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Microbial genome-wide association studies (mGWAS) are a new and exciting research
field that is adapting human GWAS methods to understand how variations in microbial
genomes affect host or pathogen phenotypes, such as drug resistance, virulence,
host specificity and prognosis. Several computational tools and methods have been
developed or adapted from human GWAS to facilitate the discovery of novel mutations
and structural variations that are associated with the phenotypes of interest. However,
no comprehensive, end-to-end, user-friendly tool is currently available. The development
of a broadly applicable pipeline presents a real opportunity among computational
biologists. Here, (i) we review the prominent and promising tools, (ii) discuss analytical
pitfalls and bottlenecks in mGWAS, (iii) provide insights into the selection of appropriate
tools, (iv) highlight the gaps that still need to be filled and how users and developers
can work together to overcome these bottlenecks. Use of mGWAS research can inform
drug repositioning decisions as well as accelerate the discovery and development of
more effective vaccines and antimicrobials for pressing infectious diseases of global
health significance, such as HIV, TB, influenza, and malaria.

Keywords: microbial genome-wide association studies, microbial GWAS tools and methods, variant analysis,
genotype-phenotype association, NGS analysis, SNPs

INTRODUCTION

Microbial genome-wide association studies (mGWAS) are a new area of research aimed at
identifying genetic variants in microbial genomes that are associated with host variation in or
microbe phenotypes, for example genetic variation affecting phenotypes such as carriage (Lees et al.,
2017) in humans and virulence (Laabei, 2014) in microbes. It has also been applied to determine
genes responsible for species-specific phenotypes in Helicobacter pylori (Dutilh et al., 2013) and to
evaluate interactions between host and microbe genomes (Bartha et al., 2013).

Successful applications of mGWAS include identifying genetic determinants of pyomyositis in
Staphylococcus aureus (Young et al., 2019) which revealed that the presence of Panton-Valentine
leucocidin (PVL) locus increased the odds of pyomyositis. In another study, (Lees et al., 2019)
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showed that variations in Streptococcus pneumoniae explain large
amounts of the invasiveness potential but have no effect on
severity of pneumococcal meningitis. Furthermore, mGWAS was
used by Davies et al. (2019) to determine vaccine candidate
coverage from 2083 Group A Streptococcus (GAS) genomes, while
Galardini et al. (2019) used it to characterize genetic determinants
of extra-intestinal virulence in Escherichia coli.

Even in its nascency, mGWAS have played a critical role in
public health microbiology. Of particular interest is antimicrobial
drug resistance which poses a significant threat to public health,
especially due to the emergence of several multidrug-resistant
strains worldwide (Aun et al., 2018; Wozniak et al., 2014; Frost
et al., 2019). mGWAS has been crucial in identifying novel
genomic markers responsible for drug resistance. In a recent
study, Farhat et al. (2019) estimated heritability of resistance
phenotype in 1526 Mycobacterium tuberculosis isolates to 11
anti-TB drugs and reported 13 non-canonical loci that were
associated with resistance. Another study (Earle et al., 2016)
used mGWAS to detect genes and genetic variants associated
with resistance to 17 antimicrobials in 3,144 isolates from four
taxonomically diverse and recombining bacterial species. The
authors also confirmed a rise of over 20 times in antimicrobial
resistance per drug in the M. tuberculosis tree, through frequent
convergent evolution (Earle et al., 2016). Furthermore, mGWAS
has been used to identify novel and known markers associated
with HIV drug resistance (Power et al., 2016a) and genetic
loci in Plasmodium falciparum associated with resistance to
several antimalarial drugs (Wang et al., 2016). Understanding
the genetic architecture of a particular drug resistance phenotype
makes it possible to explore other genetically correlated (or anti-
correlated) phenotypes and thus inform treatment, drug design
and repositioning decisions.

In spite of the success of mGWAS, its proliferation has
remained low due to various challenges. This is evident from
the almost stagnant rate of increase in mGWAS publications
compared to hGWAS, which is now a fully developed research
field with over 35,000 publications (Figure 1). In order to unlock
the full potential of mGWAS, we need to understand the current
state of the field and shed light on the bottlenecks that have
stifled progress.

Microbial genomes vary widely both in terms of gene
content and sequence diversity. This plasticity hampers the
use of traditional single nucleotide polymorphism (SNP)-based
methods for identifying all genetic associations with phenotypic
variation (Lees et al., 2016). Early GWAS relied heavily on
genotyping chips containing a large number of synthetic, single-
stranded DNA oligonucleotides (“oligos”) functioning as DNA
probes (Kwok and Chen, 2003; Carr, 2016). Because of the high
plasticity of the genomes, the chips quickly became obsolete
(Mueller, 2004). These chips also did not allow for a fine-scale
correction of population structure. Genotyping chips are both
expensive and restricted to mutations present in the reference
genome used at its creation (Hugerth and Andersson, 2017; Read
and Massey, 2014). As a result, only a few organisms like Neisseria
meningitidis (Bille et al., 2005, 2008), Mycobacterium tuberculosis
(Troesch et al., 1999) and P. falciparum (Jacob et al., 2014) with
highly conserved genomes, very low rates of mutation (Dutilh

et al., 2013) and that are of high global health significance were
genotyped. These bottlenecks have primarily been resolved by
the advent of next-generation sequencing (NGS) that offers a
relatively cheap and fast solution to produce whole genomes at
an unprecedented rate (Mardis, 2008; Schuster, 2008), paving the
way for novel biomarker discoveries.

The need for more specialized methods has been another
major bottleneck. Early studies adopted tools developed for
human studies, such as PLINK (Purcell, 2007) and FaST-LMM
(Lippert, 2011), to analyze microbial genomes. However, it soon
became apparent that the underlying assumptions behind these
tools, such as ploidy, multiple testing and population structure
correction methods and tests for association (Farhat et al.,
2013) were not directly applicable. For example, in a study
by Sheppard et al. (2013) to identify factors responsible for
adaptation of Campylobacter to cattle and chickens, they had
to create a novel method as naively applying the Fishers exact
tests would result in many spurious associations. Similarly, in
a separate study by Farhat et al. (2013) to determine genes
under positive selection in M. tuberculosis (MTB), the haplotype-
based tests could not be used as diversity in MTB mainly
arises from clonal expansion and homologous recombination
(Achtman, 2004) which complicate phylogenetic reconstruction.
Instead, they developed PhyC, an independent test that leverages
evolutionary convergence. PhyC detected 50 significant SNPs
compared to PLINK’s 133 clearly highlighting the need to adapt
GWAS methods to microbial genomes.

