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One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs
is the “shock and kill” strategy which is based on HIV-1 reactivation in latently-infected
cells (“shock” phase) while maintaining antiretroviral therapy (ART) in order to prevent
spreading of the infection by the neosynthesized virus. This kind of strategy allows for the
“kill” phase, during which latently-infected cells die from viral cytopathic effects or from
host cytolytic effector mechanisms following viral reactivation. Several latency reversing
agents (LRAs) with distinct mechanistic classes have been characterized to reactivate
HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential
to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is
possible. However, LRAs alone have failed to reduce the size of the viral reservoirs.
Together with the inability of the immune system to clear the LRA-activated reservoirs
and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely
contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is
established in numerous cell types that are characterized by distinct phenotypes and
metabolic properties, and these are influenced by patient history. Hence, the silencing
mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need
to be better understood to rationally improve this cure strategy and hopefully reach
clinical success.

Keywords: HIV-1, latency reversing agents, cure, latency, reservoirs, heterogeneity

INTRODUCTION

Approximately, 36.9 million people in the world are living with HIV, while there were 33.3 million
in 2010, showing that HIV is still a global public health problem (UNAIDS 2018).

The development of ART has allowed the suppression of virus replication to undetectable levels.
Thus, ART reduces HIV-associated morbidity, prolongs survival, prevents transmission, and results
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in a partial reconstitution of the immune system, as measured
by an increase in circulating CD4+ T cells. However, ART can
cause cumulative toxic effects with the emergence of HIV-1 drug-
resistant variants (Hu and Kuritzkes, 2014). Moreover, ART is
unable to achieve complete virus eradication since it targets
only actively replicating virus, and as such, treatment needs
to be taken life-long. The main barrier to an HIV cure is the
formation of stable reservoirs of latent HIV-1 that are defined as
a cell type or an anatomical site in which integrated proviruses
persist (Eisele and Siliciano, 2012). The latent reservoirs are
highly heterogeneous and composed of multiple cell types, such
as macrophages, but the best-characterized ones are a small
population of HIV-1-infected memory CD4+ T cells. In addition
to cellular reservoirs, GALT, CNS, genital tract, and lymph nodes
are the main anatomical reservoirs of HIV-1 (Coombs et al., 2003;
Gras and Kaul, 2010; Yukl et al., 2013). The role of the respiratory
tract (Cribbs et al., 2015), liver (Penton and Blackard, 2014),
kidney (Winston et al., 2001), and adipose tissue (Couturier
et al., 2015) as HIV-1 reservoirs is also gaining importance.
Moreover, an anatomical site in which ART penetration is limited
(called a sanctuary) or a site which is immune-privileged (such
as B cell follicular centers within lymph nodes, testis, and the
brain) may allow for residual replication contributing to viral
persistence (Connick et al., 2007; Chomont et al., 2009; Buzón
et al., 2011; Eisele and Siliciano, 2012; Fletcher et al., 2014).
Together, these reservoirs can be induced to actively produce
viruses by various cellular stimuli and therefore represent one
potential source of rebound of viremia after ART interruption
(Chun et al., 1997; Davey et al., 1999; Beliakova-Bethell et al.,
2017; Ganor et al., 2019).

Abbreviations: 5-AzaC, 5-azacytidine; 5-azadC, 5-aza-2′deoxycytidine; 5′LTR,
5′ Long Terminal Repeat; 7SK snRNP, 7SK small nuclear ribonucleoprotein;
APOBEC3A, Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3
A; ART, Antiretroviral therapy; ASP, Antisense protein; BETis, Bromodomain and
Extraterminal (BET) bromodomain inhibitors; B-HIVE, Barcoded HIV ensembles;
CA-US, Cell associated unspliced; CCR5/6/7, CC chemokine receptor 6/7; CGi,
CpG island; CSF, Cerebrospinal fluid; CTIP2, COUP-TF (Chicken Ovalbumin
Upstream Promoter Transcription Factor)-Interacting Protein 2; CXCR3/5, C-X-
C Chemokine Receptor3/5; CNS, central nervous system; DCs, dendritic cells;
DNA, Deoxyribonucleic acid; DNMT, DNA methyl-transferase; DSIF, DRB
(5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) Sensitivity Inducing Factor;
EDITS, Envelope Detection by Induced Transcription-based Sequencing; ESEtat,
Exonic Splice Enhancer tat; ESR-1, Estrogen receptor-1; EZH2, Enhancer Of
Zeste 2 Polycomb Repressive Complex 2 Subunit; fDCs, follicular dendritic
cells; GALT, Gut-Associated Lymphoid Tissue; HDAC, histone deacetylase; HIV,
human immunodeficiency virus; HLA-DR, Human Leukocyte Antigen – DR
isotype; HMBA, Hexamethylene bisacetamide; HP1, heterochromatin Protein
1; HSCs, hematopoietic Stem Cells; IL-2/4/7/15, Interleukin 2/4/7/15; ITIM,
Immunoreceptor Tyrosine-based Inhibitory Motif; KAP1, KRAB (Krüppel-
Associated Box) domain-Associated Protein 1; LAG-3, Lymphocyte Activation
Gene-3; LARA, latency and reversion assay; lncRNA, Long non-coding RNA;
LRA, latency-reversing agents; MAPK, mitogen-activated protein kinase; MATR3,
Matrin 3; mDCs, myeloid dendritic cells; miRNA, Micro ribonucleic acid;
MMQO, 8-methoxy-6-methylquinolin-4-ol; Nef, negative regulatory factor; NELF,
Negative Elongation Factor; NFAT, Nuclear Factor of Activated T-cells; NF-κB,
Nuclear Factor-kB; PBMCs, peripheral blood mononuclear cells; PCAF, p300/CBP
(CREB Binding Protein)-Associated Factor; PD-1, programmed cell death-1;
PHA, phytohemagglutinin; PMA, phorbol myristate acetate; PML, promyelocytic
leukemia protein; PRC2, polycomb repressive complex 2; PSF, polypyrimidine
tract-binding protein associated splicing factor; PTB, Polypyrimidine Tract
Binding protein; P-TEFb, Positive Transcription Elongation Factor b; qPCR,
Quantitative polymerase chain reaction; QVOA, quantitative viral outgrowth

Viruses have developed different mechanisms to escape the
host immune system. In addition to the rapid evolution of viral
variants, the establishment of viral latency in the infected cells is
one of these mechanisms (Deng et al., 2015). Latently-infected
cells contain stably-integrated, replication-competent proviruses
repressed by a plethora of silencing mechanisms operating at the
transcriptional and post-transcriptional levels. The number of
latently-infected cells carrying replication-competent proviruses
is extremely low with a majority of defective proviruses (Ho
et al., 2013; Bruner et al., 2016, 2019). Significant progress has
been made in the development of various therapeutic approaches
that target HIV-1 and prevent disease progression. Currently,
two strategies are under investigation in order to reach long-
term control of viral replication in the absence of ART: the
first strategy is aiming at achieving a sterilizing cure (i.e., a
total elimination of the virus from the human body), whereas
the second is a functional cure (i.e., a remission or long-term
control of HIV-1 in the absence of ART, without loss of CD4+
T cells, no clinical progression, lack of HIV-1 transmission, and
a reduction of the size of the reservoirs). Given the difficulty
of achieving a sterilizing cure, one specific approach for a
functional cure, called the “shock and kill” strategy, has become
one of the major focus of attention (Thorlund et al., 2017).
However, it now appears that the main barrier to reaching
success with this “shock and kill” strategy is the heterogeneity
of the latent HIV-1 reservoirs that is reflected by the diversity
of infected cell types residing in the blood and in the different
tissues and by the complexity of the molecular mechanisms
governing latency and most likely differing from one cell to
the other.

The present review will discuss the heterogeneity of the
HIV-1 reservoirs that has been highlighted by studies using
LRAs. We will describe the determinants responsible for these
heterogeneous responses to LRAs, including the diversity of cell
types composing the reservoirs (their origin, their differentiation,
and their activation state). We will briefly present the multiple
molecular mechanisms governing latency, the HIV-1 diversity
within the latent and reactivated reservoirs, the patient-to-patient
and cellular variations in response to LRAs. Finally, we will
discuss why a better understanding of these elements is crucial
for reaching an HIV-cure.

assays; Rev, regulator of virion expression; RNA, ribonucleic acid; RNAPII,
RNA polymerase II; RT-ddPCR, teverse transcription droplet digital PCR;
SAHA, suberoylanilide hydroxamic acid; SIV, simian immunodeficiency virus;
SMAC, second mitochondrial activator of caspases; SMYD2, SET (Suppressor
of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-
DEAF1) domain-containing protein 2; Sp1, specificity protein 1; STAT5, signal
transducer and activator of transcription 5; Suv39H1, Suppressor of variegation
3-9 homolog 1; TAR, transactivation response element; Tat, transactivator of
transcription; TCM, central memory CD4+ T cells; TCR, T Cell Receptor;
TEM, effector memory CD4+ T cells; Tfh, T follicular helper cells; Th17, T
helper cells 17; TIGIT, T-cell immunoreceptor with Ig ITIM domains; Tim-3,
T cell immunoglobulin and mucin 3; TILDA, Tat/rev-induced limiting dilution
assay; TN, Naïve CD4+ T cells; TNFα, tumor necrosis factor alpha; Treg,
Regulatory CD4+ T cells; TRIM19, Tripartite Motif 19/22; TSA, trichostatin
A; TSCM, stem cell-like memory CD4+ T cells; TSS, transcription start site;
TTD, terminally differentiated CD4+ T cells; TTM, Transitional memory CD4+
T cells; UNAIDS, United Nations Programme on HIV and AIDS; UPF-1,
up-frameshift protein 1.
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HETEROGENEOUS COMPOSITION OF
HIV-1 RESERVOIRS

CD4+ T Cell Reservoirs
HIV-1 infects subsets of CD4+ T lymphocytes, leading either
to productively-infected cells or, rarely, to latently-infected cells.
HIV-1 infected CD4+ T cells can be distinguished either by their
state of differentiation, by their function, or by the markers they
express on their surface.

