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Many bacteria produce and use extracellular signaling molecules such as acyl
homoserine lactones (AHLs) to communicate and coordinate behavior in a cell-density
dependent manner, via a communication system called quorum sensing (QS). This
system regulates behaviors including but not limited to virulence and biofilm formation.
We focused on Pseudomonas aeruginosa, a human opportunistic pathogen that is
involved in acute and chronic lung infections and which disproportionately affects people
with cystic fibrosis. P. aeruginosa infections are becoming increasingly challenging to
treat with the spread of antibiotic resistance. Therefore, QS disruption approaches,
known as quorum quenching, are appealing due to their potential to control the
virulence of resistant strains. Interestingly, P. aeruginosa is known to simultaneously
utilize two main QS circuits, one based on C4-AHL, the other with 3-oxo-C12-AHL.
Here, we evaluated the effects of signal disruption on 39 cystic fibrosis clinical isolates
of P. aeruginosa, including drug resistant strains. We used two enzymes capable
of degrading AHLs, known as lactonases, with distinct substrate preference: one
degrading 3-oxo-C12-AHL, the other degrading both C4-AHL and 3-oxo-C12-AHL.
Two lactonases were used to determine the effects of signal disruption on the clinical
isolates, and to evaluate the importance of the QS circuits by measuring effects on
virulence factors (elastase, protease, and pyocyanin) and biofilm formation. Signal
disruption results in at least one of these factors being inhibited for most isolates (92%).
Virulence factor activity or production were inhibited by up to 100% and biofilm was
inhibited by an average of 2.3 fold. Remarkably, the treatments led to distinct inhibition
profiles of the isolates; the treatment with the lactonase degrading both signaling
molecules resulted in a higher fraction of inhibited isolates (77% vs. 67%), and the
simultaneous inhibition of more virulence factors per strain (2 vs. 1.5). This finding
suggests that the lactonase AHL preference is key to its inhibitory spectrum and is
an essential parameter to improve quorum quenching strategies.

Keywords: quorum sensing, lactonase, Pseudomonas aeruginosa, cystic fibrosis, quorum quenching, signaling,
biofilm

Frontiers in Microbiology | www.frontiersin.org 1 January 2020 | Volume 10 | Article 3003

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.03003
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2019.03003
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.03003&domain=pdf&date_stamp=2020-01-14
https://www.frontiersin.org/articles/10.3389/fmicb.2019.03003/full
http://loop.frontiersin.org/people/795055/overview
http://loop.frontiersin.org/people/795544/overview
http://loop.frontiersin.org/people/636949/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-03003 December 27, 2019 Time: 17:5 # 2

Mahan et al. Specificity of Signal Disruption Matters

INTRODUCTION

Quorum sensing (QS) is the communication system used
by many bacteria to coordinate behaviors including those
important for causing disease in humans. This process was
first discovered in the 1970’s with the observation of the
illumination of organs within certain marine species (Nealson
et al., 1970). This phenomenon of “bioluminescence” was soon
found to be a concentration-dependent process mediated by
signaling molecules produced by bacteria as they increased
in cell density, termed “autoinduction” by Nealson et al.
(1970). Gram negative and Gram positive bacteria use QS
to coordinate gene expression for behaviors that are vital to
their survival such as denitrification and glucose metabolism,
as well as those important for causing disease (Miller and
Bassler, 2001; Heurlier et al., 2005; Lee and Zhang, 2015;
Mukherjee and Bassler, 2019). This includes the regulation
of key factors involved in activities ranging from motility,
evasion of the host immune system, production of scavenging
molecules, and production of directly cytotoxic molecules
(Lee and Zhang, 2015).

This complex system is vital to the pathogenicity of many
bacteria toward humans and the ability to decipher, and disrupt
the system could provide an alternative or adjunctive treatment
approach to antibiotics. In the model organism Pseudomonas
aeruginosa, an opportunistic pathogen, as much as 12% of the
bacterial genome has been identified to be under QS control
(Heurlier et al., 2005; Kalia, 2015; Lee and Zhang, 2015).
P. aeruginosa is known to utilize two QS systems based on
acyl homoserine lactones (AHLs) as the signaling molecule
(LaSarre and Federle, 2013; Lee and Zhang, 2015). This has
been shown in both wild type and clinical isolates (Feltner
et al., 2016). These systems are known as las and rhl, named
for their transcription factor regulators, LasR, and RhlR and
utilize 3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-HSL),
and N-butyryl homoserine lactone (C4-HSL), respectively. The
QS systems in P. aeruginosa, as in other bacteria, are complex,
hierarchical, and adaptable. Studies show that the currently
understood hierarchical system can be altered in clinical isolates
of P. aeruginosa which have lived in human lungs for years
(Bjarnsholt et al., 2010; Feltner et al., 2016; Chen et al., 2019;
Kostylev et al., 2019). There is redundancy in the transcriptional
control of certain gene products but certain virulence factors
essential to pathogenicity are under strictly regulated QS control;
for example, pyocyanin production is a product of a complex
metabolic pathway positively controlled by the transcriptional
regulator, RhlR (Nadal Jimenez et al., 2012; Higgins et al., 2018).
In addition, some of these strains can lose the ability to respond
to QS: they are called social cheaters (Sandoz et al., 2007; Popat
et al., 2012; Mukherjee and Bassler, 2019). These strains have
reduced pathogenicity and may instead exist in a quiescent
manner (Heurlier et al., 2005; Popat et al., 2012). They may
also be less fit than QS-responsive strains (Gerdt and Blackwell,
2014) and dependent on non-cheater strains (Köhler et al., 2009;
Winstanley and Fothergill, 2009). While QS still appears to be
essential in late stages of chronic lung infections (Winstanley
and Fothergill, 2009; Bjarnsholt et al., 2010), it is unclear how