Microbial genomes further reveal a range of peculiarities that
demand major feature enhancements to existing tools and new
methods. For example, they are highly affected by within-host
diversity (Power et al., 2016b) and phenotypic heterogeneity
among others that warrant the need for new methods in order
to avoid spurious results.

Several tools and methods have been developed to address
these bottlenecks. To improve their usability, a number of them
have been combined into automated workflows (Lees et al.,
2018). Statistical and graphical overlays have also been developed
to aid the interpretation of results (Jaillard et al., 2018). This
enables researchers to choose the options that are suitable for
their research and conform to their technical competencies
and analytical platforms. As such, we anticipate an increase
in mGWAS research that can then inform the discovery and
development of more effective vaccines and antimicrobials for
pressing infectious diseases of global health significance, such as
HIV, TB, influenza, and malaria.

With the growing number of disparate tools available to
perform mGWAS analyses, the choice of tool, methods or
workflows presents a major challenge to biologists as there
is no theoretical review of the features of existing tools or
comparative analysis currently available. In this review, we
discuss the prominent and promising tools and the progress
that has been made in addressing the methodological challenges
affecting microbial GWAS (summarized in Table 1). We also
highlight the pitfalls and analytical considerations that need to be
made to ensure successful microbial GWAS and the gaps that still
need to be filled (Table 2) and how developers can work together
to address these pitfalls and bottlenecks.
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FIGURE 1 | The proliferation of PubMed-indexed articles on human and microbial genome-wide association studies, 1993–2019. The figure represents results of
PubMed searches for “Human Genome-wide Association Studies” and “Microbial Genome-wide Association Studies.” Trends show that the steady increase in
human GWAS publications has not been mirrored in microbial GWAS. 2019 shows publications only up until end of November.

GENETIC VARIATION IN MICROBES

Unlike human genetics, where the primary type of variation
analysed is bi-allelic SNP variation (Wang et al., 1998),
several forms of genetic variation, ranging from SNPs to the
presence/absence of entire genes (Power et al., 2016b) occur in
microbes (Dutilh et al., 2013; Read and Massey, 2014), implying
that the expression of the phenotype of interest can be influenced
by one or more of these variations. Prior knowledge of the type of
variation driving the phenotype of interest in an organism is key
in selecting the appropriate tool and method to use in mGWAS.
However, sometimes the main type of variation responsible
for a phenotype is not known a priori. In such instances, we
recommend an agnostic approach, where all forms of variation
are tested for. HAWK enables the mapping of associations to
different kinds of variants using the same pipeline (Rahman et al.,
2018). The three major forms of variation are:

(a) Single Nucleotide Polymorphisms (SNPs) and INDELs-
which are point mutations or small insertions and deletions
(indels) that occur within the genome of an organism
(Dutilh et al., 2013) during cell duplication or transcription
for viruses and bacteria. They are typically 1 to 10000
base pairs long (Weber et al., 2002; Mills et al., 2006)
and can be identified by the alignment of the DNA
sequence of an organism to a high-quality reference of
the same strain. Microarray genotyping chips and variant
calling pipelines, such as GATK (DePristo et al., 2011)
and SAMtools (Li et al., 2009), are used to determine SNPs
and INDELs which are then tested for association with
phenotypes of interest.

(b) Gene presence-absence occurs when entire genes are
lost or gained. Several processes are responsible for
gene presence-absence. These include speciation events
(Fitch, 1970) horizontal or lateral transfer of mobile
genetic elements (MGEs) such as transposons and
insertion sequences (IS). In bacteria, it can also be
attributed to infection with bacterial phages or viruses
and acquisition of plasmids or integrative and conjugative
elements (ICEs) (Sobecky and Hazen, 2009; Partridge
et al., 2018; Langille et al., 2010). MGEs and phages
play a critical role in the interaction of the organism
with its environment, for example encoding genes
necessary to cope with adverse conditions or confer
pathogenicity (Schmidt and Hensel, 2004). The differential
expression (presence-absence) of homologous genes
is a common approach applied to determine genes
responsible for a given phenotype in microbial GWAS.
In this approach, the core genome or genes shared by
all closely related organisms, usually at the species level,
are eliminated and the unique genes only present in a
given species are tested for significant association to the
phenotype of interest.

(c) Copy Number Variations (CNVs) and Sequence
Inversions (SIs). They contribute to adaptation
and phenotypic variation of microbes (Kirkpatrick
and Barton, 2006). CNVs and SIs, like gene
presence-absence, can result from acquisition of
additional copies of a gene from mobile genetic
elements or large-scale deletions or duplications of
sections of the genome. They can also arise from
speciation events.
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TABLE 1 | Summary of details of prominent and promising bioinformatics tools and pipelines available for microbial GWAS.

Software Primary
Usage

GUI References Implemen-
tation

Analysis Statistical
Methods

Input Output User Support and
documen-
tation

Organism
used for
testing
(Sample Size)

Types of
phenotypes
the tool can
test

Phenotypes
Tested during
development

CCTSWEEP
and VENN

Commandline No Habib et al.,
2007

Shell Scripting ◦ SNPs Correlations Apomorphy lists
output by
popular
phylogenetic
analysis
packages PAUP,
POY or TNT

Table of
significant
SNPs

Not available B. anthracis (15) Binary ◦ Susceptibility

GWAMAR Commandline No Wozniak et al.,
2014

Python ◦ SNPs, genes ◦ Mutual
information
◦ Odds ratio
◦ Hypergeometric

test
◦ Weighted

support

A set of
mutation profiles
and drug
resistance
profiles
to associate i.e.,
list of strains,
phylogenetic
tree, drug
resistance
profiles, list of
point mutations,
gene profiles
and gold assocs
list e.g., from
TBDReamDB

Table of
significant
SNPs
mutations with
information on
drug name,
affected genes
and methods
used to
determine
mutation