CD4+ T Cell Differentiation Subsets
CD4+ T cells infected with HIV-1 can be grouped by their state
of differentiation into naive T cells (TN, CD45RA+, CD62L+,
and CD95−) and memory CD4+ T cells, which can be further
divided into four subpopulations: central memory T cells (TCM,
CD45RA−, CCR7+, and CD27+), effector memory T cells
(TEM, CD45RA−, CCR7−, and CD27−), transitional memory
T cells (TTM, CD45RA−, CCR7−, and CD27+), and stem cell-
like memory T cells (TSCM, CD45RA+, CCR7+, CD27+, and
CD95+). TN cells that are more resistant to HIV-1 infection than
memory CD4+ T cells and as such contain lower levels of HIV-
1 DNA (Venanzi Rullo et al., 2019), produce as many virions
(Zerbato et al., 2019) or greater (Venanzi Rullo et al., 2019)
amount of replication-competent HIV-1 than the memory CD4+
T cells following latency reversal with LRAs, indicating that TN
cells are an important reservoir of latent HIV-1. Moreover, the
total proportion of TN increases under ART regimen compared
to memory T cells (Wightman et al., 2010). However, clonal
expansion is more frequently observed in memory than in TN
cells, thus contributing to HIV-1 persistence (von Stockenstrom
et al., 2015). Indeed, homeostatic proliferation driving clonal
expansion has been evidenced by pioneering work of Chomont
et al. (2009) that identified TCM and TTM as the main reservoir
for HIV-1 infection. These two major subgroups are a more
stable reservoir for HIV-1 than TEM which are short-lived and,
unlike TCM and TTM, express markers of activation (HLA-
DR) (Pardons et al., 2019) and might be more sensitive to
programmed cell death (Riou et al., 2007; Chomont et al., 2009;
Cockerham et al., 2014). It has been previously shown by the
group of Sarah Palmer that TEM which are in an activation
state carry the highest number of intact proviruses compared to
TCM, TTM, and TN (Hiener et al., 2017). This finding suggests
that the resting phenotype of CD4+ T cells (i.e., characterized
by no expression of activation markers) is not a prerequisite
for latent infection. These differences could be explained by
patient-specific variations related to the duration of infection
before ART initiation or to the duration of ART. Moreover, some
evidence supports the theory that HIV-1 can establish latent
infection in actively replicating CD4+ T cells, suggesting that
HIV-1 infection of both resting and activated primary CD4+
T cells could result in latency (Chavez et al., 2015). The TTD,
corresponding to aged T-cell populations that reflect HIV-1
disease progression (Cao et al., 2009) and in which integrated
HIV-1 DNA is also detected, are a very small reservoir with a
reduced frequency in HIV-1 individuals under suppressive ART
and improved CD4+ T cell counts (Chomont et al., 2009; Behrens

et al., 2018). Finally, TSCM are permissive to HIV-1 infection and
contribute to its persistence by their capacity of self-renewal and
prolonged survival rate. The proportion of viral DNA associated
with these TSCM cells is higher than in TCM. Although TSCM are
latently-infected, they represent only a small fraction of the total
reservoir (Gattinoni et al., 2011; Buzon et al., 2014).

CD4+ T Cell Functional Subsets
Different CD4+ T cell subsets that are generated from TN were
shown to be HIV-1 infected. For instance, resting CD4+CD25+
Treg were found to be sensitive to HIV-1 infection acting as a viral
reservoir in patients under long ART (Tran et al., 2008). These
cells are characterized by a lesser response to T cell activation
which limits virus expression and inhibits CD8+ T-cell cytotoxic
function (Tran et al., 2008; Pardons et al., 2019). Additionally,
the gamma-delta T cells (γδ T) which represent approximately
2 to 10% of total circulating CD3+ T lymphocytes and whose
majority express TCR from Vδ2 variable regions (hereafter
referred as Vδ2 cells), are classified as memory cells according to
the expression of CD45RO and CD27 markers (Miyawaki et al.,
1990). These Vδ2 cells have been documented to be productively
infected and depleted upon HIV-1 infection (Li and Pauza, 2011).
More recently, it has been demonstrated that Vδ2 cells in ART-
treated patients with complete suppression of HIV-1 plasma
viremia harbor latent HIV-1 that can replicate following ex vivo
stimulation indicating that peripheral Vδ2 T cells are a potential
HIV-1 reservoir (Soriano-Sarabia et al., 2015). Also, Th17 CCR6+
memory CD4+ T-cell subsets in the blood and colon are long-
lived cells that act as HIV-1 reservoirs during ART (Gosselin et al.,
2010, 2017; Pardons et al., 2019). In addition, T follicular helper
cells (Tfh) from the germinal center and peripheral blood (pTfh)
are highly susceptible to HIV-1 infection holding replication-
competent virus and serve as reservoirs during ART (Perreau
et al., 2013; Pallikkuth et al., 2015; Kohler et al., 2016; Pardons
et al., 2019). These cells are characterized by surface expression
of CXCR5 and PD-1, reside in the lymph node follicles in
immediate anatomical proximity to B cells, and support the
germinal center reaction essential for the generation of effective
humoral immunity. Notably, the group of Matthieu Perreau, by
investigating lymph node Tfh (expressing CXCR5 and PD-1) and
pTfh (expressing CXCR3), has shown that these subpopulations
are the major sources of infectious replication-competent HIV-1
(Banga et al., 2016b, 2018).

Very recently, resident memory CD4+ T cells (TRM), present
in tissues such as the lower female genital tract has been described
as a critical HIV-1 reservoir in cervical mucosa (Cantero-Pérez
et al., 2019). Interestingly, cervical tissues from aviremic ART-
treated HIV-1 infected woman contained higher viral DNA
content compared to blood samples and showed that CD4+ TRM
harboring viral DNA and viral RNA are the main contributors
to this reservoir.

Markers of Latently-Infected CD4+ T Cells
Studies investigating the role in latency of activation markers
such as HLA-DR and immune checkpoint molecules (i.e.,
PD-1, LAG-3, TIGIT and Tim-3) have indicated that these
markers are preferentially expressed at the surface of memory
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CD4+ T cells (TCM and TTM) harboring latent HIV-1 provirus
(Fromentin et al., 2016; Evans et al., 2018; Pardons et al.,
2019). Although several studies, including those carried on SIV-
infected macaques, have demonstrated that cells expressing these
markers carry latent, replication-competent integrated viral DNA
(Chomont et al., 2009; Hurst et al., 2015; Banga et al., 2016b;
Fromentin et al., 2016; McGary et al., 2017), the replication
competence of the integrated proviruses and the contribution of
the cells bearing these markers to the latent reservoir still need to
be fully elucidated.

Recently, the expression of CD32a has been reported as
a potential marker of memory CD4+ T cells harboring a
replication-competent latent virus in aviremic patients under
ART (Descours et al., 2017; Darcis et al., 2019). The role of
CD32a as a cellular marker of HIV-1 reservoirs has been the
subject of several works (Abdel-Mohsen et al., 2018; Martin et al.,
2018; Osuna et al., 2018; Thornhill et al., 2019). A complete
study presented at CROI by Darcis et al. (CROI 2019, Poster
346 - CD32+ CD4+ T cells are enriched in HIV-1 DNA) showed
that active CD4+ T cells co-expressing HLA-DR and CD32a are
highly enriched with HIV-1 DNA.

The integrin α4β7 has been shown on a T cell subset that
is highly susceptible to HIV-1 infection (Cicala et al., 2009;
Sivro et al., 2018). Moreover, the integrin α4β1 was shown
to be expressed by more than 70% of infected cells both in
untreated and ART-suppressed individuals (Pardons et al., 2019).
Integrins mediate the adhesion and transendothelial migration
of lymphocytes facilitating their homing to GALT (for α4β7)
and to the inflamed central nervous system/bone marrow (for
α4β1) suggesting a role in HIV-1 persistence by enhancing
T cell expansion.

