation-based random forest
algorithm (Hapfelmeier and Ulm, 2013) to identify informative
trait variables which are important for SAF. Random forest
(Breiman, 2001) is one of the machine learning algorithms with
highest accuracy (Douglas et al., 2011; Crisci et al., 2012), and is
capable of detecting non-linear relationships even among higher
order interactions in a non-parametric manner (Ryo and Rillig,
2017; Ryo et al., 2018), while being robust to multicollinearity
(Nicodemus et al., 2010). SAF was regressed with all the
trait variables, and the model performance was evaluated in
terms of explanatory power (i.e., variability explained, R2

expl)
and predictability using out-of-bag cross validation (Breiman,
1996) (R2

pred). The relative importance of the trait variables
was quantified with a mean squared error measure, indicating
how much each of the trait variables contributes to the model
predictability (Breiman, 2001). In addition, statistical significance
of each trait variable (p = 0.05) was tested via a permutation
approach with 2000 iterations (Hapfelmeier and Ulm, 2013). The
two parameters of the random forest algorithm (see Breiman,
2001) were tuned as follows: the number of trees in the model
(ntree) was set to 100 as it made the model stable (Breiman, 2001);
the number of predictors for the randomized split technique

(mtry) was set to 4 [the square root of the number of predictors
(Diaz-Uriarte and de Andres, 2006)].

We added the phylogeny of our 31 fungal strains as a
numeric predictor variable to the random forest analysis. To
do this, we calculated phylogenetic pairwise distances and fed
these into PCoA via the cmdscale() function in the “stats”
package. We calculated the cumulative sum of the proportion
of variance explained by PCo axes based on the eigenvalues
and extracted the first five axes, together explaining up to 80%
of phylogenetic variance (Diniz-Filho et al., 1998). The PCo
axes were integrated as five individual variables in the random
forest analysis. After identifying the most relevant predictors, we
used partial dependence plots to visualize the response-predictor
relationships obtained from the random forest procedure (Hastie
et al., 2009). For this, we used the plotPartialDependence()
function of the package “mlr” (Bischl et al., 2016).

Fourth, we tested for phylogenetic signals in our 15 trait
variables (Supplementary Table S3) using Moran’s I statistic –
a measure of phylogenetic autocorrelation, implemented in the
package “phylosignal” (Keck et al., 2016).

Fifth, we ran linear regressions on SAF and the three most
important predictors identified by the random forest approach
and further evaluated the relationships by quantile regression
with the package “quantreg”1. Analyzing response–predictor
relationships at their maxima rather than at their means allows
for more meaningful inferences especially for wedge-shaped data
distributions (Cade et al., 1999; Cade and Noon, 2003); in these
cases, unmeasured limiting factors could obscure underlying
patterns. Model residuals were tested for homogeneity and
normal distribution. If necessary, data were log-transformed.

Sixth, we visually explored SAF strategies exemplified by
the four best and poorest performing strains via radar charts
applying the eponymous function in the package “fmsb”
(Nakazawa, 2018).

We conducted all analyses in R (R Development Core Team,
2014) (v. 3.4.1) and generated plots, if not stated otherwise, with
the graphic package “ggplot2” (Wickham, 2009).

RESULTS AND DISCUSSION

Soil Aggregate Formation
We here measured SAF capability on a broad set of fungal
strains comprising the phyla Ascomycota, Basidiomycota and
Mucoromycota, revealing an overall significantly positive effect
of fungi on soil aggregation: the saprobic fungi increased SAF
of the tested sandy soil by 79% (confidence interval: 61–99%;
Supplementary Figure S1) compared to the non-inoculated
controls. The control samples reached a SAF of 3.5% (standard
deviation: 0.6) while, for the fungal treatments, we found
a spectrum of SAF with means ranging from 3.7 to 10.3%
with the Mucoromycota strain RCLS19 and the Ascomycota
strain RLCS28 at the lower and upper end, respectively
(Figure 2A). Only two strains, namely RCLS19 and RCLS11,

1https://github.com/cran/quantreg
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FIGURE 2 | Soil aggregate formation (SAF) capability. (A) Tukey boxplots of
the SAF (with n = 10 × 31 in %) capability of the 31 fungal strains. The
dashed line represents the average SAF of the controls (n = 10, mean = 3.5,
SD = 0.59). (B) SAF capability depicted on phylum level (pairwise
comparisons: Ascomycota – Basidiomycota: p = 0.47, Ascomycota –
Mucoromycota: p = 0.03, Basidiomycota – Mucoromycota: p = 0.66; n = 31).

had a SAF performance not significantly different from the non-
inoculated controls.