Manual and
presentation at
http:
//bioputer.mimuw.
edu.pl/gwamar/
software.html

M. tuberculosis
(173) (1398)
S. aureus

binary ◦ Drug
resistance

SEER Commandline No Lees et al.,
2016

C ++ ◦ k-mers, SNPs,
genes

k-mer counting
◦ Large studies -

distributed
string mining
(DSM)
◦ Samples less

than 5000 -
fsm-lite (single
core)
◦ Old datasets

and not
memory, DSK
Fixed effects
generalized
linear regression
including FIRTH
regression

Raw fastq or
assembled
whole genomes

Association file
with p-values,
effect-size,
direction and
standard error

Extensive
documentation at
https://github.com/
johnlees/seer/wiki/
Usage

S. pneumoniae
(3069)
S. pyogenes
(675)

Binary ◦ Drug
resistance
◦ Invasive disease
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TABLE 1 | Continued

Software Primary
Usage

GUI References Implemen-
tation

Analysis Statistical
Methods

Input Output User Support and
documen-
tation

Organism
used for
testing
(Sample Size)

Types of
phenotypes
the tool can
test

Phenotypes
Tested during
development

Scoary Commandline Yes Brynildsrud
et al., 2016

Python ◦ Tests clusters
of ortholog
genes (COGS)

◦ Fishers exact
test, binomial
test and
permutation test

Gene presence
absence file
from Roary and
phenotype file

List of genes
sorted by
strength of
association per
trait

Extensive
documentation on
the github repo
https://github.com/
AdmiralenOla/
Scoary

S. epidermidis
(50)
S. pneumoniae
(200)

binary,
Categorical

◦ Linezolid
resistance

bugwas Commandline,
Text Editors

No Earle et al.,
2016

◦ R-package for
population
adjustment
◦ R, Python,

C ++ end-to-
end GWAS
pipeline

◦ k-mers, SNPs,
genes

Linear mixed
model
X2 test for
k-mers

Raw reads in
Bam or Fasta
format

List of top
significant
k-mers
annotatable by
blast

https://github.com/
janepipistrelle/
bacterial_GWAS_
tutorial/blob/
master/tutorial.rmd

M. tuberculosis
(1735)
S. aureus (992)
E. coli (241) and
K. pneumoniae
(176)

Binary,
Categorical
and continous

◦ Drug
resistance

TreeWAS Commandline,
Text Editors

No Collins and
Didelot, 2018

R Package ◦ k-mers, SNPs,
genes

◦ 3 Association
tests i.e.,
Terminal,
Simulteneous,
and subsequent

◦ A phylogenetic
tree infered by
recombination
aware approach
of class phylo
(optional)
◦ A genetic

dataset (matrix
containting
binary genetic
data)
◦ A phylogenetic

variable (factor
or vector
containing
binary or
continous
variable
encoding)
◦ An ancestral

state
reconstruction
of the genotype
(matrix -
optional)
◦ An ancestral

state
reconstruction
of the
phenotype
(vector or factor
- optional)

Set of
significant loci
identified data
either used by
or generated
within treeWAS
including the
ancestral state
reconstruction
data

◦ R viginette
https://github.com/
caitiecollins/
treeWAS/wiki

N. meningitidis
(171)

Binary,
Categorical
and continous

◦ Drug
resistance
◦ Invasive disease

(Continued)

Frontiers
in

M
icrobiology

|w
w

w
.frontiersin.org

5
January

2020
|Volum

e
10

|A
rticle

3119

https://github.com/AdmiralenOla/Scoary
https://github.com/AdmiralenOla/Scoary
https://github.com/AdmiralenOla/Scoary
https://github.com/janepipistrelle/bacterial_GWAS_tutorial/blob/master/tutorial.rmd
https://github.com/janepipistrelle/bacterial_GWAS_tutorial/blob/master/tutorial.rmd
https://github.com/janepipistrelle/bacterial_GWAS_tutorial/blob/master/tutorial.rmd
https://github.com/janepipistrelle/bacterial_GWAS_tutorial/blob/master/tutorial.rmd
https://github.com/janepipistrelle/bacterial_GWAS_tutorial/blob/master/tutorial.rmd
https://github.com/caitiecollins/treeWAS/wiki
https://github.com/caitiecollins/treeWAS/wiki
https://github.com/caitiecollins/treeWAS/wiki
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fm
icb-10-03119

January
28,2020

Tim
e:16:47

#
6

S
an

etal.
M

ethodologicalA
dvancem

ents
in

M
icrobialG

W
A

S

TABLE 1 | Continued

Software Primary
Usage

GUI References Implemen-
tation

Analysis Statistical
Methods

Input Output User Support
and documen-
tation

Organism
used for
testing
(Sample Size)

Types of
phenotypes
the tool can
test

Phenotypes
Tested during
development

Phenotype
Seeker

Commandline No Aun et al., 2018 Python ◦ k-mers Welch’s
two-sample
t-test for
continous
phenotype
and chi-
square
test if binary
Then a
logistic or
regression
model is built.
“Phenotype-
Seeker
prediction” uses
the regression
model
generated by
“PhenotypeSeeker
modeling” to
conduct fast
phenotype
predictions on
input samples

Text file
containing tab
separated lists
of;

(1) sampleID’s,
(2) sample

FastA/FastQ file
addresses and

(3) sample
phenotype
values (one or
more column).

Phenotype
Seeker output
gives the
regression
model in a
binary format
and three text
files, which
include the
following:

(1) the results of
association tests
for identifying
the k-mers most
strongly
associated with
the given
phenotype,

(2) the coefficients
of k-mers in the
regression
model for
identifying the
k-mers that
have the
greatest effects
on the
outcomes ofthe
machine
learning model

(3) a FASTA file
with phenotype-
specific k-mers,
assembled to
longer contigs
when possible,
to facilitate an
user to perform
annotation
process, and

(4) a summary
ofthe regression
analysis
performed

https://github.
com/
bioinfo-
ut/Phenotype
Seeker

P. aeruginosa
(200)
C. difficile (459)
and
K. pneumoniae
(167)

Binary and
continous

◦ Drug
resistance
◦ Human carriage

status
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TABLE 1 | Continued

Software Primary
Usage

GUI References Implemen-
tation

Analysis Statistical
Methods

Input Output User
Support and
documen-
tation

Organism
used for
testing
(Sample Size)