efficient strategies pertaining to the inhibition of QS would
be against P. aeruginosa strains that can be subjected to these
regulatory alterations.

Inhibition of bacterial QS based on AHLs can be performed
using lactonases, enzymes that degrade lactones, including AHLs.
Consequently, these enzymes were previously reported to inhibit
the behaviors regulated by QS, including biofilm and virulence
products during in vitro and in vivo experiments (Dong et al.,
2000; Cao et al., 2012; Hraiech et al., 2014; Vinoj et al., 2014;
Gupta et al., 2015; Guendouze et al., 2017; Bergonzi et al.,
2018). These enzymes therefore constitute promising candidates
to control bacterial virulence and biofilms (Whiteley et al., 2017).
Using lactonases may be advantageous to control virulence and
biofilm formation over other strategies because these enzymes
are not biocidal, and were previously shown to not need contact
with bacteria for their activity (Oh et al., 2012; Schwab et al.,
2019). Therefore, the risk of resistance (Defoirdt et al., 2010) may
be lessened compared to antibiotics (Gerdt and Blackwell, 2014;
García-Contreras et al., 2016).

Lactonases are naturally occurring enzymes and can be found
in a variety of organisms, including bacteria, archaea, plants,
fungi, and mammals (Elias and Tawfik, 2012; LaSarre and Federle,
2013). Lactonases can be found in various protein families,
including the paraoxonases (PONs) (Khersonsky and Tawfik,
2005; Ben-David et al., 2012, 2013), the phosphotriesterase-
like lactonases (PLLs) (Afriat et al., 2006; Elias and Tawfik,
2012; Hiblot et al., 2013, 2015; Bzdrenga et al., 2014) and
the metallo-β-lactamases lactonases (MLLs) (Liu et al., 2007,
2008; Momb et al., 2008; Mascarenhas et al., 2015; Tang
et al., 2015; Bergonzi et al., 2016, 2018). Remarkably, while
AHLs vary considerably in their chemical structure, and in
particular, the nature and length of their acyl chain, recent
work on lactonase kinetic properties suggest, in contrast, a
low variety in the lactonase’s substrate specificities. In fact,
most characterized lactonases exhibit two types of substrate
preferences: (i) very broad substrate specificity (e.g., MLLs)
(Tang et al., 2015; Bergonzi et al., 2016, 2017, 2018) or
(ii) a preference for longer acyl chains (e.g., PLLs and
PONs) (Hiblot et al., 2012b, 2013; Bar-Rogovsky et al., 2013;
Bzdrenga et al., 2014).

Here, we took advantage of the distinct substrate preference
of the PLL, SsoPox (Hiblot et al., 2013), which prefers longer
AHL molecules, and the MLL, GcL (Bergonzi et al., 2019),
which exhibits very broad substrate specificity. We used these
lactonases to study the effects of AHL signal disruption on
P. aeruginosa clinical isolates from cystic fibrosis (CF) patients.
Due to their substrate specificity, these lactonases can be used to
selectively disrupt the Las QS circuit (with SsoPox), or both QS
circuits, Las and Rhl (with GcL) in P. aeruginosa. Therefore, we
have investigated (i) the effects of differential signal disruption
on the production of virulence factors and biofilm formation
and (ii) evaluated the ability of lactonases to inhibit clinical
isolates of P. aeruginosa with high propensity for remodeling of
their QS circuits (D’Argenio et al., 2007; Hoffman et al., 2009;
Bjarnsholt et al., 2010).