In addition, high levels of CD2 receptor expression on latently
infected resting memory CD4+ T cells in virally suppressed
HIV-1-infected subjects has been also identified (Iglesias-Ussel
et al., 2013). Moreover, CD30 receptor was identified on
transcriptionally active CD4+ lymphocytes in individuals on
suppressive ART suggesting that it might be a marker of residual,
transcriptionally active HIV-1 infected cells in the setting of
suppressive ART (Hogan et al., 2018). Last but not least,
very recently the B lymphocyte antigen CD20 has also been
identified as a marker of transcriptionally-active HIV-infected
cells (Serra-Peinado et al., 2019).

Non-T Cell Reservoirs
Even though memory CD4+ T cells are a long-term cellular
reservoir for HIV-1, they are not the only source of viral rebound
during treatment interruption. Macrophages, DCs, and tissue
macrophages, such as microglial cells, are part of the viral
reservoir (Kumar et al., 2014; Kandathil et al., 2016; Honeycutt
et al., 2017; Schwartz et al., 2019).

Indeed, overwhelming evidence supports the notion that
tissues, such as the CNS (Canestri et al., 2010; Gras and
Kaul, 2010), lymph nodes (Sewald et al., 2015), testes (Darcis
et al., 2016; Jenabian et al., 2016), gut (Yukl et al., 2013),
genital tract (Iversen et al., 2004; Marcelin et al., 2008; Sheth
et al., 2009), and lungs (Costiniuk and Jenabian, 2014), serve

as HIV-1 sanctuaries that counteract viral eradication. In this
regard, the group of Morgane Bomsel has recently reported that
urethral tissue macrophages expressing IL-1 receptor, CD206,
and IL-4 receptor, but not CD163, constitute a replication-
competent HIV-1 reservoir (Ganor et al., 2019). Importantly,
lipopolysaccharides specifically reactivate the production of
replication-competent infectious proviruses from these tissue
macrophages (Ganor et al., 2019).

In the case of circulating monocytes, they are more resistant
to HIV-1 infection and their contribution as a viral reservoir
is controversial and remains debatable. Monocytes have been
proposed as a vehicle of HIV-1 dissemination throughout the
body upon their entry in tissues where they differentiate into
macrophages. Especially, due to their ability to cross the blood-
tissue barrier, monocytes consequently, spread the infection into
sanctuaries such as the brain (Pulliam et al., 1997; Valcour et al.,
2009, 2010, 2013; Williams et al., 2014). These characteristics
indicated the monocytes as an important viral reservoir.
However, even if several studies have reported persistent infection
of monocytes in ART treated individuals (Lambotte et al.,
2000; Sonza et al., 2001; Gibellini et al., 2008), others failed to
detect HIV-1 in circulating monocytes (Almodóvar et al., 2007).
A recent work from the group of Nicolas Chomont indicated
that monocyte infection is infrequent, and they highlighted the
importance of using flow cytometry cell-sorting to minimize
contamination by CD4+ T cells (Massanella et al., 2019).

Follicular dendritic cells (fDCs) in lymphoid tissues
specialized in the trapping and retention of antigens in the
form of immune complexes on their surface, including HIV-1
virions, can serve as a potential viral reservoir (Smith et al.,
2001). Using specific and sensitive next-generation in situ
hybridization approach, Deleage et al. (2016) documented the
importance of B cell follicles in active, latent, and persistent
infections by analyzing lymphoid tissues from macaques
prior to and during ART. These fDCs could thus transfer the
virus to T cells present in the follicles of secondary lymphoid
organs (Heesters et al., 2015). In addition, myeloid dendritic
cells (mDCs) located in the lymph nodes may support a
very low level of viral replication and have a role in HIV-1
latency (Shen et al., 2014). However, the mechanism of viral
persistence in these cells is not yet clearly understood [reviewed
in Kandathil et al. (2016)].

Viral DNA has also been detected in hematopoietic stem cells
(HSCs) from ART-treated patients, which could demonstrate
their involvement in HIV-1 persistence (Sebastian et al., 2017;
Zaikos et al., 2018). Despite the limited infection and detection of
HSCs in a subset of patients (McNamara et al., 2013), their role as
a viral reservoir may be crucial. Finally, HIV-1 can infect kidney
allografts after transplantation despite undetectable viremia
thereby suggesting that podocytes can serve as viral reservoirs
and revealing once again the heterogeneous composition of the
HIV-1 reservoir (Canaud et al., 2014).

In conclusion, multiple cell subsets being present at various
cellular differentiation states, either resting or activated, can serve
as HIV-1 reservoir. All these cells contribute to the complexity
and heterogeneity of the reservoirs of latent HIV-1. It is very likely
that different molecular mechanisms of latency establishment
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and persistence are involved in different latently-infected cell
types and even may vary among cells of the same lineage.

COMPLEXITY OF MOLECULAR
MECHANISMS REGULATING
HIV-1 LATENCY

It is well established that repression of HIV-1 expression
is mediated through a plethora of molecular mechanisms
both for the establishment and for the maintenance of post-
integration latency (summarized in Figure 1). In fact, HIV-1
latency is a multifactorial phenomenon, controlled by several
interlinked mechanisms operating at the transcriptional and
post-transcriptional levels [reviewed in Van Lint et al., 2013)]
and influenced by the transcriptional program of the host cell
(Bradley et al., 2018). For instance, some studies have suggested
that HIV-1 viral latency is related to the integration site and
orientation of the provirus (Greger et al., 1998; Han et al.,
2008; Lenasi et al., 2008; Chen et al., 2017; Einkauf et al.,
2019). HIV-1 integration seems random but favors the introns
of transcriptionally-active genes located in gene dense regions
in the outer shell of the nucleus close to the nuclear pores
(Schröder et al., 2002; Han et al., 2004; Marini et al., 2015; Singh
et al., 2015; Chen et al., 2017). The importance of transcriptional
interference as a mechanism suppressing the expression of
the integrated provirus (including steric hindrance, convergent
transcription, and enhancer trapping) has also been proposed
(Greger et al., 1998; Han et al., 2008; Lenasi et al., 2008) [reviewed
in Colin and Van Lint (2009)].

Moreover, during latency, the HIV-1 promoter is heavily
controlled by epigenetic mechanisms, including DNA
methylation (Blazkova et al., 2009; Kauder et al., 2009; Chávez
et al., 2011) and histone post-translational modifications, such as
histone acetylation (Lusic et al., 2003; Jiang et al., 2007; Tyagi and
Karn, 2007; Li et al., 2018), methylation (du Chéné et al., 2007;
Marban et al., 2007; Imai et al., 2010; Friedman et al., 2011; Ding
et al., 2013; Tchasovnikarova et al., 2015, 2017; Boehm et al., 2017;
Nguyen et al., 2017; Zhang et al., 2017; Huang et al., 2019), and
crotonylation (Jiang et al., 2018). The degree of DNA methylation
on the HIV-1 promoter was long considered controversial due
to conflicting observations in patients (Blazkova et al., 2009,
2012; Kauder et al., 2009; Ho et al., 2013; Weber et al., 2014).
However, this heterogeneity in promoter methylation profile
between patients has now been explained by the duration of
the infection (Palacios et al., 2012) and/or the duration of ART
therapy (Trejbalová et al., 2016) which impacts the accumulation
of cytosine methylation on the 5′LTR. Still, the exact mechanisms
of this DNA methylation accumulation in the latent reservoir of
HIV-1-infected individuals remain unclear.

Additionally, an antisense transcript originating from the
3′LTR (named the ASP RNA) (Zapata et al., 2017) was
recently shown to recruit the PRC2 repressor complex to
the HIV-1 5′LTR, increasing the repressive epigenetic mark
H3K27me3 while reducing RNAPII occupancy at the viral
promoter and promoting the establishment and maintenance
of HIV-1 latency at the epigenetic level (Zapata et al., 2017).

An HIV-encoded antisense long non-coding RNA directs the
same epigenetic silencing mechanisms by recruiting and guiding
chromatin-remodeling complex consisting of proteins such as
DNMT3a, EZH2, and HDAC-1 to the viral promoter leading to
transcriptional HIV-1 latency (Saayman et al., 2014).

HIV-1 latency is also associated with poor availability of
transcriptional activating factors including NF-κB, NFAT, and
STAT5 due to their cytoplasmic sequestration (Williams et al.,
2006; Della Chiara et al., 2011; Hakre et al., 2012; Bosque
et al., 2017) and with a low expression level of the viral
transactivator Tat (Burnett et al., 2009; Weinberger et al.,
2005). The interaction of the cellular transcriptional cofactor
CTIP2 with HP1α is involved in the relocation of Tat to
transcriptionally inactive regions of the chromatin (Rohr et al.,
2003). However, HIV-1 counteracts CTIP2 mediated-repression
by promoting its degradation by the HIV-1 accessory protein
Vpr (Forouzanfar et al., 2019). Another recent finding has
revealed that APOBEC3A, the restriction factor that suppresses
HIV-1 infection in macrophages, maintains HIV-1 latency by
recruiting KAP1 and HP1 inducing repressive histone marks
(Taura et al., 2019). In addition, the importance of TRIM22,
known to inhibit the binding of Sp1 to the 5′LTR promoter
(Turrini et al., 2015) and to colocalize with HIV-1 transcriptional
repressors TRIM19/PML (Forlani et al., 2017), contributes to the
maintenance of HIV-1 latency (Turrini et al., 2019).