Types of
phenotypes
the tool can
test

Phenotypes
Tested
during
development

Kover Commandline No Drouin et al.,
2016

Python and
Cython

◦ k-mers Set Covering
Machine
(SCM)

Kover matrix-
generated
using cover
scripts

Multivariate
machine
learning
models

◦ installation: http:
//aldro61.
github.io/
kover/doc_
installation.
html
◦ Tutorials:

http:
//aldro61.
github.io/
kover/doc_
tutorials.html
◦ http:

//aldro61.
github.io/
kover/

C. difficile (470),
M. tuberculosis
(110),
P. aeruginosa
(390) and S.
pneumoniae
(616)

Binary ◦ Drug
resistance

PySEER Commandline No Lees et al.,
2018

Python ◦ k-mers,
SNPs, genes

Fixed effects
generalized
linear
regression
including
FIRTH
regression

K-mers,
SNPs and
INDELs,
COGs in VCF
or Rtab
formats

Annotated
k-mers with
gene related
information in
QQ,
manhattan
and bi-plots)

Extensive
documentation
and tutorial at
https:
//pyseer.
readthedocs.
io/en/master/

S. pneumoniae
(3069)
S. pyogenes
(675)

Binary ◦ Penicillin
resistance

Magnamwar Commandline,
Text Editors

No Sexton et al.,
2018

R Package ◦ Gene
presence-
absence

Wilcoxon
test, mixed
and survival
analysis

Core
functionality
requires a file
that defines
the
orthologous
gene (OG)
sets and a file
containing
the
phenotype
measurements
and metadata
for the
statistical
models.
Optional
functions
require
additional
datasets

Produces an
R matrix
containing
the gene
cluster
identifier,
p-values,
effect size,
and
presence/
absence
pattern for
each gene

Detailed
example and
Vignettes on
CRAN and in
the package,
contact
information
available on
CRAN

D. melanogaster binary ◦ Triacylglyceride
phenotypes
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PHENOTYPES DEFINITION

Phenotypes are the observable characteristics of microbes
as a result of the interaction of their genotypes with the
environment (Chibucos et al., 2014). Such characteristics include
susceptibility to antimicrobials, virulence, minimum inhibitory
concentrations (MICs) and host susceptibility to infection among
others (Dutilh et al., 2013). Brbić et al. (2016) classified
microbial phenotypes into two broad categories i.e., (a) metabolic
capabilities, morphology, growth conditions and b) the ability
to colonize certain ecological niches. They further collated over
424 traits associated with microbes. Phenotypes can also be
classified by measurement as binary, categorical and continuous
for the purpose of statistical analysis. Continuous traits may be
converted into categorical values. This however, can result in
ambiguous categories such as “maybe” or “mild,” which may be
safely discarded or redefined as “yes or no” to increase statistical
power during analysis (Dutilh et al., 2013). It should be noted that
converting continuous phenotypes to categorical can be costly
in terms of statistical power to detect significant associations
(Altman and Royston, 2006; Power et al., 2016b) and therefore
should be done with caution.

INTERPRETING GWAS RESULTS

The main output from conducting a traditional SNP-based
mGWAS is the association file which spells out the position
of the allele, allele p-values, the SNPs (reference and alternate),
minor allele frequencies (MAF), effect size (beta for quantitative
traits/odds ratio for binary traits) and standard error (SE).
To help with interpretation, results are normally visualized
using a Manhattan plot whose x-axis is the SNP position
and y-axis negative log10 p-value or -log(p-value) of the SNP.
A horizontal line in the plot delineates genome-wide significance
threshold. All sample p-values above the line are considered
statistically significant. A single SNP passing the significance
threshold is often considered a genotyping error owing to
the expectance of linkage disequilibrium (LD) (see Figure 2
Part 1b). To compare the distribution of the -log(p-value)s
observed in the study and expected distribution under the
null hypothesis, a quantile-quantile (QQ) plot is used. From
the QQ plot, population stratification or polygenicity can be
inferred (Power et al., 2016b). The output from methods using
k-mers, unitigs, and gene presence-absence matrices is slightly
different with additional fields representative of the specific
method used. Idury and Waterman (1995) and Muggli et al.
(2017) graphs provide a suitable solution for visualization of
unitigs (Figure 2).

ANALYTICAL CONSIDERATIONS AND
PITFALLS

Previous research describes in detail the important analytical
considerations for microbial GWAS (Dutilh et al., 2013;
Chen and Shapiro, 2015; Power et al., 2016b). Here, we provide
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TABLE 2 | Current progress in overcoming important microbial GWAS bottlenecks and pitfalls. Most tools require additional packages or support from external software and advanced user knowledge to perform
advanced analyses.

Software Multiple Testing and
genome-wide
significance

Population Structure
Adjustment

Recombination Rate
Adjustment

Within-host Diversity
Adjustment

Polygenicity or
Multiple SNP effects

Epistasis Multi-allelic SNPs

CCTSWEEP and VENN NA Phylogenetic inference No No No No No, bi-allelic

GWAMAR NA Phylogenetic inference No No No No Yes*

SEER ◦ Bonferroni correction
◦ Permutation testing

Constructs distance
matrix from a
subsample of random
k-mers on which
multidimensional
scaling is performed.

Yes Partially* Yes Yes Yes

Scoary ◦ Bonferroni and
Benjamin-Hochberg
adjustments for multiple
comparisons

Uses pairwise
comparisons to detect
and correct for
population structure

No No Partially* No NA

BUGWAS Bonferroni correction Principle components No Yes Yes Yes Yes

TreeWAS ◦ Implements Bonferroni
and FDR

Phylogenetic inference Yes No Yes Partially Yes

Phenotype Seeker Not specified ◦ Uses distance matrix
for weighting of strains
to account for
population structure.
◦ Matrix generated by

Mash, an alignment
free k-mer based
method. Weights
calculated using the
Gerstein, Sonnhammer
and Cothia methods.

Not specified Not specified Not specified Not specified Not Specified

Kover NA No population structure
correction

No No Yes Yes Yes

PySEER ◦ Determine threshold
through hashing k-mers
(counting unique
k-mers

◦ Fixed effects from multi
dimensional scaling of
pairwise distance
matrix included in
regression
◦ High quality phylogeny

(The phylogeny is used
in a manner analogus
to phylogenetic
regression)
◦ LMM using random

effects implemented in
FaST-LMM
◦ Lineage effects based

on bugwas procedure

Yes Partially* Yes Yes Yes
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a succinct overview to guide the researcher’s choice of tool to use
and highlight the gaps that still need to be filled through current
and future efforts.