Our results support the general finding that filamentous soil
fungi improve soil aggregation, as was shown in experiments
(Martin and Anderson, 1943; Gilmour et al., 1948; Martin et al.,
1958; Zheng et al., 2014) and a global data synthesis (Lehmann
et al., 2017b). However, here we used for the first time a set of 31
fungal strains comprising three major fungal phyla which were
all isolated from the same soil and tested in their home soil. This
set was screened using a method suitable for the large number
of target species. Additionally, we used a straightforward assay
for testing specifically a soil aggregation process component –
namely aggregate formation.

Our choice of methods also has limitations. Using this
approach, we only focused on one a priori size limit for
newly formed aggregates, thus not capturing any dynamics
in smaller sizes classes. Furthermore, the small amount
of soil used in our design did not allow us to measure
aggregate size distributions. We here evaluated fungal
contributions to soil aggregation in isolation, not taking
into account how such effects might be modified by other soil
organisms. However, such species interactions can be clearly
important; for example, a recent meta-analysis revealed that
soil biota combinations (e.g., bacteria–fungi mixtures) result
in significantly increased soil aggregation (Lehmann et al.,
2017b). Hence, future studies should also consider species

combinations when evaluating soil biota contributions to
soil aggregation.

In our experiment, each of the three tested fungal phyla
contained strains that were effective and poorly performing;
however, overall, the four most efficient aggregate formers were
members of the Ascomycota while three of the poorest aggregate
formers belonged to the Mucoromycota (Figure 2B). For our
tested suite of fungi, we found that the Ascomycota, in general,
had significantly higher SAF than the Mucoromycota. These
findings correspond with previous reports (Lynch and Elliott,
1983; Tisdall et al., 2012; Lehmann et al., 2017b) and suggest
that phylogeny is a strong factor determining SAF capability.
However, it still remains unclear which fungal traits contribute
to these phylum-specific differences and overall variability in
SAF capability. Thus, in the next step, we used a trait database
comprising morphological, chemical and biotic traits to explore
their importance for SAF.

Trait Collection
We included 15 fungal traits (measured on the level of a
fungal individual or “colony”) and found strong variability in
their expression across the 31 fungal strains (Figure 3). In
terms of morphological features, we found in our experiments
that the measured branching angles ranged from 26◦ to 86◦,
with Mucoromycota having the widest and Basidiomycota
the narrowest angles, while for hyphal diameter, the highest
and lowest values (2.7–6.5 µm) were both found in the
Mucoromycota. Basidiomycota had the highest internodal length
(453 µm) while in Mucoromycota distances as short as 40 µm
between two branches were detected. The mycelium complexity
measurements revealed trait values between 1.2 (Basidiomycota)
and 1.6 (Mucoromycota), where a value of 1 represents a single,
unbranched hypha and a value of 2 a complex, space-filling
structure. Mycelium heterogeneity varied between 0.4 and 0.7
for Basidio- and Ascomycota, respectively, with higher values
indicating increasing structural gappiness. For hyphal length in
soil, we found 7 – 20 m hyphae per g soil for Ascomycota
and Basidiomycota, respectively, with 4.6 m g−1 of hyphal
background. The largest hyphal surface area was found in
Mucoromycota with 3.4 µm2 while the smallest was detected for
an Ascomycota strain with 0.8 µm2. For biomass density, values
ranged between 0.02 and 0.2 mg cm−2 for Basidiomycota and
Ascomycota, respectively. Among the Mucoromycota the strain
with the highest colony radial extension rate with 373 µm h−1

was found while the slowest extending strain was a member
of the Ascomycota.