During latency and even after transcription initiation, the
RNAPII is paused during early elongation, constraining its
processivity and resulting in repression of HIV-1 gene expression
(Adams et al., 1994). RNAPII terminates prematurely and
accumulates at specific positions of the HIV-1 promoter that
overlap with the position of the repressive nucleosome nuc-1,
positioned in the 5′LTR just after the TAR region, inducing a
block of transcriptional elongation (Verdin et al., 1993). This
inhibition of HIV-1 transcription elongation is regulated by the
binding of negative factors such as NELF and DSIF to the RNAPII
(Yamaguchi et al., 1999; Jadlowsky et al., 2014) and by the limited
availability of the cellular transcription factor P-TEFb due to its
sequestration by the 7SK snRNP complex (Nguyen et al., 2001;
Yang et al., 2001; Cherrier et al., 2013; Eilebrecht et al., 2014).
P-TEFb is composed of CyclinT1 and CDK9 and requires the
CDK9 Thr-186 phosphorylation for its activity to mediate the
phosphorylation of the C-terminal domain of the paused RNAPII
antagonizing its negatives factors (Wei et al., 1998; Ramakrishnan
et al., 2009). The level of CDK9 phosphorylation has been found
to be lower in resting CD4+ T cells harboring latent HIV-1
(Budhiraja et al., 2013; Ramakrishnan et al., 2015). Furthermore,
CTIP2 binds to the 7SK snRNP complex to inhibit P-TEFb and
HIV-1 transcription in microglial cells (Cherrier et al., 2013;
Eilebrecht et al., 2014).

Abortive TAR transcripts have been reported even during
transcriptional elongation block (Adams et al., 1994; Core
and Lis, 2008; Kaiser et al., 2017). In a very elegant manner,
the group of Steven Yukl has evidenced that multiple blocks
to transcription and even to splicing and export exist in
patient cells. They developed a panel of RT-ddPCR assays
to measure at the same time different HIV-1 transcripts
(Telwatte et al., 2018; Yukl et al., 2018) in patient-derived
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FIGURE 1 | Schematic representation of the different transcriptional and post-transcriptional blocks involved in HIV-1 latency. During HIV-1 latency, several blocks
preventing viral production have been described. These are represented by the methylation of the two CGIs surrounding the HIV-1 TSS and the deposit of repressive
epigenetic marks (histone deacetylation and methylation) maintaining the repressive nucleosome nuc-1 positioned in the HIV-1 5′LTR promoter just downstream the
TSS. The transcription initiation is also blocked because of the cytoplasmic sequestration of the positive NF-κB heterodimer p50–p65 and the phosphorylated NFAT
and STAT5. The presence of repressive factors (such as CTIP2, TRIM22 and the binding of the homodimer p50–p50 to the NF-κB binding sites in the HIV-1
promoter) acts negatively on HIV-1 transcription initiation. The RNAPII, with its phosphorylated serine 5 (S5P) residue in its C-terminal domain, pauses and
accumulates at the promoter-proximal region due to the binding of the negative factors NELF and DSIF. The elongation is also blocked by the absence of the master
regulator of viral transcription Tat and by the sequestration of the positive transcriptional elongation factor P-TEFb into the inactive complex named 7SK snRNP. The
splicing and export of HIV-1 transcripts are inefficient during latency due to the low expression level of post-transcriptional factors such as PTB, MATR3, and PSF.
Finally, translation of viral transcripts could be inhibited by mechanisms involving mRNA degradation and sequestration in cytoplasmic granules.

cells. They quantified the transcripts suggestive of transcriptional
interference (U3-U5), initiation (TAR), 5′ elongation (R-U5-pre-
Gag), distal transcription (Nef), completion (U3-polyA), and
multiple splicing (Tat-Rev) (Yukl et al., 2018). Using blood
CD4+ T cells from HIV-1 individuals under ART, they showed
a greater block to HIV-1 transcriptional elongation, distal

HIV-1 transcription, completion, and multiple splicing than to
transcriptional initiation (Yukl et al., 2018). This transcription
profiling approach highlighted the blocks at distinct stages of
HIV-1 transcription and splicing (which may be governed by
different mechanisms), thereby underlying the heterogeneity of
HIV-1 latency in CD4+ T cells.
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The work of Telwatte et al. (2018) and Yukl et al. (2018) and
also of Pace et al. (2012) have highlighted the importance of
post-transcriptional blocks in HIV-1 latency. Post-transcriptional
blocks of the nuclear export of various viral transcripts including
unspliced, partially spliced, multiply-spliced, and translation of
HIV-1 RNA by miRNAs have also been reported (Pomerantz
et al., 1990; Malim and Cullen, 1991; Lassen et al., 2006; Weng
et al., 2014; Modai et al., 2019). Interestingly, a recent study
from the group of Alessandro Marcello has demonstrated that
the expression level of MATR3 and PSF, two known post-
transcriptional cofactors of the HIV-1 protein Rev required for
Rev-mediated export of RRE-containing HIV-1 RNAs (Kula
et al., 2011, 2013), are poorly expressed in latently-infected
patients cells (Sarracino et al., 2018), suggesting a novel post-
transcriptional block linked to RNA export. This latter block was
reversed by ectopic overexpression of MATR3 which boosted
the action of the HDAC inhibitor SAHA in the J-Lat cell line
model for HIV-1 latency (Sarracino et al., 2018). These results
demonstrated the importance of post-transcriptional blocks,
especially at the level of viral RNAs export, that need to be
relieved to reach full viral reactivation by LRAs. Similarly, the
work of Andrew Mouland and colleagues has demonstrated
that UPF-1, a known RNA surveillance protein (Ajamian et al.,
2015), acts as a positive post-transcriptional regulator of viral
reactivation from latency (Rao et al., 2018).

Additional post-transcriptional mechanisms including the
involvement of cellular miRNA and non-coding RNAs in
latency have been described. More specifically, the regulation
of viral expression and production by miRNAs targeting PCAF
(Triboulet et al., 2007) and CyclinT1 (Sung and Rice, 2009;
Budhiraja et al., 2013) have been related to latency (Huang
et al., 2007). Many of these miRNAs involved in this process
are expressed in resting cells but are downregulated during
T-cell activation (Huang et al., 2007). For instance, the lower
susceptibility to HIV-1 infection of monocytes in comparison
to macrophages has been shown to be correlated with high and
low expression of these miRNAs, respectively (Klase et al., 2007).
Finally, lncRNA called NRON which is strongly expressed in
resting CD4+ T cells was shown to be involved in HIV-1 latency
by inducing Tat degradation through the proteasome pathway (Li
et al., 2016). The combination of SAHA with NRON knockdown
significantly reactivates viral production from latently-infected
primary CD4+ T cells (Li et al., 2016).

Altogether, the complexity of the molecular mechanisms
underlying HIV-1 latency marks the heterogeneous nature of the
HIV-1 reservoirs.

SHOCK AND KILL STRATEGY TO
ELIMINATE THE LATENT RESERVOIR

Mechanistic insights into HIV-1 transcriptional repression
during latency have allowed to develop the “shock and kill”
strategy. This approach is based on the use of small-size
chemical compounds called LRAs which reactivate HIV-1 from
latency (the “shock” phase) while maintaining ART in order
to prevent new infection events (Sengupta and Siliciano, 2018).

This kind of strategy would allow the “kill” phase during which
latently-infected cells would then die from viral cytopathic
effects or host cytolytic effector mechanisms following viral
reactivation. Of note, this strategy does not discriminate between
replication-competent and defective proviruses. Several classes
of LRAs have been developed and studied (reviewed in Kim
et al., 2018; Spivak and Planelles, 2018; Sadowski and Hashemi,
2019). These include: PKC agonists, MAPK agonists, CCR5
antagonist, Tat vaccine, SMAC mimetics, inducers of P-TEFb
release, activators of Akt pathway, benzotriazole derivatives,
epigenetic modifiers (including HDACis, HMTis, and DNMTis),
and immunomodulatory LRAs (including TLR agonists, IL-
15 agonist and immune checkpoint inhibitors) (summarized
in Table 1).