We found that both lactonases can inhibit virulence factor
production and biofilm formation of most clinical isolates of
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P. aeruginosa. This is important because it provides evidence
to the potential of quorum quenching enzymes to control
pathogens, including drug resistant clinical isolates from CF
patients. P. aeruginosa is indeed the predominant opportunistic
pathogen that causes significant morbidity and mortality in
cystic fibrosis patients, as well as in individuals with other
acute or chronic lung disease (Hauser et al., 2011; Ciofu et al.,
2013), and there is great need for new or adjunctive therapy.
Additionally, while there is overlap in the strains that are
inhibited by both lactonases (20 strains, over a total of 36 strains
inhibited, 55%), there are in fact a significant number of strains
that are inhibited by only one lactonase (16 strains, 44% of
36). In addition, the treatment with each lactonase results in a
different average of inhibited traits per strain (10 for SsoPox,
15 for GcL). Therefore, this study, as the first evaluation of
the importance of the lactonase substrate specificity on clinical
isolates, reveals that the preference of the lactonase is key to
affecting the number and nature of the inhibited traits for each
bacterial isolate.

MATERIALS AND METHODS

Bacterial Strains
Experiments were performed with P. aeruginosa strains obtained
by the Hunter Lab from the University of MN Department
of Microbiology and Immunology and MN Cystic Fibrosis
Center. The clinical strains were isolated from patients with
cystic fibrosis. All the patients received oral information, were
anonymized and were given a non-opposition statement to
bacterial storage. This study was approved by the University
of Minnesota IRB and was carried out in accordance with the
Declaration of Helsinki as revised in 2008. The samples were
frozen at −80◦C. Bacterial strains were cultivated on Luria
Bertani (LB) agar plates at 37◦C.

The clinical isolates, WT strain PA14, or mutant strains,
LasR1, RhlI1 (SM52), or RhlR1 (SM32) were inoculated from
a single colony and grown at 37◦C in Luria Bertani media
(LB – 10 g/L NaCl, 10 g/L tryptone, 5 g/L yeast extract)
with shaking at 250 rpm until OD600nm of 0.1. Subsequently,
2 mL of LB was inoculated at 1:1000 dilution with pre-culture
and incubated at 37◦C with shaking at 250 rpm. Protease,
elastase, biofilm and pyocyanin production were measured
20 h post-inoculation as described below. SsoPox-W263I was
added at a final concentration of 125 µg/mL, GcL was added
at a final concentration of 55 µg/mL. The quorum sensing
inhibitor (QSI) 5-Fluoro-Uracil (5-FU) was used at 60 µM, and
bovine serum albumin (BSA) was added at 100 µg/mL, both
final concentrations. See Supplementary Table S3 for a full
list of strains.

Protein Production and Purification
Enzyme production was performed using the Escherichia
coli BL21 (DE3)-pGro7/GroEL strain (Takara). SsoPox-W263I
enzyme was produced and purified as previously described
(Hiblot et al., 2012a) and GcL was produced and purified as
previously characterized (Bergonzi et al., 2016).

Proteolytic Activity
Cell-free culture supernatants were prepared by centrifugation
for 10 min at 2272g. Protease activity was determined using
azocasein (Sigma-Aldrich, Burlington, MA, United States) as a
substrate. The reaction was performed in 675 µl phosphate-
buffered saline (PBS) solution pH 7.0 with 50 µl of azocasein
(30 mg/mL in water) and with 25 µl of culture supernatant
for a final volume of 750 µl. The reaction was incubated at
37◦C for 2 h and stopped by adding 125 µl of 20% (w/v)
trichloroacetic acid. A blank was performed with each assay
with the substitution of media for lactonase. After centrifugation
at 10,000g for 10 min, the absorbance of the supernatant was
measured at 366 nm using a plate reader (Synergy HTX, BioTek,
United States). Experiments were performed in quadruplicate
in 96 well-plates.

Elastase Activity
Cell-free culture supernatants were prepared by centrifugation
for 10 min at 2272g. Elastase activity was measured using
5 mg/mL elastin congo red (ECR) (Sigma-Aldrich, Burlington,
MA, United States) as a substrate in a 10 mM Tris solution.
The reaction was performed with 150 µl ECR and 50 µl of
culture supernatant for a final volume of 200 µl. A blank
was performed with each assay with the substitution of media
for lactonase. The reaction was covered with aluminum foil
and incubated at 37◦C for 24 h with agitation. After resting
the plate for 5 min, 100 µl of each reaction was transferred
to a new plate and the absorbance of the supernatant was
measured at 490 nm using a plate reader (Synergy HTX, BioTek,
United States). Experiments were performed in quadruplicate
in 96 well-plates.

Biofilm Quantification
Cell-free culture supernatants were prepared by centrifugation
for 10 min at 2272g. Culture supernatants were transferred to
a new microtiter plate with care to avoid unsettling the formed
biofilm. The biofilm was washed with 200 µl sterile water three
times and the plate was allowed to dry for 30 min. 200 µl of
0.1% crystal violet was added to each biofilm and allowed to
incubate with mild rotation for 30 min. The crystal violet was
then washed off and the plate was allowed to dry for 30 min.
Subsequently, 200 µl of 30% acetic acid was added to dissolve
the stained biofilm. Dissolved biofilm was transferred to a new
plate and the OD550nm was read with a plate reader (Synergy
HTX, BioTek, United States). Experiments were performed in
quadruplicate in 96 well-plates.