Recombination rate refers to the frequency of recombination
which generally varies widely among microorganisms such as
bacteria and viruses and can thus limit the ability of GWAS
to pinpoint specific variants responsible for the phenotype if
not accounted for Didelot and Maiden (2010) and Epstein
et al. (2018). In (Py)SEER, adjustments can be performed by
using a recombination adjusted phylogeny (e.g., from gubbins or
clonalframeML) to estimate the kinship matrix for either the fixed
or Linear Mixed Model (LMM) mode, or using lineages/strains
as covariates, which ignores ancestral recombination events. It
is, however, important to note that determining recombination
across a diverse species, which is the most common GWAS
situation, is still very difficult to do accurately. DBGWAS is
also able to detect and summarize recombination events at the
population scale in its third step of analysis (clustering the tested
features into subgraphs representing genomic regions).

There is evidence that for some pathogens within-host genetic
diversity is common (Worby et al., 2014; Martin et al., 2018).
It occurs as a result of evolution within the host or due to
superinfections. The presence of multiple isolates from the same
host and especially of clonal background can reduce power
because these isolates will share large amounts of DNA due
to clonal inheritance that do not confer host adaptive traits
(Sheppard et al., 2013). Furthermore, it leads to non-discrete
SNP calling where the frequency of an allele reflects its frequency
within the host rather than the presence or absence of an allele
(Power et al., 2016b). It is therefore important that mGWAS tools
are able to deal with it. In existing tools such as (Py)SEER, bugwas
and DBGWAS, it can be accounted for by the user providing
a covariate file. Also integrating tools such as phyloscanner
(Wymant et al., 2017) to infer within host diversity could improve
the quality of SNP calls.

Multiple testing is a source of false positives intrinsic to
GWAS. The Bonferroni correction is usually used to correct
for multiple testing. However, it is overly strict for densely
genotyped and imputed studies where correlations between
variants exist (Power et al., 2016b) and requires much larger
sample sizes in order to detect causal variants. To overcome the
issue of strictness, some tools (Jaillard et al., 2018) implement
the Benjamini Hochberg false discovery rate (FDR) (Benjamini
and Hochberg, 1995), a less stringent method to control for
multiple testing Type I errors but it has also been found to be
conservative (Storey and Tibshirani, 2003) as it assumes that
SNPs are independent, which is seldom true (Marees et al., 2018).
Understanding the level of LD between SNPs and computing
an appropriate significance threshold that is optimal for each
study (Visscher et al., 2012) therefore presents a feasible and
ideal solution. Existing methods for calculation of thresholds
include permutation testing and spectral decomposition with the
former being preferred as it is less computationally intensive
(Storey and Tibshirani, 2003).

Polygenicity or multiple SNP effects on a phenotype is based
on the assumption that many SNPs with small effect sizes will fail
the stringent cutoff used for genome-wide significance, however,
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together their cumulative effect will explain a large amount of
the variance in risk (Power et al., 2016b) hence providing a
more powerful predictive tool than the result of a single SNP.
This is particularly common with variants affecting phenotypes
under moderate selection and quantitative traits, for example
virulence (Fisher, 1930; Cavalli and Maccacaro, 1952; Pritchard
and Di Rienzo, 2010; Laabei, 2014). Detection of unlinked, non-
epistatic small effect variants affecting phenotypes is currently
well handled by most tools especially tools that implement
LMMs such as Bugwas and (Py)SEER. The LMM mode also
gives boosted statistical power to detect associations compared
to other methods. In DBGWAS, only SNPs occurring together
on single unitig (haplotype) are tested together. SNPs occurring
further apart will not be tested together, hence partial support.
KOVERs conjunctions (logical-AND) and disjunctions (logical-
ORs) models for detection of the presence or absence of k-mers
are able to pick up the effect of multiple SNPs. Moreover, they
also assign importance to each rule that quantifies how much
it affects the phenotype predictions made by the model, while
TreeWAS accounts for this by allowing each SNP to contribute
only partially to the phenotype. Finally, HAWK reports all SNPs
that present a strong effect on the phenotype without determining
how much each SNP is contributing.

Microbe genomes can have multi-allelic SNPs and genes
which may be responsible for the different types of phenotypes
(Khachatryan et al., 2019) or code for different amino acids. The
presence of multiple alleles is easily captured by k-mer-based
methods, for example in a study analyzing Campylobacter. jejuni,
multi-allelic k-mers were tested for association with host
preference (Sheppard et al., 2013). In general, most of the
available tools support the analysis of multi-allelic SNPs. Even
tools such as HAWK and Scoary that do not perform SNP calling
support the analysis. CCTSWEEP/VENN currently supports only
bi-allelic SNPs.

Epistasis results when two SNPs interact or when the effect
of a SNP is conditional on a broader genetic background.
Disentangling epistatic effects will be key to generating viable
in vitro models of mGWAS findings and establishing causality
(Power et al., 2016b). Detection of epistatic interactions between
SNPs or genes can be achieved by creating a genetic variant
matrix of interaction effects which is created by multiplying the
matrix of potentially interacting variants with itself. In PySEER,
it can be achieved through the generality of the –pres input
option. A program such as SpydrPick (Pensar et al., 2019) is
however recommended as a better choice for detecting genome-
wide epistasis for users of (Py)SEER. Also, KOVER using its
conjunction and disjunction models described above is able to
detect these interactions between SNPs. Bugwas and TreeWAS
are also able to detect interactions between SNPs and report
them to the user.

Heritability is a classical concept in quantitative genetics
which represents the amount of variation in a trait which can
be ascribed to genetics (and is therefore inherited between
generations) versus other environmental factors (Lynch and
Walsh, 1998). In mGWAS, it has been used to establish the
strength of the relationship between host phenotypes and
variation in microbial genomes, for example, Young et al.

using heritability estimates established the presence of a strong
relation between S. aureus genetic variation and pyomyositis,
with estimated heritability at 63%. In another GWAS of
human and pathogen, Lees et al. (2019) show that human
variation explains almost half of variation in susceptibility to
pneumococcal meningitis and one-third of variation in severity
while Pneumococcal genetic variation explains a large amount
of invasive potential (70%), but had no effect on severity.
Determining heritability before performing GWAS is important
to ensure that a substantial amount of variation is actually as
a result of genetic variation. Heritability estimation is currently
done as an independent step and not as part of the pipelines
reviewed in this article.