It has been further demonstrated by several groups, including
ours, that targeting a single mechanism might not be efficient
enough to reactivate the majority of latent proviruses and
that combinations of LRAs acting on several HIV-1 silencing
molecular mechanisms are needed to obtain synergistic viral
reactivations and achieve a more significant decrease in the size
of the reservoirs (Reuse et al., 2009; Bouchat et al., 2012, 2016;
Darcis et al., 2015; Jiang et al., 2015; Laird et al., 2015; Pache
et al., 2015; Tripathy et al., 2015; Abdel-Mohsen et al., 2016; Chen
et al., 2017; Rochat et al., 2017; Das et al., 2018). Moreover, when
LRAs are used in combination, lower concentrations are effective,
thereby reducing the toxicity of each LRA. However, even if these
LRA combinations reverse latency, they could inhibit multiple
CD8+ T cell function [reviewed in Clutton and Jones (2018)].
Importantly, despite the potent effect of a single LRA and of
LRA combinations in vitro and ex vivo, multiple clinical trials
have failed to show a decrease in the size of the latent reservoir
in vivo. A clear change in plasma HIV-1 RNA with a subsequent
decrease in the reservoir size in vivo has been seen only for the
immune check point inhibitor nivolumab (Guihot et al., 2018)
and for romidepsin (combined with an immunovaccine) (Leth
et al., 2016) but without prolonging time to viral rebound after
ART interruption in this latter study (Leth et al., 2016). In the
case of nivolumab, the study was conducted only on one patient
who experienced a drastic and sustained decrease of the HIV-
1 reservoir (Guihot et al., 2018). However, other controversial
studies found no consistent changes in the size of the latent
reservoir nor in HIV-specific CD8+ T-cell responses in HIV-1-
infected individuals treated with anti-PD1 antibodies (including
nivolumab) (Le Garff et al., 2017; Evans et al., 2018; Lavolé et al.,
2018; Scully et al., 2018). Success to completely eradicate latent
viruses with LRAs is hampered by the heterogeneous nature
of the latent reservoir and by the diversity of the silencing
mechanisms governing latency that make the current “shock and
kill” strategy inefficient.

LATENCY REVERSING AGENTS
HIGHLIGHT THE HETEROGENEOUS
NATURE OF THE LATENT RESERVOIR

All studies investigating LRAs have demonstrated the
heterogeneous nature of the cellular and tissue reservoirs of
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TABLE 1 | Classes of HIV-1 latency reversing agents.

LRA classes Examples Targets References

PKC agonists Prostratin Bryostatin-1 Ingenols: Ingenol-B,
Ingenol 3,20-dibenzoate (Ingenol-db),
ingenol-3-angelate (ingenol mebutate, PEP005)

NF-κB activation Kulkosky et al., 2001; DeChristopher et al., 2012; Jiang
et al., 2014; Darcis et al., 2015; Spivak et al., 2015

MAPK agonist Procyanidin trimer C1 MAP Kinase activation Cary and Peterlin, 2018

CCR5 antagonist Maraviroc NF-κB activation López-Huertas et al., 2017; Madrid-Elena et al., 2018

Tat vaccine Tat Oyi vaccine
Tat-R5M4 protein

Activation of HIV-1 LTR Geng et al., 2016

SMAC mimetics SBI-0637142
Birinapant

Induction of non-canonical
NF-κB pathways

Pache et al., 2015; Hattori et al., 2018

Inducers of P-TEFb release BETis: JQ1, I-BET, I-BET151, OTX015,
UMB-136, MMQO, CPI-203, RVX-208, PFI-1,
BI-2536 and BI-6727
HMBA

Release of P-TEFb Contreras et al., 2007; Bartholomeeusen et al., 2012;
Darcis et al., 2015; Lu et al., 2016; Huang et al., 2017;
Lu et al., 2017; Abner et al., 2018; Gohda et al., 2018;
Liang et al., 2019

Activators of Akt pathway Disulfiram Upregulation of Akt
signaling pathway

Xing et al., 2011; Doyon et al., 2013; Spivak et al., 2014

Benzotriazole derivatives 1-hydroxybenzotriazol (HOBt) STAT5 activation Bosque et al., 2017

Epigenetic modifiers HDACis: TSA, trapoxin, SAHA, romidepsin,
panobinostat, entinostat, givinostat, valproic acid,
MRK-1/11, AR-42, fimepinostat, chidamide

HDAC inhibition Van Lint et al., 1996; Quivy et al., 2002; Ylisastigui
et al., 2004; Archin et al., 2009; Archin et al., 2012;
Rasmussen et al., 2013, 2014; Wightman et al., 2013;
Mates et al., 2015; Søgaard et al., 2015; Banga et al.,
2016a; Kuai et al., 2018; Gunst et al., 2019; Yang et al.,
2018

HMTis: chaetocin, EPZ-6438, GSK-343, DZNEP,
BIX-01294, UNC-0638

Suv39H1, G9a, SMYD2 Friedman et al., 2011; Bouchat et al., 2012; Nguyen
et al., 2017

DNMTis: 5-AzaC, 5-AzadC DNMT1, 3a, 3b Bouchat et al., 2016

Immunomodulatory LRAs TLR agonists: TLR2 (Pam3CSK4), TLR7
(GS-9620), TLR8, TLR9 (MGN 1703) agonists
IL-15 agonist (ALT-803)
Immune checkpoint inhibitors: anti-PD-1
(nivolumab, pembrolizumab), anti-CTLA-4
(ipilimumab)

Schlaepfer and Speck, 2011; Novis et al., 2013;
Wightman et al., 2015; Jones et al., 2016; Offersen
et al., 2016; Tsai et al., 2017; Evans et al., 2018

latent HIV-1 and their diverse reactivation capacity, highlighting
the different determinant responsible for the heterogeneous
responses to LRAs. All these studies are summarized in Table 2.

HIV-1 Diversity Within the Latent and
Reactivated Reservoirs
Few studies so far have focused on investigating the contribution
of the viral diversity, the compartmentalization, the intact or
defective nature of the viral reservoir, and the origin of the
rebounding virus in latency reversal. A previous study in patients
who initiated ART during acute infection showed that proviral
sequences from PBMCs and GALT presented low level of
genomic diversity and divergence and remained unchanged after
treatment interruption (Lerner et al., 2011). Moreover, there
was no phylogenetic link between the rebounded plasma viral
sequences and those from the GALT proviral DNA, indicating
that HIV-1 cellular reservoirs in the GALT may be different from
those circulating in peripheral blood and might not contribute
to the rebounded plasma viremia (Lerner et al., 2011). Other
studies have supported the compartmentalization idea of the viral
population in the gut with divergent opinions (van der Hoek
et al., 1998; Lewis et al., 2013; Rozera et al., 2014). Depending
on the stage of HIV-1 infection, the diversity of HIV-1 RNA
appears lower in patients with early infection versus chronic

infection, and thus, compartmentalization is lost during chronic
infection (Rozera et al., 2014). However, other works have
supported other conflicting ideas with findings showing absence
of compartmentalization of HIV-1 between the gut and blood
(Avettand-Fenoel et al., 2011; Imamichi et al., 2011; Evering et al.,
2012), providing evidence for cross infection between these two
compartments (Chun et al., 2008).

HIV-1 sequence diversity has been reported to be either higher
(Klein et al., 2018) or similar (Piantadosi et al., 2019) to genital
tract compared to blood. Viral compartmentalization between the
blood and the male genital tract has been reported by multiple
studies including SIV-infected macaques (Delwart et al., 1998;
Paranjpe et al., 2002; Pillai et al., 2005; Coombs et al., 2006; Diem
et al., 2008; Houzet et al., 2018). More recently, patients under
suppressive ART exhibited a significant positive correlation
between viral diversity and genetic compartmentalization in the
blood and testes, but it was attributable to differential frequencies
of identical HIV-1 sequences between the two sites (Miller et al.,
2019). However, there was no evidence of compartmentalization
when only unique sequences per sites are considered, suggesting
that compartmentalization between blood and testes is linked to
clonal expansion (Miller et al., 2019).

HIV-1 phylogenetic analysis of post-mortem CSF, brain,
and spleen from HIV-1 patients under ART and presenting
dementia symptoms showed that HIV-1 strains from the blood
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TABLE 2 | The diverse responses of latently-infected cells to LRAs reflect the heterogeneity of the mechanisms driving HIV-1 latency.

Heterogeneity
determinants

References Cellular or tissue reservoir Methodology Heterogeneous responses to LRAs

LRAs Results illustrating heterogeneous responses to
LRAs

Virus genetic background Norton et al., 2019 Jurkat cells infected with HIV-1 WT
or mutated in ESEtat.

Flow cytometry PMA
JQ1
Panobinostat

Mutations altering viral gene splicing (tat mRNA) lead to
more silent phenotypes that are differently reactivated
by diverse LRAs.

Cell model Spina et al., 2013 J-Lat 6.3, 8.4, 11.1 and 5A8.
Primary T-cell models of HIV-1
latency.
Ex vivo T-cell cultures from HIV-1+

individuals.

Flow cytometry
QVOA

Anti-CD3 + anti-CD28,
PHA, PMA, prostratin,
bryostatin,
PMA + ionomycin, TNFα,
IL-7 + IL-2, SAHA, MRK-1,
MRK-11, HMBA, ionomycin

None of the in vitro T cell model alone is able to capture
accurately the ex vivo response characteristics of
latently-infected T cells isolated from HIV+ individuals.

Cell type Grau-Expósito
et al., 2019

Patient-derived diverse subsets of
memory CD4+ T cells.