Pyocyanin Measurement
Cell-free culture supernatants were prepared by centrifugation
for 10 min at 2272g. Supernatants were transferred to a
new microtiter plate and the absorbance of the supernatant
was measured at 691 nm using a plate reader (Synergy
HTX, BioTek, United States). Experiments were performed in
quadruplicate in 96 well-plates. This method was previously
described (Das and Manefield, 2012).
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Acyl Homoserine Lactone Quantification
Acyl homoserine lactones quantification was done as previously
described (Luong et al., 2014). E. coli biosensor strain JM109
pSB536 or S17 pSB1075 (Swift et al., 1997; Winson et al., 1998;
Moorhead and Griffiths, 2011) was grown overnight in LB
containing 100 µg/mL ampicillin at 37◦C and shaking at 250 rpm.
Next morning, the overnight culture was diluted 1:50 into fresh
LB containing 100 µg/mL ampicillin and grown at 37◦C at
250 rpm for 2 h. 190 µL of biosensor cultures were then mixed
with 10 µL of cell-free supernatants of stationary phase cultures
of P. aeruginosa in solid-white non-binding 96-well microplates
with clear well bottoms (Grenier Bio-One). For time-course
assays, supernatants were obtained from cultures incubated with
lactonase after 4 h or 20 h. Additionally, BSA, SsoPox or GcL
was added to the aforementioned supernatant mixtures at a
final concentration of 100 µg/mL. Blank reactions were set
up for all conditions containing 200 µL of biosensor cultures
only. C4-HSL or 3OC12-HSL were used as positive controls for
JM109 pSB536 or S17 pSB1075 biosensors, respectively, at a final
concentration of 300 nM. The microplate was then incubated
at 37◦C at 300 rpm for 2 h. The luminescence was read at a
gain of 180 for an integration time of 10 s per well using a
Synergy HTX plate reader (BioTek, United States). The final
OD600 of the cultures in each well was recorded by the plate
reader simultaneously.

Antibiotic Sensitivity Measurement
A single colony was inoculated in 2 mL LB and incubated
with shaking at 250 rpm until OD600nm of 0.5 was reached.
Subsequently, a bacterial lawn was spread onto an LB agar plate
which contained bovine serum albumin (BSA, Sigma-Aldrich,
Burlington, MA, United States) as a control or lactonase (data
not reported here). Antibiotic discs (levofloxacin, cefepime, or
piperacillin-tazobactam; Thermo Fisher Scientific, Lenexa, KS,
United States) were placed in the respective sections of the petri
dish and the plates were incubated at 37◦C for 48 h. Zone of
inhibition (ZOI) was measured to the nearest millimeter (mm)
at 24 h (not shown) and 48 h. ZOI standards for the respective
antibiotics were evaluated based on Clinical and Laboratory
Standards Institute (CLSI).

Amplification of the lasr Gene
DNA obtained through spot colony amplification was performed
on all 39 clinical isolates of P. aeruginosa using a T100TM Biorad
Thermal Cycler (Hercules, CA, United States) as described
previously (Bergkessel and Guthrie, 2013). Amplification of
the 1.24-kb lasr region was performed using the following
primers: las1 CGCCGAACTGGAAAAGTGGC, upstream of
lasr; las2 TGAGAGGCAAGATCAGAGAG, downstream of lasr,
as previously described (Heurlier et al., 2005). PA14 and PAO1
were used as a positive control and E. coli OP50 and PA14 LasR1
was used as a negative control.

Statistical Analysis
Student’s one-tailed t test was performed on appropriate strains
comparing untreated to treated (BSA, 5-FU, 5A8, Ssopox, or

GcL) using GraphPad Prism Software (CA, United States). Tests
were considered significant for p values ≤ 0.05. Symbols were
associated with significant p values; p ≤ 0.05 (∗), p ≤ 0.01 (∗∗),
and p ≤ 0.001 (∗∗∗). Spearman correlation coefficients were
calculated using GraphPad Prism Software (CA, United States).
Inhibitory levels were calculated as the reduction in the
measure of virulence factors or biofilm between control and
lactonase treatments. The average inhibitory level is the mean
of all inhibition parameters observed for a given measured
virulence factor and a given treatment for all clinical isolates.
In these calculations, only reductions with statistical significance
(p ≤ 0.05) were included.