In most phylogenetic analyses, beyond heritability, accounting
for the heterogeneity in evolutionary patterns across sites is
particularly important (Wang et al., 2019). Partitioning remains
the most commonly used method for accounting for variation
in the rates and patterns of molecular evolution among sites
in phylogenetic analyses. An inherent obstacle in partitioned
phylogenetic analyses is the choice of an appropriate partitioning
scheme (Frandsen et al., 2015). Efficient partitioning schemes for
small datasets are described by Lartillot et al. (2009) and Wu
et al. (2013) and for large datasets by Frandsen et al. (2015).
Genomic partitioning can help determine whether the SNPs in
different genomic regions or lineages play different roles in trait
heritability and which region is more responsible for phenotypic
variation (Lees et al., 2017; Wei et al., 2019). Heritability
and genomic partitioning are therefore key components of a
phylogeny-based microbial GWAS workflow.

Sample size, unlike in human GWAS, mostly poses a subtle
problem as most variants in microbial genomes are under
strong selection and therefore present large effect sizes even
with small datasets. Subtle traits resulting from many low effect
variants, however, require larger sample sizes in order to detect
significant associations (Power et al., 2016b). For phylogeny-
based workflows, allele counting methods require larger sample
sizes compared to homoplasy counting methods (Chen and
Shapiro, 2015). In such circumstances, tools such as Scoary
(Brynildsrud et al., 2016), that are inherently lightweight may not
apply. It is also important to note that, as with any GWAS study,
power loss is greatest when the number of variants is high and
the number of samples is small. Prior calculation of the number
of samples required to reach sufficient power is thus an important
first step to determine that the selected tool is suitable.

MICROBIAL–BASED GWAS TOOLS

Traditional microbial-based GWAS tools can be broadly
categorized into three categories: (a) phylogeny, (b) non-
phylogeny and (c) hybrid tools that implement a combination
of statistical and phylogenetic methods. An emerging fourth
group that is gaining traction comprises tools that apply machine
learning to the prediction of phenotypes from genotype data. The
main limitation of machine learning tools is their performance
however, as more whole genome sequences become available,
their predictive accuracy is expected to improve. In this review we
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FIGURE 2 | Visualization of GWAS results; (a) Manhattan and QQ plots visualizing the results. Horizontal line on the Manhattan plot shows cut-off for genome-wide
significance. Only a single SNP passing genome-wide significance as shown is likely due to genotyping error as most SNPs are in linkage disequilibrium (LD) and
therefore will pass the cut-off together. (b) Sample output from a DBGWAS using De Bruijn graphs to visualize unitigs. Node size relates to the allele frequency.
Untested unitigs present in >99% or <1% of the strains, are shown in grey. Nodes found to be non-significant are shown with a transparency degree. Part (1) is
taken from Power et al. (2016b) and (2) is adapted with permission from Jaillard et al. (2018).

profile eleven traditional microbial GWAS tools and two machine
learning applications.

(1) CCTSWEEP and VENN (Habib et al., 2007) use
phylogenetic trees to find correlations between SNPs that are
statistically significant. VENN operates on apomorphy lists
produced by popular phylogenetic tools. A major limitation of
VENN is that it only works well for a large number of SNPs,
where the number of branches over which change is occurring
is modest. In contrast, CCTSWEEP works even when there
are no SNPs that are completely penetrant with the phenotype
of interest. CCTSWEEP implements a modified version of the
Maddison’s concentrated changes test (CCT) (Maddison, 1990;
Habib et al., 2007).

An advantage of both VENN and CCTSWEEP is that
they consider missing data using character optimization

which other methods simply ignore. The tools have been
used to find SNPs correlated with resistance to Bacillus
anthracis in inbred mouse strains. VENN successfully
identified 11 SNPs from 4 chromosomes (Habib et al.,
2007) while CCTSWEEP identified 12 SNPs in chromosome
11 (Habib et al., 2007). The major limitation with
CCTSWEEP is that it calculates the correlation between
binary variables only.

(2) GWAMAR is a tool specifically developed to detect
drug resistance-associated mutations in bacteria (Wozniak et al.,
2014). It computes several statistical scores, including mutual
information, odds ratio, hypergeometric test, weighted support
and the tree-generalized hypergeometric score (TGH), which is
a modification of the CCTSWEEP score method. Developers of
GWAMAR have tested the tool on two M. tuberculosis datasets.
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The results of both case studies demonstrated that the tree-
aware methods (weighted support and TGH) performed better
than those that did not include phylogenetic information. Using
GWAMAR on the two datasets also allowed for the identification
of novel mutations putatively associated with drug-resistance
(Wozniak et al., 2014). However, despite the promising results,
the tool has the following limitations: (i) it does not take into
account or predict epistatic interactions between mutations, and
(ii) it only takes genomic changes into account and ignores levels
of gene expression.

(3) Sequence Element Enrichment (SEER) Analysis is a k-mer
based tool that counts variable length k-mers using a distributed
string-mining algorithm implemented in C ++ (Lees et al.,
2016). It provides options to correct for clonal population
structure and performs well on large datasets spanning tens of
thousands of genomes, both assembled and unassembled. It has
been developed as a stand-alone pipeline that takes as input either
de novo assembled contigs or raw read data. SEER has been tested
on S. pneumoniae and Streptococcus pyogenes datasets and was
able to successfully identify previously characterized resistance
determinants for several antibiotics in the former and unearthed
novel factors related to invasiveness in the latter. A major
distinction from other tools is that it was built with meta-analyses
in mind i.e., the output includes effect sizes, direction, and
standard error. These can be used directly with existing software
to meta-analyze all overlapping k-mers. A major challenge with
SEER is its complexity. It requires the user to execute several steps
and install many system-level dependencies for compilation and
installation (Aun et al., 2018).