Flow-based RNA FISH Romidepsin
Panobinostat
JQ1
Ingenol-3-angelate
Bryostain-1

Romidepsin acts on majority of the T-cell subsets (TCM,
TEM, TTM, and TNA) except for TSCM.
Ingenol reactivates majority of T-cell subsets (TNA,
TSCM, TCM, and TTM) except for TEM.
Panobinostat acts mainly on TCM and slightly on TEM

and TNA.
Bryostatin-1 reactivates very modestly TNA, TTD, and
TCM.
JQ1 acts very modestly on the majority of the subsets,
except for TSCM.
Romidepsin + ingenol is the most potent combination
generating p24 only in TCM.

Kulpa et al., 2019 Ex vivo T-cell cultures from HIV-1+

individuals and in vitro model of
HIV-1 latency LARA.

Flow cytometry
Cell sorting
TILDA

Bryostatin
IL-15
PMA + ionomycin

TCM cells differentiate into TEM cells when exposed to
LRAs.
The increase of TEM subset frequencies is predictive of
higher prevalence of cells carrying an inducible reservoir.

Baxter et al., 2016 Diverse subsets of patient-derived
CD4+ T cells.

Flow-based RNA FISH Bryostatin-1
Ingenol-3-angelate

Bryostatin-1 mainly reactivates TEM.
Ingenol reactivates TCM, TTM and TEM.

Kula et al., 2019 U1, THP89, CHME5 and J-Lat 9.2,
J-Lat A1 and A2.

Flow cytometry Disulfiram Disulfiram reactivates HIV-1 in 3 myeloid infected cell
lines but not in the infected T-lymphoid cell lines.

Latency molecular
mechanisms

Yukl et al., 2018 Patient-derived blood CD4+ T cells. RT-ddPCR Panobinostat
Romidepsin
Ingenol mebutate

Panobinostat and romidepsin increase full-length and
elongated transcripts, while ingenol mebutate increases
polyadenylated and multiply spliced transcripts.

Tissue reservoir Elliott et al., 2014 Patient-derived blood and rectal
CD4+ T cells.

Semi-nested RT-qPCR SAHA Fold change in CA-US HIV-1 RNA following SAHA is 5
times higher in CD4+ T cells from blood compared to
rectal tissue from HIV-1+ individuals.

Integration site of the
provirus and chromatin
context

Chen et al., 2017 Jurkat cells infected with B-HIVE. Sorting of the GFP+ cells
coupled with inverse PCR and
provirus mapping

PHA
SAHA

PHA and SAHA reactivate proviruses located at distinct
integration sites but with an increased frequency in the
proximity of enhancers for SAHA.

(Continued)
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TABLE 2 | Continued

Heterogeneity
determinants

References Cellular or tissue reservoir Methodology Heterogeneous responses to LRAs

LRAs Results illustrating heterogeneous responses to LRAs

Abner et al., 2018 Jurkat cells infected with
B-HIVE.

Sorting of the GFP+ cells
coupled with RT-qPCR and
provirus mapping

MMQO
JQ1
SAHA
Prostratin

BETi (MMQO and JQ1) target viruses integrated at distinct sites
as compared to those targeted by SAHA and prostratin.

Battivelli et al.,
2018

Primary CD4+ T cells infected
with dual-labeled HIV-1.

Cells sorting coupled with
semi-nested
ligation-mediated PCR and
provirus sequencing

Panobinostat
JQ1
Bryostatin-1
Anti-CD3 + anti-CD28

LRAs reactivate only 5% of latently-infected cells. The inducible
and non-inducible populations exhibit distinct chromatin
integration sites which were associated, respectively, with active
chromatin and heterochromatin with non-accessible region.

Patient to patient
and patient gender

Das et al., 2018 Patient-derived resting memory
CD4+ T cells.

EDITS Anti-CD3 + anti-CD28
SAHA

Women have reduced inducible RNA reservoirs compared to
men following treatment with anti-CD3 + anti-CD28.
ESR-1 antagonists potentiate HIV-1 reactivation by SAHA,
however, females show higher reactivation than males HIV-1+

individuals.

Darcis et al., 2017 Patient-derived CD8+-depleted
PBMCs and resting CD4+ T
cells.

Highly sensitive TaqMan
based RT-qPCR

JQ1 + bryostatin
JQ1 + ingenol-B
5-AzadC + panobinostat
5-AzadC + romidepsin

There is a positive correlation between the HIV-1 reservoir size
and the ex vivo capacity of HIV-infected patient cell cultures to
be reactivated by LRAs. However, some HIV-1+ patients
deviate from this linearity (for example, patients who, despite a
low reservoir, are more easily reactivated than many other
patients who have a larger reservoir).

Yukl et al., 2018 Patient-derived CD4+ T cells. RT-ddPCR JQ1, Disulfiram
Chaetocin, Panobinostat
Romidepsin, Ingenol mebutate,
Ingenol 3,20-dibenzoate

All LRAs exhibit inter-patient variability to reverse the blocks to
HIV-1 transcription with a very weak exception for romidepsin.

B-HIVE, barcoded HIV ensembles; CA-US RNA, cell-associated unspliced RNA; EDITS, envelope detection by induced transcription-based sequencing; LARA, latency and reversion assay; RNA FISH, RNA Fluorescence
In Situ Hybridization; RT-ddPCR, reverse transcription droplet digital polymerase chain reaction; TILDA, Tat/rev-induced limiting dilution assay; QVOA, Quantitative Viral Outgrowth Assays.
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and spleen are different from those in the brain and CSF
(Caragounis et al., 2008). A more recent study of env and
nef phylogeny on ART suppressed individuals confirmed the
presence of considerable viral diversity in the spleen and
lymph nodes (Nolan et al., 2018). However, there is no viral
compartmentalization between spleen and PBMCs in SIV-
infected and suppressed rhesus macaques (Siddiqui et al., 2019).

The comparison of latent HIV-1 from the blood and lymph
node CD4+ T cells from HIV-1 individuals undergoing ART
interruption, after TLR9 coadministration with ART, suggests the
same frequencies of intact proviruses in the blood and lymph
nodes and the fact that CD4+ T cells carrying latent viruses
circulate between the blood and lymphoid tissues. However,
there is no overlap between latent reservoirs and rebounded
virus, thereby supporting the idea that recombinations may
play a role in the emergence of the rebounded viremia
(Vibholm et al., 2019).

Time to ART from estimated date of infection as an early
ART initiation is associated with less molecular diversity in CSF
without impacting HIV-1 DNA provirus compartmentalization
in the CNS which occurs very early after infection (Schnell
et al., 2010; Sturdevant et al., 2015; Oliveira et al., 2017).
In the study of Oliveira et al. (2017), a higher diversity in
PBMCs than in CSF is reported. The compartmentalized HIV-
1 RNA in CNS is found to contribute to viral rebound within
the CSF in patients undergoing treatment interruption but is
phylogenetically distinct from those present in the paired blood
plasma (Gianella et al., 2016).

Most of the previous studies estimated that blood memory
CD4+ T cells are the source of viral rebound after ART
interruption or viral reactivation from latency. The first work
of Timothy Schacker and colleagues examined HIV-1 variants
by single-genome amplification and phylogenetic analyses in
matched lymph nodes, GALT biopsies and blood from HIV-1
suppressed individuals under longstanding ART after treatment
interruption (Rothenberger et al., 2015). The rebounded virus
after treatment interruption was found to be detectable in
latently-infected cells at multiple sites with a highly complex
and genetically diverse population of virions which bring out
the challenges facing the heterogeneity of HIV-1 reservoir
(Rothenberger et al., 2015). Another study of the effect of a
brief treatment interruption on the HIV-1 latent reservoir of
individuals who initiated ART during chronic infection showed
no alteration either in the size or in the diversity of the peripheral
reservoir and highlighted the substantial variability and the
prevalence of clonally-expanded viral populations (Salantes et al.,
2018). Interestingly, the group of Sarah Palmer indicated that
analytical treatment interruption (ATI) activated proviruses
with similar sequence between plasma and intestinal lamina
propria mononuclear cells (Barton et al., 2016), indicating that
intestinal HIV-1 reservoir is contributing to viremia following
ATI. A recent study by the group of Linos Vandekerckhove
confirmed the heterogeneous source of viral rebound from
distinct anatomical reservoirs in HIV-1 individuals undergoing
treatment interruption, showing that genetically-identical viral
expansions play a significant role in viral rebound (De Scheerder
et al., 2019). In a study presented by Oliveira et al. (CROI 2019,

Poster 327—Characterizing the HIV DNA reservoirs in whole-
body tissues in the “Last Gift” cohort), HIV-1 DNA was
detected in most body tissues with a nice distribution and
compartmentalization of HIV-1 reservoir between tissues from
the Last Gift cohort enrolling altruistic, terminally-ill persons
living with HIV-1. They have successfully sequenced env from 10
different tissues with many identical HIV-env sequences sampled
in multiple body tissues.