RESULTS AND DISCUSSION

Both Lactonases Degrade Acyl
Homoserine Lactones in Cultures, but
They Show Distinct Preferences
In this study, we used two well-characterized lactonases with
distinct substrate specificity. One of the enzymes, GcL, hydrolyzes
both C4- and 3-oxo-C12 HSL (Bergonzi et al., 2019), whereas the
other lactonase, SsoPox W263I, prefers 3-oxo-C12 HSL (Hiblot
et al., 2013; Rémy et al., 2019; see Supplementary Table S2).
Therefore, GcL is expected to quench both AHL-based QS
circuits in P. aeruginosa, and SsoPox W263I will mainly quench
the 3-oxo-C12 HSL based QS circuit. In order to measure the
hydrolysis of AHLs in culture media by the addition of the two
enzymes, we used previously reported biosensors. Specifically,
we used the reporter plasmid pSB536 that senses C4-HSL (Swift
et al., 1997; Winson et al., 1998), transformed in E. coli cells, to
quantify the C4-HSL in culture supernatants of P. aeruginosa
clinical isolate “29” and PA14 (Figures 1A,C). Consistent with
the reported substrate preference of both lactonases, treatment
with GcL dramatically reduced the concentration of C4-HSL in
culture supernatants, whereas the treatment with SsoPox did
only slightly reduce it. In order to quantify the second AHL
produced by P. aeruginosa, we used another reporter plasmid,
pSB1075, specific to 3-oxo-C12 HSL (Swift et al., 1997; Winson
et al., 1998), which was also transformed into E. coli. Amounts
of 3-oxo-C12 HSL were significantly reduced for both lactonase
treatments (GcL and SsoPox), as compared to the control
(Figures 1B,D). We note three points: (i) the concentration of
AHLs produced by the two P. aeruginosas vary, but is high
(in the hundreds of nM range for both C4- and 3-oxo-C12
HSL), and measurements are similar to previous studies with
P. aeruginosa cultures (Smith, 2003), (ii) the observed AHL
degradation is consistent with the reported substrate preference
of both enzymes, and (iii) in the tested conditions, the used
lactonases nearly completely degrade AHLs produced by PA14,
but while it does decrease AHLs concentration significantly
in the case of isolate 29, it does not lead to the complete
removal of AHLs in supernatants. This may be due to more
organized, and less distorted regulation of the QS hierarchy in
the wild-type strain as compared to a lung isolate, as previously
described by Feltner et al. (2016).
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FIGURE 1 | Lactonases target and effectively hydrolyze specific acyl homoserine lactones (AHLs). (A) AHL detection using Escherichia coli based sensor plasmid,
pSB536, which specifically detects C4-homoserine lactone (C4-HSL). Clinical isolate 29, was used for analysis. Control with bovine serum albumin (BSA;
100 µg/mL) is shown as black bar; Ssopox W263I (red bar) and GcL (blue bar) were used at 100 µg/mL. Statistical analysis was performed using Student’s t test.
GcL effectively hydrolyzes C4-HSL more proficiently than Ssopox W263I. (B) AHL detection using E. coli sensor plasmid, pSB1075, which detects
3-oxo-dodecanoyl homoserine lactone (3OC12-HSL). Clinical isolate 29, was used for analysis. Control with bovine serum albumin (BSA; 100 µg/mL) is shown as
black bar; Ssopox W263I (red bar) and GcL (blue bar) were used at 100 µg/mL. Statistical analysis was performed using Student’s t test. GcL and Ssopox W263I
hydrolyze 3OC12-HSL with similar rates. (C) AHL detection using E. coli based sensor plasmid, pSB536, which specifically detects C4-homoserine lactone
(C4-HSL). WT strain, PA14, was used for analysis. Control with bovine serum albumin (BSA; 100 µg/mL) is shown as black bar; Ssopox W263I (red bar) and GcL
(blue bar) were used at 100 µg/mL. Statistical analysis was performed using Student’s t test. GcL effectively hydrolyzes C4-HSL more proficiently than Ssopox
W263I. (D) AHL detection using E. coli sensor plasmid, pSB1075, which detects 3-oxo-dodecanoyl homoserine lactone (3OC12-HSL). WT strain, PA14, was used
for analysis. Control with bovine serum albumin (BSA; 100 µg/mL) is shown as black bar; Ssopox W263I (red bar) and GcL (blue bar) were used at 100 µg/mL.
Statistical analysis was performed using Student’s t test. GcL and Ssopox W263I hydrolyze 3OC12-HSL effectively but GcL is again more proficient. Tests were
considered significant for p values ≤ 0.05. ∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.001.

In addition, we performed a time-course evaluation using
these biosensors to detect short and long-chain AHLs and
the ability of the two enzymes to hydrolyze each substrate
(Supplementary Figure S8). Similarly, this analysis reveals
that Ssopox W263I exhibits very little activity against C4-HSL,
contrary to GcL, and that both enzymes degrade 3-oxo C12
HSL similarly (Supplementary Figure S7). This, together with
controlling the stability of the lactonases over time in the cell
culture conditions (Supplementary Figure S9) demonstrates the

differential ability of AHL degradation of both enzymes in the
tested conditions.