Next, the exploration of the chemical traits revealed that
hydrophilic mycelia could be found across all phyla, while
Basidiomycota showed the strongest detectable mycelial
hydrophobicity (60% ethanol molarity). The enzyme
profiling revealed that cellobiohydrolase was not produced
by Mortierellales, an order of the Mucoromycota, while the
highest activity was found in the Ascomycota (0.13 U mg−1).
In contrast, laccase and acid phosphatase activities were
lowest in Ascomycota and highest in Basidiomycota (laccase:
0.01–10.4 U mg−1; acid phosphatase: 0.01–1.8 U mg−1).
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FIGURE 3 | Trait distributions. Tukey boxplots of the 15 trait variables comprising morphological, chemical and biotic fungal features. Here, we present data on
branching angle (BA with n = 5 in ◦), hyphal diameter (D with n = 5 in µm), internodal length (IL with n = 5 in µm), box counting dimension (Db with n = 8, unitless),
lacunarity (L with n = 8, unitless), hyphal length in soil (HLs with n = 10 in m/g), hyphal surface area (HSA with n = 8 in µm2), biomass density (Den with n = 6 in
mg × cm-2), radial colony extension rate (Kr with n = 5 in µm × h-1), hydrophobicity of fungal surfaces (HPB with n = 6 in% of ethanol molarity), cellobiohydrolase
(Cel), laccase (Lac), leucine aminopeptidase (Leu), and acid phosphatase (Pho) activity (each with n = 5 in unit × g-1 dry mass) and palatability (PT with n = 8 in no.
of fecal pellets per collembolan individual). The boxplots represent 25th and 75th percentile, median and outlying points. Information about phylum affiliation is
color-coded (black: Mucoromycota, gray: Basidiomycota, white: Ascomycota). The gray dashed line for the trait hyphal length in soil represents mean of
corresponding trait controls. The trait database is available in Supplementary Table S6.

Frontiers in Microbiology | www.frontiersin.org 7 January 2020 | Volume 10 | Article 2904

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02904 December 21, 2019 Time: 15:51 # 8

Lehmann et al. Fungal Traits Important for Soil Aggregation

The production of leucine aminopeptidase was highest in
Mucoromycota and lowest in Ascomycota (0.09–7.1 U mg−1).

We measured palatability as a biotic trait and found that the
most and least attractive strains belonged to the Ascomycota
(5–123 fecal pellets per individual collembolan).

Here, we established a collection of soft traits measured under
standardized conditions with reproducible methods that are
applicable for a broad range of fungal strains with high intra-
and interspecific variability in morphological, chemical and biotic
features. Our values are within the range of previously reported
fungal traits (e.g., Trinci, 1969; Ho, 1978; Obert et al., 1990;
Baldrian et al., 2011; Eichlerova et al., 2015).

However, it is important to note that these findings result
from trait data measured on a homogenous, standardized
growth substrate not accounting for the heterogeneous nature
of soil with its inherent structure and also physical, chemical
and biotic factors influencing the fungal trait expression. It
is well known that fungal mycelia are versatile, dynamic and
modular constructs; they not only modify their environment
during foraging but also react to it (Ritz and Young, 2004).
As demonstrated using the model organism Rhizoctonia solani,
nutrient distribution and soil bulk density can alter e.g., hyphal
growth patterns and thus mycelium density (Harris et al., 2003;
Boswell et al., 2007). Future studies would need to take into
account the soil heterogeneity.

Fungal Trait Space
We investigated the resulting 15-dimensional trait space and the
fungal strain probability occurrence therein (Figure 4A). We
constructed the trait space by ordination (principal components
analysis) and hence converted individual strains into unique
trait combinations whose coordinates are determined by their
trait expression (Crowther et al., 2014; Aguilar-Trigueros et al.,
2015). We found that 42% of the variability in the fungal
traits was accounted for in the first two PC axes which were
the only significant axes (Supplementary Table S4). Due to
indication of strong trait correlations, we tested our data for
collinearity. We detected only one case of collinearity (| Pearson’s
rho| > 0.7) for mycelium complexity and hyphal surface area
(Supplementary Figure S2).

Evaluating the species occurrence, we found that Ascomycota
strains were distributed in the lower half of the PC plane whereas
the Mucoromycota were localized in the upper left quadrant
mainly characterized by hyphal branching angle, colony radial
growth rate and leucine aminopeptidase activity. In the upper
right quadrant, the Basidiomycota grouped driven by hyphal
internodial length and lacunarity. There was a clear separation
of the phyla detectable for PC axis 1 with Ascomycota flanked
by Mucoromycota and Basidiomycota but only a marginal
separation between Ascomycota and Mucoromycota on PC axis
2 (Supplementary Figure S3). In general, the trait space revealed
a high versatility in our fungal set with no clear syndromes.
However, on the phylum level a clear separation between the
three phyla was evident (Supplementary Figure S3).