(4) Scoary is a tool that scores the components of the
pan-genome (i.e., the full complement of genes in a clade)
for associations to observed phenotypic traits while accounting
for population stratification (Brynildsrud et al., 2016). It does
so with minimal assumptions about the evolutionary process.
A major advantage of Scoary is that users do not need to
experiment with ill-informed mutation rate parameters or inform
the program about population structure as this information is
directly inferred from input data. Scoary validates results using
a post hoc label switching permutation test. It is intended to be
an intuitive, fast and platform-independent tool. This is achieved
by providing a graphical user interface and easily understandable
results. A major limitation of the tool is that it is not designed
to handle large sample sizes spanning thousands of bacterial
genomes. Scoary supports binary or categorical phenotype data.
Quantitative phenotypes require binning into distinct categories.
It implements pairwise comparisons to control for spurious
associations. These comparisons account for fine-scale genetic
differences and phylogenetic clustering. However, they are also
notorious for discarding large volumes of valuable data (Collins
and Didelot, 2018). Scoary was able to successfully predict cfr,
a well-known gene associated with high-level resistance to the
antibiotic linezolid, and two other plasmid genes (pinE, cueR) at
genome-wide significance with a modest sample size of 21 isolates
(Brynildsrud et al., 2016).

(5) Bugwas is a robust bacterial GWAS end-to-end pipeline
implemented in R, Python, and C ++ (Earle et al., 2016). It is
capable of performing SNP, k-mer and gene differential analysis.
Bugwas uses principal components and linear mixed models

(LMM) to identify and correct for population structure. The
LMM’s are implemented using Genome-wide Efficient Mixed
Model Association (GEMMA) (Zhou and Stephens, 2012), a fast
software toolkit for the application of LMM’s to GWAS. An
independent R package that implements the Bugwas method to
control for population structure is also available on GitHub1.
Bugwas is also able to detect polySNP and polygenic effects when
multiple low effect variants are responsible for the phenotype and
not a single high effect variant. It takes into consideration both
locus effects and lineage effects without losing power to detect
significant variants. Bugwas was used to determine resistance to
17 antimicrobials in 3,144 isolates across the major pathogens
M. tuberculosis, S. aureus, E. coli, and Klebsiella pneumoniae
(Earle et al., 2016). It successfully identified genuine causal loci
or regions in physical linkage with those loci for antimicrobial
resistance in 25/26 cases for the SNP, gene presence-absence
and k-mer approaches after controlling for population structure.
Additionally, Suzuki et al. (2016) used Bugwas to identify a
horizontally transferred surface adhesin gene in Acinetobacter
baumannii and a specific section of the gene that appeared
to accumulate variations across the different branches of the
carbapenem-resistant strains.

(6) TreeWAS is a phylogenetic method implemented in an
R package that measures the statistical associations between
a phenotype and genotype at all loci while correcting for
the confounding effects of clonal population structure and
homologous recombination without losing statistical power to
detect associations (Collins and Didelot, 2018). The treeWAS
package supports binary phenotype data, discrete interval
(categorical) and continuous phenotypic data. It is applicable
to both bacterial and viral genetic data from both core and
accessory genome. Additionally, it supports integration with
ClonalFrameML (Didelot and Wilson, 2015), a software package
that performs efficient inference of recombination in bacterial
genomes. The package has been tested on Neisseria meningitidis
to identify penicillin resistance and invasive disease-associated
variants (Collins and Didelot, 2018). For penicillin resistance,
measured both as a binary (resistant vs. susceptible based
on minimum inhibitory concentration (MIC) threshold) and
continuous (ranks of MIC values) variable, no genes were
found to be associated. Instead, several significantly associated
SNPs were identified in the NEIS1753(penA) gene that encodes
penicillin-binding proteins and in three additional genes. For
invasive meningococcal disease, it located 12 genes and 7 SNPs
that were significantly associated. Considering the complexity of
the invasiveness phenotype, the results show that the package is
well suited for detecting loci with subtle and complex phenotypes
which may not be entirely determined by genetic factors.
A limitation of TreeWAS is that being implemented in R requires
users to have basic knowledge of the programming language,
which often may not be the case for many researchers.

(7) PhenotypeSeeker is a machine learning tool for the
prediction of host-phenotypes from associated bacterial genotype
data (Aun et al., 2018). The software identifies phenotype-specific
k-mers, generates statistical models based on them and uses
the models to predict host phenotypes from bacterial isolates.

1https://github.com/sgearle/bugwas
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The models generated can also be used in other machine
learning applications to predict the associated phenotype.
PhenotypeSeeker is made up of two complementary modules –
one for modeling (PhenotypeSeeker modeling) and another for
prediction (PhenotypeSeeker prediction). The modeling module
applies the Welch’s two-sample t-test if the phenotype is
continuous and a chi-squared test if it is binary. It then constructs
a regression or linear model which is consumed by the prediction
model and used to predict phenotypes. It optionally performs
weighting of strains using a distance matrix of the strains to
account for population structure. The final output is a complete
list of statistically significant candidate variations. It is both
easy to install and easy to use, requiring just two commands to
run a complete analysis. Only searching for the k-mers in the
regression model makes PhenotypeSeeker very fast. However, in
the presence of novel mutations when using the models, this
would become a limitation.

(8) Kover is a reference-free method for the identification of
biomarkers that relies on the k-mer representation of genomes
and the set covering machine learning algorithm to produce
intelligent multivariate models (Drouin et al., 2015, 2016). The
models can be consumed by other tools or visualized and
explored further to determine the underlying causal biomarker
using existing tools, such as nucleotide blast and Unipro UGENE.
It is capable of identifying SNPs, indels and large-scale genomic
rearrangements. Like PhenotypeSeeker, Kover uses a machine
learning approach that seeks a computational model of a sparse
and accurate matrix of the fewest k-mers required to predict
a phenotype of interest. Such a method helps reduce the
computational overhead by eliminating less informative k-mers.
Kover is implemented in Python. The need to manually install
some dependencies can make it challenging for non-technical
users. However, the tool is well documented and does not
require a machine learning background. Several models that are
readily applicable are available on the Kover website. A major
limitation of the Kover models is their inability to predict
categorical variables with more than two levels, for example,
adding intermediate antimicrobial resistance as a third category
(Rodloff et al., 2008; Jeukens et al., 2017). Additional work
on the Kover implementation needs to be done to improve
the sensitivity of the algorithm through the inclusion of prior
knowledge of population structure (Drouin et al., 2016).