Treatments With Both Lactonases Are
Not Cytotoxic and Led to Inhibition of
Biofilm in Pseudomonas aeruginosa
We evaluated the effects of lactonase treatments on the
growth and biofilm formation of P. aeruginosa strain PA14
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(Figure 2). PA14 is a virulent strain that causes disease in a
wide range of organisms, including humans (Mikkelsen et al.,
2011). Experiments reveal that treatments with both lactonases,
and an inactive variant of SsoPox (5A8), previously described
(Bergonzi et al., 2018), do not alter the cell density (Figure 2A).
However, treatment with 5-FU, a compound described as a
QS inhibitor and which made it to clinical trials for its anti-
biofilm forming properties (Walz et al., 2010), was found to be
cytotoxic. Cytotoxicity is especially relevant as the ability to kill
cells by any potential quorum quenching therapy may increase
pressure to acquire resistance, such as that seen with 5-FU and
the brominated furanone, C-30. Therefore, the use of quorum
quenching enzymes may be advantageous to the use of QSIs as
they perhaps may be less prone to lead to bacterial resistance
(García-Contreras et al., 2013, 2015; Guendouze et al., 2017).

The ability of SsoPox W263I to inhibit P. aeruginosa biofilm
formation was previously reported, including on diabetic foot
ulcer isolates (Guendouze et al., 2017). Here, we obtain similar
inhibitory patterns for PA14, with maximal observed biofilm
inhibition (78%) with 125 µg/mL of Ssopox W263I. This
observed inhibition level is similar to that observed with 5-FU,
yet some of the biofilm inhibitory activity of the latter compound
may be the outcome of its observed cytotoxicity. We show that
the lactonase, GcL, is also capable of inhibiting biofilm formation,
with a maximal potency observed with 55 µg/mL of enzyme (74%
inhibition) (Figure 2B). In fact, the optimal concentrations for
both lactonases led to inhibitory levels that are not significantly
different from each other, and these respective concentrations
were used for the rest of the study. Notably, while the inhibition
of biofilm formation increased with the dose of enzyme, it does
not lead to full inhibition, and biofilm amount tends to increase
at higher lactonase concentration. Similar observations were
made with other pathogens (Bergonzi et al., 2019), and this may

suggest that the response to AHL concentration in the culture
media is not linear.

Testing the effects of the two lactonases on PA14 knock-
out strains, including 1lasR,1rhlR, and1rhlI (Supplementary
Figure S10), we further confirmed that the phenotype changes
associated with the lactonases are related to QS circuits. Indeed,
while both biofilm and pyocyanin are inhibited by both lactonases
in PA14, there are no significant changes in phenotypes for the
three mutant strains with or without lactonase treatments.

Acyl Homoserine Lactone Signal
Disruption Using Lactonases Inhibits
Biofilm and Virulence Factor Production
in CF-Adapted Pseudomonas aeruginosa
Isolates
39 CF-adapted P. aeruginosa clinical isolates were used in
this study and characterized for their drug resistance to either
cefepime, levofloxacin, piperacillin-tazobactam, commonly used
antibiotics for treating CF-patients (Supplementary Figure S1).
Only one isolate was found to be multi-resistant (61), two others
were showing an intermediate-level of resistance for multiple
antibiotics (58 and 63), and 8 other isolates showed levels of
resistance to one tested antibiotic (19, 27, 29, 33, 50, 56, 64,
and 66). Overall, 11 out of 39 isolates (28%) showed at least
intermediate level of resistance for one or more of the tested
antibiotics. We tested for the presence of the lasr gene in these
isolates using PCR amplification (Supplementary Table S1). This
method does not inform on the activity of the lasr gene, nor about
any potential mutations carried by the lasr gene. Amplification
results can, however, suggest that these isolates may show
variability regarding the lasr gene. Indeed, the lasr amplification
was negative for 11 isolates (out of 39; 28%) and the latter may