Some LRA interventions analyzed whether the increase of CA-
US HIV-1 RNA is related to limited or to broad activation of
HIV-1 proviruses. The single genome sequencing of viral RNA
transcripts showed that panobinostat and vorinostat activate
genetically diverse HIV-1 proviruses that are similar to that
observed during ATI but with a high percentage of defective viral
sequences (Barton et al., 2016). More precisely, TCM contributed
to the rebounded viremia, indicating once again the important
role of this subset in the persistence of latent HIV-1 (Barton et al.,
2016). Finally, romidepsin administration to HIV-1 individuals
under suppressive ART activates transcription from blood CD4+
T cells latent HIV-1 proviruses (Winckelmann et al., 2017).
Importantly, the viremia induced by romidepsin contained few
defective mutations and is characterized by low genetic diversity
(Winckelmann et al., 2017, 2018).

Together, these studies illustrate that cure strategies should
consider the complex and variable composition of the different
viral reservoirs, the replication-competent capacity, the diversity
and compartmentalization of HIV-1 reservoir, and the role of
cellular clonal expansion and cellular proliferation in promoting
HIV-1 persistence.

Weak Reactivation Potential of Latency
Reversing Agents and
Post-transcriptional Blocks
An important issue for the development of a more effective
“shock and kill” approach is to determine how effective LRAs are
in terms of full viral reactivation from all latently-infected cells
composing the reservoirs. Indeed, most of the in vivo reactivation
studies demonstrated a rather weak reactivation effect of LRAs,
i.e., an effect only on HIV-1 transcription with much less or no
effect on plasma HIV-1 RNA (Archin et al., 2012; Spivak et al.,
2014; Elliott et al., 2015). For instance, a recent clinical trial using
escalating doses of disulfiram demonstrated that even if all doses
produced an increase in the level of intracellular HIV-1 RNA,
only the highest dose increased plasma HIV-1 RNA level albeit
with very low effect (Elliott et al., 2015). Similar observations
have been reported for SAHA: i.e., weak effect at the level of
viral particle production in vivo as assessed by measurement of
plasma HIV-1 RNA (Archin et al., 2012). Mohammadi et al.
(2014) have shown in their primary CD4+ T cell models that
disulfiram and SAHA treatments increased viral transcription,
but failed to effectively enhance viral translation. In addition,
the group of Maria Buzon has very recently demonstrated that
a median of 16.28% of the whole HIV-reservoir exhibited HIV-1
transcripts induction after viral reactivation using various LRAs
and their combinations, but only 10.10% of these HIV-1 RNA+
cells produced viral p24 proteins (Grau-Expósito et al., 2019).
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Recent work by the group of Andrew Lever (Norton et al., 2019)
has demonstrated that inefficient splicing regulation may also
influence the action of LRAs. They studied the polymorphisms
occurring in a recently identified viral mRNA splicing regulatory
element (ESEtat) regulating tat mRNA splicing which results in
more silent phenotypes of the virus. Indeed, higher doses of
LRAs (PMA, JQ1, and panobinostat) were required to reactivate
silent viruses bearing the polymorphisms in ESEtat, reflecting
their lower rate of inducibility as compared to wild-type HIV-
1 (Norton et al., 2019). Therefore, different post-transcriptional
mechanisms including blocks to export and alteration of mRNA
splicing may be considered as druggable targets for a combined
approach of more potent latency reversal (Sarracino et al., 2018;
Norton et al., 2019).

Cell Model-Specific Effects of Latency
Reversing Agents
Latency reversing agents were shown to be cell model-specific
exhibiting diverse reactivation profiles across multiple HIV-1
latency model systems. A comprehensive study by Spina et al.
(2013) tested the potency of a panel of thirteen LRAs for
their ability to reactivate HIV-1 in several broadly used HIV-1
latency models (primary T-cell models, multiple J-Lat cell lines,
and ex vivo T-cell cultures derived from the blood of HIV-
1+ individuals) (Spina et al., 2013). They showed that PHA
was the only stimulus that uniformly reactivated latent HIV-
1 in all these cell models, although other LRAs exerted largely
heterogeneous responses among the various models (Spina et al.,
2013). Importantly, following LRA treatment, none of the in vitro
cell model systems could accurately capture the ex vivo response
characteristics of latently-infected T cells from patients.

Cell Type-Specific Effects of Latency
Reversing Agents
In addition to cell model-specific effects of LRAs, recent studies
demonstrated the cell type-specific effects of LRAs. For instance,
Baxter et al. (2016) highlighted heterogeneous responses of CD4+
populations to bryostatin and ingenol. The authors showed that
bryostatin induced HIV-1 expression in TEM cells but had limited
effect in TCM and TTM cells. While ingenol, on the other hand,
exhibited more similar reactivation effects among the different
memory T-cell subpopulations (Baxter et al., 2016). Similarly,
the group of Maria Buzon has very recently demonstrated
heterogeneous responses to LRAs of the latent reservoirs present
in different CD4+ T-cell subpopulations (Grau-Expósito et al.,
2019). Romidepsin and ingenol and their combination were
the most potent LRAs at reactivating HIV-1 in almost all
the subsets of CD4+ T cells by increasing, respectively, the
proportion of TCM, TEM, TTM, TNA, and TNA, TSCM, TCM,
TTM cells expressing HIV-1 RNA. Panobinostat successfully
reactivated HIV-1 only in TCM cells. Bryostatin-1 reactivated
very modestly some T-cell subsets, including TNA, TTD, and
TCM. Therefore, T-cell differentiation status may impact the
action of LRAs. Indeed, Kulpa et al. (2019) show in ex vivo
and in vitro models that differentiated phenotype of TEM cells
from that of quiescent TCM cells is associated with a potentiated

response to LRAs and to a highest level of inducible HIV-1
reservoir. Additionally, the effects may also be cell type-specific.
We have also recently demonstrated that disulfiram exhibited
limited reactivation spectra, being active only in myeloid-derived
HIV-1 latently infected cell lines (U1, THP89GFP monocytic, and
CHME-5/HIV-1 microglial cells) but not in Jurkat-based T-cell
lines (Kula et al., 2019). These heterogeneous cellular responses
to LRAs indicate that distinct and cell-type dependent molecular
mechanisms contribute to HIV-1 latency in diverse reservoirs.

Latency Molecular Mechanism-Specific
and Tissue-Specific Effects of Latency
Reversing Agent
It has recently been demonstrated by Yukl et al. (2018),
using an elegant transcriptional profiling approach, that LRAs
exhibit silencing mechanisms-specific effects. These authors
found that HDACis (panobinostat and romidepsin) and PKC
agonists (ingenol 3,20-dibenzoate and ingenol mebutate) exert
differential effects on the latency blocks in the blood latently-
infected CD4+ T cells (Yukl et al., 2018). More specifically,
HDACis increased total and elongated transcripts but had less
or no effect on polyadenylated and multiply spliced transcripts,
whereas ingenol mebutate strongly induced polyadenylated and
multiply spliced transcripts but had lesser effects on transcription
initiation and elongation (Yukl et al., 2018). These latter results
are in agreement with another study showing that romidepsin
administration after six doses of the therapeutic vaccine Vacc-
4x, in HIV-1 individual under suppressive ART, increased early
events in HIV-1 transcription (initiation and elongation) but
had less effect on later stages (completion, multiple splicing)
(Moron-Lopez et al., 2019). The differential effects of these LRAs
suggest that the mechanisms underlying the blocks to completion
and splicing may differ from those that mediate the blocks to
initiation and elongation. The group of Yukl compared CD4+
T cells from the blood and rectum tissue reservoirs using a
similar transcriptional profiling approach and found a much
greater block to HIV-1 transcription initiation in the rectum
compared to blood (Telwatte et al., 2018). Indeed, the ratio of
total to elongated transcripts was 6-fold lower in the rectum
CD4+ T cells, suggesting less of a block to HIV-1 transcriptional
elongation in rectal CD4+ T cells (Telwatte et al., 2018). In fact,
a multi-dose trial of SAHA has evidenced that the cell-associated
HIV-1 RNA in latently infected CD4+ T cells from the blood was
5-fold higher compared to CD4+ T cells from the rectal tissue
(Elliott et al., 2014), suggesting that the LRA-driven effects may
also be tissue-specific. Thus, further studies should investigate
whether gut cells differ from blood cells in their response to
LRAs in terms of HIV-1 transcript production and of cellular
gene expression.

Integration Site-Specific Effects of
Latency Reversing Agents
The group of Guillaume Fillion demonstrated that different
LRAs reactivate different subsets of latent proviruses (Chen
et al., 2018). Using a method called B-HIVE to map the
chromosomal locations of individual proviruses, these authors
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revealed in Jurkat cells that responses to LRAs are also viral
integration site-specific. They found that PHA and SAHA
reactivated proviruses inserted at distinct genomic locations,
suggesting that the insertion context of HIV-1 is a critical
determinant of the viral response to LRAs (Chen et al., 2018).
Using the same B-HIVE technology, the groups of Albert
Jordan and Guillaume Fillion demonstrated that MMQO (an
LRA which acts as an I-BET) and JQ1 reactivate latent HIV-
1 proviruses integrated at distinct sites from those proviruses
targeted by SAHA and prostratin (Abner et al., 2018).
Interestingly, Battivelli et al. (2018) demonstrated that only
less than 5% of latently-infected primary CD4+ T cells are
reactivated by LRAs. By further sequencing analysis, these
authors showed the preference toward integration events in
active chromatin sites for the reactivable cell population,
while these regions were significantly disfavored in the non-
reactivable group, highlighting that the role of chromatin
environment is an important determinant of LRA effectiveness
(Battivelli et al., 2018).