In the next step, we investigated the importance of the
collected fungal traits on SAF using the random forest
approach. Considering the strong impact of phylum on SAF

and phylogenetic separation in the trait space, we included
phylogenetic pairwise distances as an additional variable
(potentially also capturing not explicitly measured variables) in
the following analyses.

Fungal Trait Contributions to Soil
Aggregate Formation
The random forest algorithm (explanatory power: 36% and
predictability: 13%), identified three significant trait variables:
colony biomass density, leucine aminopeptidase activity and
phylogeny (relative importance: 48, 25, and 13%, explanatory
power of each: 17.3, 9, and 4.7%; Figure 4B). Among the five
phylogeny-encoding PCo axes only for axis one a relevance for
SAF could be detected.

To visualize the modeled relationship between SAF and
the important variables we used partial dependence plots.
After taking into account the effects of all predictors except
for the variable of interest (colony biomass density, leucine
aminopeptidase activity or phylogeny, respectively), partial
dependence plots depict the relationships between the predictor
and the response variable (SAF). We found that SAF increased
with increasing colony biomass density (Figure 4C) but
decreased with increasing leucine aminopeptidase activity
(Figure 4D). Across the phylogeny, from Mucoromycota
to Ascomycota, we found a positive relationship with SAF
(presenting phylogeny PCo axis 1, Figure 4E). These findings
were supported by linear and quantile regression analyses
(Figures 4F–H and Supplementary Table S5). Here, we found
that the relationship between SAF and colony biomass density
was best represented by mean regression. For the relationships
between SAF and leucine aminopeptidase activity as well as SAF
and phylogeny, the 0.95 and 0.05 quantile, respectively, showed
the highest fit.

Our analyses revealed that fungal strains belonging to the
Ascomycota that have high biomass density and low leucine
aminopeptidase activity have the highest probability to form
aggregates compared to other strains. Furthermore, we found
that a colony biomass density above 0.08 mg cm−2 and a leucine
aminopeptidase activity less than 1.8 U g−1 do not further
improve SAF (Figures 4C,D).

Our findings further support the assumption that
phylogeny influences aggregate forming capability of fungi
(Figures 2B, 4H). We interpret this to mean that traits (including
unmeasured traits) expressed by strains of the Ascomycota
contribute to this beneficial impact on soil aggregation.
Considering all possible traits and their expression, the four most
efficient aggregate former were all Ascomycota with low leucine
aminopeptidase activity and dense mycelia.

A densely growing fungus likely can more intensively
cross-link and enmesh particles with its hyphae, and thus
perhaps is more effective at contributing to the formation of
macroaggregates; however, so far there has not been direct
evidence of this. Interestingly, the total amount of hyphae
produced was not an important explanatory variable (Figure 2;
HLs = hyphal length in soil) suggesting that a critical local density
is much more important than total hyphal production. This also
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FIGURE 4 | Continued
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FIGURE 4 | Outcomes of principal components analysis, random forest analysis and relationships between soil aggregate formation (SAF) and important trait
variables. Analyses were conducted on trait mean data (n = 31). (A) Projection of the ordinated 31 fungal strains onto 15 trait variables comprising morphological,
chemical and biotic characteristics into two dimensional trait space represented by principal component axis 1 and 2 (explaining 23 and 19% of variance,
respectively). The trait variables are branching angle (BA), hyphal diameter (D), internodal length (IL), box counting dimension (Db), lacunarity (L), hyphal length in soil
(HLs), hyphal surface area (HSA), biomass density (Den), radial colony extension rate (Kr), hydrophobicity of fungal surfaces (HPB), cellobiohydrolase (Cel), laccase
(Lac), leucine aminopeptidase (Leu) and acid phosphatase (Pho) activity, and palatability (PT). Arrows indicate direction and weight of trait vectors. Red–white color
gradient represents probability of species occurrence (white = low, red = high) in the trait space, with the contour lines denoting the 0.50, 0.95, and 0.99 quantiles of
kernel density estimation (see “Materials and Methods” section). The dot outline represents phylum affiliation (black: Mucoromycota, gray: Basidiomycota, white:
Ascomycota) while dot filling represents soil aggregate formation capability (SAF) of fungal strains (represented by a blue–red color gradient; red: low SAF, blue: high
SAF). (B) Overall importance of trait variables for SAF capability with R2