FIGURE 2 | Lactonase treatment is not cytotoxic, acts in a dose dependent manner, and is effective at inhibiting biofilm formation in Pseudomonas aeruginosa.
(A) Cell density of P. aeruginosa PA14, without treatment (control; dark gray bar), or with addition of 5-FU (5′-fluorouracil; 60 µM; light gray bar), SsoPox mutant 5A8
(an inactive lactonase; 125 µg/mL; black bar), Ssopox W263I (a lactonase; 125 µg/mL; red bar), or GcL (a lactonase; 55 µg/mL; blue bar). Statistical analysis was
performed using Student’s t test. (B) Normalized PA14 biofilm quantity as quantified by Crystal Violet assay, using varying concentrations of Ssopox W263I (red
bars), GcL (blue bars), or controls 5-FU (fluorouracil; 60 µM; gray bar), or BSA (bovine serum albumin; 100 µg/mL; black bar). Concentrations of Ssopox W263I and
GcL are µg/mL. Statistical analysis was performed using Student’s t test. ∗ indicate statistical significance. Maximal inhibition of biofilm was at 125 µg/mL for
Ssopox, and 55 µg/mL for GcL.
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therefore be lasr-null (27, 32, 54, 55, 58, 61, 62, 64, 70, 74, and
75). CF-adapted isolates were previously reported to frequently
harbor mutations or deletion of the lasr gene, and these changes
are associated with hyperinflammation and disease progression
(Hoffman et al., 2009; LaFayette et al., 2015), and previously
observed in CF-adapted P. aeruginosa isolates (D’Argenio et al.,
2007; Dekimpe and Déziel, 2009; Bjarnsholt et al., 2010).

These isolates were treated with the lactonases, GcL or SsoPox
W263I, and the effects of signal disruption were evaluated by
monitoring the production of key virulence factors, including

elastase, protease, and pyocyanin, and biofilm formation
(Figure 3 and Supplementary Figures S2, S3). We note that
given the effects of both lactonases on AHLs concentrations in
cultures (Figure 1 and Supplementary Figure S8), measured
phenotype changes are concomitant with differential degradation
of C4 and 3-oxo C12 HSL. Results show that the majority of
the tested isolates (36/39; 92%) are inhibited for one of the
measured factors by at least one of the enzymes. This result is
intriguing, since CF-adapted P. aeruginosa isolates are known for
their propensity to remodel their QS systems (D’Argenio et al.,

FIGURE 3 | Data bar table showing effectiveness of lactonase treatment on measured virulence factors (VFs). Data bar table showing the effects of Ssopox (red
background) or GcL (blue background) on four virulence factors produced by P. aeruginosa clinical isolates (39), including biofilm, elastase, protease, pyocyanin.
Data bars show inhibition (rightward deflection) or stimulation (leftward deflection). Statistically significant deflections (p < 0.05 using Student’s t test) are shown in
green (inhibition) or red (stimulation). Strain numbers are listed on the left. Negative PCR result for the lasr gene is designated by a yellow square around the strain
name. The resistance pattern of each clinical isolate is also designated. ND indicates “not determined.”
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2007; Bjarnsholt et al., 2010). Yet, it is consistent with reports
highlighting the importance of QS in lung infections, including
chronic and late-stage infections (Winstanley and Fothergill,
2009; Bjarnsholt et al., 2010). Notably, in the case of several
isolates, the enzymatic treatment significantly increased the
production of some measured factors. These cases are infrequent
for the GcL treated isolates (7/39; 18%), but were observed
more for those treated with SsoPox treatment (19/39; 49%).
This phenomenon was more commonly seen for biofilm and
protease production, both being the products of more complex
regulation systems (Parsek and Greenberg, 2004; Mellbye and
Schuster, 2014) which involve but are not entirely reliant upon
QS, unlike that of elastase and pyocyanin. In these cases,
the stimulation of a factor is typically concomitant to the
inhibition of other measured factors (11/19 for SsoPox, 6/7
for GcL; 17/26; 65% overall). Alternatively, several observations
between virulence products are noted: inhibition of elastase and
protease (Spearman coefficient, r = 0.2359, and p = 0.0119),
and protease and pyocyanin (Spearman coefficient, r = 0.2251,
p = 0.0216) are significantly correlated with the treatment of
Ssopox (Supplementary Figure S4). With GcL treatment, only
biofilm and pyocyanin inhibition are significantly correlated
(Spearman coefficient, r = −0.1893, p = 0.0497; Supplementary
Figure S5). These large differences between the lactonase
treatment outcomes may relate to different QS regulatory
circuits within these clinical isolates. For example, CF-adapted
P. aeruginosa isolates can lose or mutate the LasR system
(D’Argenio et al., 2007) and/or harbor a RhlR system that is
independent of the LasR system (Feltner et al., 2016; Kostylev
et al., 2019). Such remodeling of QS systems could account for
the observed superior consistency in the inhibitory effect by
the lactonase, GcL.

We note also that out of 11 isolates for which the lasr
amplification was negative (possibly lasr-null), 3 isolates (61, 74,
and 58) are not inhibited by the lactonase degrading 3-oxo-C12
HSL (SsoPox W263I), and 5 (61, 62, 64, 70, and 75) are not
inhibited by the other lactonase (GcL). The explanation for the

ability of SsoPox to inhibit lasr-null strains is unclear, but may
originate from the weak activity of the SsoPox enzyme against
C4-HSL and/or the high degree of remodeling of QS circuits in
the studied isolates.