Patient-Specific and Sex-Specific Effects
of Latency Reversing Agents
Many other determinants may also be responsible for the
heterogeneous reactivation profile of LRAs. Patient-dependent
effects of LRAs were reported. Indeed, viral productions evident
in some patients but not in others were observed in all
reactivation clinical trials (Spivak et al., 2014; Elliott et al., 2015;
Leth et al., 2016; Tapia et al., 2017). Additionally, in our previous
reactivation studies, we demonstrated patient-specific variations
in terms of reactivation capacity of their ex vivo cell cultures
following treatments with various LRAs (Darcis et al., 2015,
2017; Bouchat et al., 2016). Indeed, we established a positive
correlation between the size of the HIV-1 reservoirs and the
ex vivo capacity of HIV-1-infected patients’ cell cultures to be
reactivated by LRAs (Darcis et al., 2017), but we identified HIV-
1+ patients who deviated from this linearity relative to their
corresponding HIV reservoir size (Darcis et al., 2017), indicating
that the reservoirs size is one determinant of the cell capacity
to produce virus but that this parameter alone is not sufficient.
The patient-dependent heterogeneity in the responses to LRAs
could be explained by patient characteristics such as genetic
background, time to treatment initiation, duration and type of
therapy and also by the gender-specificity, as recently proposed
by the team of Jonathan Karn (Das et al., 2018). Sex-based
differences in HIV-1 reservoir activity is characterized by a higher
cell-associated HIV-1 RNA, higher plasma HIV-1 RNA, higher
T-cell activation, and PD-1 expression in men compared to
women (Scully et al., 2019). The group of Jonathan Karn has
shown that the estrogen receptor-1 (ESR-1) is a key regulator of
HIV-1 latency (Das et al., 2018). More specifically, antagonists
of ESR-1 activate latent HIV-1 proviruses and potentiate HIV-1
reactivation by LRAs such as SAHA, TNFα, and IL-15, while ESR-
1 agonists potently block HIV-1 reactivation. Despite a reduced
inducible reservoir compared to men, women showed much
higher levels of inhibition in response to TCR stimulation in the
presence of ESR-1 agonists but exhibited a higher reactivation

in response to ESR-1 antagonists when combined with SAHA
than the group of male HIV+ individuals (Das et al., 2018).
The circadian rhythm is an additional biological process that can
affect HIV-1 transcription and reactivation (Chang et al., 2018).
The circadian rhythm has been first suggested in the clinical
trial testing short term administration of disulfiram (Elliott
et al., 2015) as a parameter influencing HIV-1 transcription.
The authors find an unexpected large variation in pre-dosing
CA-US HIV-1 RNA which was statistically significantly higher
immediately prior to the first dose of disulfiram than at the
two previous time points without changes in HIV-1 DNA or
plasma HIV-1 RNA (Elliott et al., 2015). Indeed, Sharon Lewin
and colleagues have subsequently demonstrated a significant
time-dependent variation in CA-US HIV-1 RNA in CD4+ T
cells from HIV+ individuals on suppressive ART, a variation
which is modulated by circadian regulator factors driving
transcription from the viral LTR (Chang et al., 2018). Thus,
in ex vivo studies, the time of blood collection could affect
LRA reactivation potency and should be considered to improve
latency reversal.

The multiplicity of mechanisms that regulate HIV-1 latency
and the diversity of factors responsible for the heterogeneity of
the latent HIV-1 reservoir most likely vary from one patient
to the other and even from one cell to the other in a single
patient. Indeed, several single-cell studies reported cell-to-cell
variability of the latent reservoir (Baxter et al., 2016; Yucha
et al., 2017) and the heterogeneity of cellular response to LRAs
(Passaes et al., 2017). A recent single-cell transcriptome profiling
study from Angela Ciuffi laboratory has demonstrated that
latently-infected cells are transcriptionally heterogeneous and
can be separated into two different cell clusters based on their
cellular states (Golumbeanu et al., 2018). These distinct states
correlated with the susceptibility to cellular activation and HIV-
1 reactivation, highlighting that the cellular environment could
also contribute to the success of HIV-1 reactivation strategies
(Golumbeanu et al., 2018).

CONCLUSION

In the frame of the “shock and kill” strategy, clinical trials
using LRAs have so far produced unconvincing results. This
strategy faces multiple barriers which prevent the complete
eradication of replication competent viruses of the HIV-1
reservoir and must, therefore, be optimized. Targeting and
reactivating latent cells is challenging due to the heterogeneous
nature of the viral reservoirs. Recent studies demonstrating
diverse responses of infected cells to LRAs point to their weak
effect (Archin et al., 2012; Spivak et al., 2014; Elliott et al.,
2015) and highlight the diversity of determinants responsible for
the reservoirs’ heterogeneity that were demonstrated so far to
be virus genetic background-(Norton et al., 2019), cell model-
(Spina et al., 2013), cell type-(Baxter et al., 2016; Grau-Expósito
et al., 2019; Kula et al., 2019), silencing mechanism-(Elliott
et al., 2014; Yukl et al., 2018), tissue reservoir-(Elliott et al.,
2014; Telwatte et al., 2018; Yukl et al., 2018), integration site-
(Chen et al., 2017; Abner et al., 2018; Battivelli et al., 2018),
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patient-(Darcis et al., 2017; Yukl et al., 2018), and gender-
(Das et al., 2018) specific. In addition, some studies demonstrate
a heterogeneous effect of LRAs on NK cells (Garrido et al.,
2016) and cytotoxic T-cell lymphocyte (Walker-Sperling et al.,
2016) activity with conflicting observations, suggesting either an
immunosuppressive effect or a reduced impact of LRA activity
on cells sensing HIV-1 reactivation (Archin et al., 2012; Jones
et al., 2014; Clutton et al., 2016; Walker-Sperling et al., 2016;
Desimio et al., 2017, 2018). Moreover, prolonged ART treatment
is associated with a significant reduction in the frequency of
HIV-1-specific CD8+ T-cells (Gray et al., 1999; Casazza et al.,
2001). Thus, as demonstrated by the group of Robert Siliciano,
stimulating HIV-1-specific CTLs prior to reactivating latent HIV-
1 should be considered for a successful eradication in future
clinical trials (Shan et al., 2012). Another determinant of the
effectiveness of a given LRA in reactivating and purging the
viral reservoirs is its ability to efficiently induce latent HIV-1 by
targeting not only transcriptional but also post-transcriptional
mechanisms that need to be considered for a combined approach
of more potent latency reversal. Additionally, an effective LRA
needs to penetrate the multitude of HIV-1 tissue reservoirs
and sanctuary sites. For instance, it has been shown that
panobinostat did not sufficiently penetrate the central nervous
system (Rasmussen et al., 2015) and romidepsin’s concentration
in CSF of non-human primate was only 2% of the level found in
plasma (Berg et al., 2004). Consequently, ensuring a better tissue
penetration of LRAs by enhancing the drug delivery system,
and most importantly strengthening the killing of the LRA-
reactivated cells by stimulating CD8+ T responses are essential
for the eradication strategy. Rational design of LRAs considering
all these determinants is not possible at the moment, due to
the lack of knowledge of all the cellular factors and pathways
impacting HIV-1 gene expression and leading to productive viral
replication. New approaches including single-cell technologies
should be considered to understand why some cells respond to
LRAs while others do not as this will be essential for improving
the “shock and kill” strategy and hopefully reaching a cure.
Moreover, due to the challenges that hinder the effectiveness of
the “shock and kill” approach, some attention is also given to
strategies aimed at completely suppressing HIV-1 transcription
named the “block and lock.” In this context, the Tat inhibitor
didehydro-cortistatin A (dCA) has shown its ability to inhibit
ex vivo residual viral replication under ART and to prolong the

time to viral reactivation after treatment interruption (Kessing
et al., 2017), but some in vitro resistance mutations to dCA were
reported (Mousseau et al., 2019). Currently, several drugs are
identified for their ability to be used as LPA (Latency Promoting
Agents) to ensure a functional cure (Suzuki et al., 2013; Wan
and Chen, 2014; Vranckx et al., 2016; Hayashi et al., 2017; Jean
et al., 2017; Debyser et al., 2018). Undeniably several strategies
must be exploited in order to reach a functional cure. Dealing
with the residual viremia and the contribution of ongoing viral
replication in the reservoir’s replenishment is one of the major
issues. If one of these strategies is promising its efficacy in
clinic will be a long process and should, therefore, lead to the
formation of a deep latency state preventing viral rebound after
ART interruption.
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