expl = 0.36, 0.13 and three statistically significant predictor variables. Asterisks denote
significance level: ∗∗<0.001, ∗<0.01, <0.5. Pairwise phylogenetic distance was included as PCo-axes (see “Materials and Methods” section). (C–E) Partial
dependence plots for the three most important and significant trait variables identified by random forest approach. For phylogeny, we depicted PCo axis 1 on the
x-axis representing the axis scores. The x-axis labels are identical with panels (F–H), respectively. (F–H) Relationships between SAF and the three most important
trait variables. Corresponding regression statistics can be found in Supplementary Table S5. Phylum affiliation of fungal strains is color-coded (black:
Mucoromycota, gray: Basidiomycota, white: Ascomycota). Red and blue lines represent linear and quantile regression lines, respectively. The line type depicts
significance of regression lines with solid <0.05 and dashed >0.05. The trait database is available in Supplementary Table S6.

FIGURE 5 | Radar plot depicting trait expressions for the four best and four poorest soil aggregate forming fungal strains.

explains results from previous experiments, where total hyphal
length or biomass did not predict soil aggregation effects (e.g.,
Piotrowski et al., 2004). Fungi with high biomass density had low
radial colony extension rate (Supplementary Figure S2); thus
it can be expected that their positive effect on SAF is highly
localized not reaching beyond their area of mycelial influence.

Fungi with low leucine aminopeptidase activity are inefficient
in hydrolyzing peptides and thus degrading organic matter
components, which may be functioning as glues and cementing
agents in aggregates (Chenu, 1989; Caesar-TonThat and Cochran,
2000; Daynes et al., 2012). Fungi with either one of these
traits are more likely able to bring soil particles and aggregates
together via their hyphae; lacking the enzyme to degrade
organic matter holding together aggregates also contributes to
this effect.

After identifying the most important fungal traits for SAF,
we focused on those fungi that are present at the lower
and upper end of the SAF spectrum. The most efficient
strains were all members of the Ascomycota (RLCS28, RLCS22,

RLCS10, RLCS18) while the group of the poor performer
comprised mainly Mucoromycota but also one ascomycete
(RLCS19, RLCS11, RLCS01, RLCS07) (Figures 1, 2). As expected,
the efficient soil aggregate forming strains had high biomass
density but low leucine aminopeptidase activity (Figure 5).
The opposite was true for the poor performers. In addition
to these two clear features, the efficient strains tended to have
lower colony radial growth rates, hyphal surface area and
surface hydrophobicity, but had larger hyphal diameters and
more heterogeneously structured mycelia as the four poorest
soil aggregators.

The interpretation of our data is limited to our set of
31 fungal strains which is dominated by Ascomycota
isolates. Additionally, we here used test systems with
defined environmental conditions including a soil with
high sand content. In such soils, fungi are an essential
factor in soil aggregation mainly via physical and
chemical interactions of hyphae with sand particles
forming and stabilizing the otherwise unstable substrate
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(Sutton and Sheppard, 1976; Forster and Nicolson, 1981). We
here chose the soil from which our fungi were originally cultured.
For future studies, it would be interesting to extend our research
to other sets of fungi under varying environmental conditions.
Such an effort would improve the external validity and offer
new insights into the mechanisms of fungal trait contributions
to soil aggregation.

CONCLUSION

Our results yield new insights into fungal traits important for
soil aggregation, and thus also shed light on mechanisms of
soil aggregation. Clearly, future work should focus on hyphal
density as a key trait. In an applied context of restoration
and agriculture, our trait information can be incorporated in
management practices affecting the fungal environment in soil
to favor the development of more dense fungal mycelia by e.g.,
carbon input or through a screen for isolates exhibiting desired
traits under the soil conditions in which they will be used.

Even though we here focused on saprobic soil fungi, some
aspects may also be generalizable to other fungal groups. For
example, future work should test if hyphal density is also
a better predictor for soil aggregation ability than hyphal
biomass production in arbuscular mycorrhizal fungi. On the
other hand, it will also be important to extend the dataset of
fungal traits and soil aggregation beyond soil saprobes, since the
relative importance of traits and trait combinations could vary;
for example, since arbuscular mycorrhizal fungi have limited
enzymatic abilities (Tisserant et al., 2013), this trait would
play no role in that particular group. In the end, our study
demonstrates the power of employing a trait-based approach to
tackle biological mechanisms of soil aggregation; this can now
also be extended to organism groups other than fungi.
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