Lactonases With Distinct Acyl
Homoserine Lactone Preferences Have
Differential Effects on CF-Adapted
Pseudomonas aeruginosa Isolates
Analysis of inhibitory levels for both treatments reveal that both
enzymes exhibit a similar inhibitory potency against the clinical
isolates. The box plots show an average biofilm inhibition of
55% for both enzymes across all tested isolates; 48% for elastase
inhibition; 53% and 49% for protease and pyocyanin inhibition,
respectively (Figures 4A,B). As shown in the bar graphs, when
considering only the isolates that are sensitive to the lactonases,
the degree of inhibition of each virulence factor by each lactonase
is similar; inhibition levels of biofilm are 57% and 54%, for
elastase, 47% and 49%, for protease 55% and 52%, and for
pyocyanin, 44% and 54%, all for Ssopox and GcL, respectively
(Supplementary Figure S6). However, both lactonase treatments
result in a different average number of inhibited factors per
isolates: 1.5± 0.6 for SsoPox, and 2± 1 for GcL (Figure 4C).

In fact, treatment with the lactonase SsoPox W263I led to
the inhibition of 26 isolates (out of 39; 67%), whereas treatment
with GcL affected 30 isolates (out of 39; 77%). While there is
overlap between the inhibitory activities of both lactonases (20
strains, over a total of 36 strains inhibited, 55%), there are in
fact a significant number of strains that are inhibited by only one
lactonase (16 strains, 44% of 36) (Figure 5). Treatments with each
enzyme resulted in a similar number of isolates to be inhibited for
elastase production (18 for SsoPox, 17 for GcL) and pyocyanin
inhibition (8 for SsoPox, 7 for GcL). However, GcL treatments
resulted in more isolates to be inhibited for biofilm formation (16
for GcL, 8 for SsoPox) and for secreted proteases (21 for GcL, 5
for SsoPox) (Figure 5). Altogether, these differences in treatments

FIGURE 4 | Both lactonases effectively inhibit virulence factors (VFs), but GcL simultaneously inhibits more VFs than SsoPox W263I in P. aeruginosa isolates. Box
plots showing the reduction of all statistically significant (p < 0.05) virulence factors on clinical isolates of P. aeruginosa in response to Ssopox W263I (A) or GcL (B),
and as compared to control treatment. Ssopox W263I concentration was 125 µg/mL; GcL concentration was 55 µg/mL. (C) Distribution of inhibited strains for one
or more virulence factors for the two lactonase treatments.
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FIGURE 5 | Venn diagrams representing the observed inhibition of VFs by the
two lactonase treatments. Venn diagrams showing the effects of treatment
with Ssopox (red) or GcL (blue) on individual virulence factors. Ssopox
concentration was 125 µg/mL; GcL concentration was 55 µg/mL. This
diagram shows that 30/39 and 26/39 strains were inhibited for at least one VF
with GcL and SsoPox W263I treatments, respectively. Interestingly, while there
is a significant overlap between the inhibitory activities of both lactonases (20
strains, over a total of 36 strains inhibited, 55%), there are in fact a significant
number of strains that are inhibited by only one lactonase (16 strains, 44%
of 36).

suggest that the AHL preference of the lactonase determines the
activity spectrum of the enzyme and the number of inhibited
virulence factors, but not the inhibition levels of the latter.

CONCLUSION

Focusing on 39 clinical isolates of P. aeruginosa from CF-
patients, including drug resistant strains, we investigated the
ability of two quorum quenching lactonases with distinct AHL
preference to inhibit virulence factors and biofilm formation.
Interestingly, we show that the majority of tested isolates are
inhibited by lactonase treatment (92%), despite the ability of
CF-adapted P. aeruginosa isolates to remodel their QS circuits
(D’Argenio et al., 2007; Bjarnsholt et al., 2010). We find that
some isolates are inhibited by both enzymes (56%), whereas a
significant number of strains were inhibited by only one lactonase
(44%). In fact, the broad spectrum lactonase (GcL) inhibited
77% of the isolates, whereas the specific SsoPox, targeting
primarily 3-oxo-C12 HSL, inhibited 67% of them. The distinct
inhibitory profile of the two enzymes is also evidenced by the
average number of inhibited virulence factors per isolate (2 and
1.5, for GcL and Ssopox, respectively). The overall superior
inhibitory activity of the broad spectrum lactonase, GcL, may
originate from its ability to degrade C4-HSL and 3-oxo-C12

HSL and the ability of CF-adapted P. aeruginosa isolates to
harbor a LasR-independent RhlR system (Kostylev et al., 2019).
These data show the inability to fully quench QS signaling in
bacteria by targeting a single communication molecule. Since the
interplay of multiple systems of signal production and feedback
affect virulence and other factor production, particularly in
clinical isolates, multiple quorum quenching enzymes with
different substrate targets may be required to proficiently disrupt
bacterial communication.
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