(9) PySEER is a direct Python reimplementation of SEER (see
above) with several enhancements (Lees et al., 2018). It uses
generalized linear models to test for associations between each
k-mer (i.e., short DNA string of length k, where k is small number
typically between 3 and 100 base pairs) and phenotype. To
control for population structure, it performs multi-dimensional
scaling of a pairwise distance matrix and the components are
included as fixed effects in the model. After adjusting for
multiple testing, significant k-mers can be mapped to a reference
annotation to find regions of the genome associated with the
phenotype. PySEER also allows for testing of association of SNPs
and indels called against a reference genome and implements
machine learning prediction with a regularized regression
approach/elastic net. Interactive visualizations are generated
using an implementation of Phandango (Hadfield et al., 2017).
Finally, the application can estimate possible lineage effects

based on the procedure used in bugwas (Earle et al., 2016).
Unlike its predecessor SEER, PySEER can be installed via conda
which is fast and eliminates the need to install dependencies
manually. However, as a limitation the user needs to have a good
understanding of the command-line to successfully execute all
the commands and prepare the relevant inputs.

(10) MAGNAMWAR is an R package for assessing genotype-
phenotype relationships using orthologous genes in bacteria
(Sexton et al., 2018). The package can be used to define the
genetic relationship between bacterial genomes or metagenomes
and any organismal phenotype, for example, it has been used to
identify bacterial genes associated with variation in Drosophila
melanogaster (fruitfly) phenotypes (White et al., 2018) which
though outwardly different from humans, shares over two-
thirds of its genes with humans (Greenspan and Dierick,
2004). This, coupled with their rapid reproduction makes them
an ideal substitute for humans in research labs (Pandey and
Nichols, 2011). It consumes as input orthologs produced by
OrthoMCL (Fischer et al., 2011) and a phenotype file containing
phenotype measurements and metadata for the statistical models.
It implements multiple robust statistical analyses, including
mixed and survival models as well as the Wilcoxon test for
association. The software also provides the functionality to
perform functional annotation of genes. Genes that are not
functionally classified are clustered into phylogenetic distribution
groups (PDGs). PDGs are a useful way to analyze genes that
lack functional annotation. Homologous genes from the closely
related strains are grouped together and association testing
performed on these genes. MAGNAMWAR simplifies the pre-
formatting and analysis steps, and the graphical presentation
of the data. Magnamwar is limited to gene-presence absence
and therefore cannot be used to analyze associations with other
forms of variation.

(11)Hitting Associations with k-mers (HAWK) is a k-mer based
tool that uses logistic regression to determine k-mers which are
significantly associated with a phenotype of interest (Rahman
et al., 2018). It has been developed in C++ and has implemented
multi-threading in order to speed up the analysis.

The tool has been tested on an E. coli dataset for ampicillin
resistance. It uses principal component analysis to detect and
correct population structure. HAWK accepts raw FASTQ files as
input and requires the reads for each sample to be in a separate
directory. Using the same pipeline, one is able to map associations
to different types of variants including SNPs, INDELs and
structural variations such as copy number variations (CNVs).
Future work of interest to the developers that is likely to add
value to the community of users include modeling stochasticity
in counts, incorporating confounders as well as extending the
approach to quantitative phenotypes as future work.

(12) De Bruijn Graph GWAS (DBGWAS) is a freely available
k-mer based tool that produces interpretable genetic variants
associated with distinct phenotypes (Jaillard et al., 2018). The
main goal of DBGWAS is to bridge the gap between SNP and
k-mer-based GWAS. The former is unable to cover complete
genomic variation and the latter produces complex and hard
to interpret results while doing so. In order to bridge the
gap, it uses De Bruijn (DBGs) graphs (Idury and Waterman,
1995; Muggli et al., 2017) i.e., a set of vertices representing
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the k-mers connected by edges to compact and abstract the
complexity behind k-mers while providing a relatively easy
to understand representation of the results. Compacted DBGs
(cDBGs) eliminate local redundancy, reflect genome variations,
and characterize the genomic environment of a k-mer at
population level. It takes as input a set of contigs and phenotype
data. It relies on bugwas, to test significant associations between
unitigs and phenotypes.

An added advantage of the DBGs is their ability
to accommodate more complex disparities, including
rearrangements, insertions, and deletions. DBGWAS provides a
web-based interface where users can further explore the results
using interactive visualization. The key features of DBGWAS,
reported by Jaillard et al. (2018)., are that (i) it identifies and
graphs both local polymorphisms and mobile genetic elements
(MGE), (ii) it reports expected variants without prior knowledge,
(iii) it extracts novel variants, (iv) it provides an interpretation of
k-mer based GWAS and (v) it is memory efficient and can scale
to very large datasets. To perform GWAS, DBGWAS uses the
bugwas (Earle et al., 2016) method. DBGWAS also uses GEMMA
(Zhou and Stephens, 2012) to generate a relatedness matrix
that is used to correct for population structure. Compiling and
installing DBGWAS can be challenging to non-technical users.
Furthermore, the use of De Bruijn graphs are relatively new and
therefore interpretation of output can be challenging.

A NOTE ON VIRUSES, FUNGI AND
PROTOZOANS

All tools discussed so far have only been tested on bacteria,
however, many of the challenges they address also affect viruses,
fungi and protozoa, which implies that these tools should be
applicable to them as well. Several arguments can, however,
be advanced for the paucity of tools, methods and studies
focusing directly on these organisms. These include; (a) the
need for enough sequences for a well powered GWAS. (b) high
variability of viral genomes, especially RNA viruses (Duffy, 2018;
Renner and Szpara, 2018) causing major deviation from reference
genomes; and (c) the continuous emergence of viral genomes
(Rose et al., 2016). In spite of these challenges, GWAS has been
successfully applied to viruses. For example, Bartha et al. (2013)
in a genome-to-genome study of human and HIV viral genomes
tested for association between host DNA polymorphisms, HIV-
1 sequence variation and plasma viral load and observered
significant SNP association to 48 HIV-1 amino acid variants.
In another study, Ansari et al. (2017) performed a genome-to-
genome interaction analysis of 542 individuals with hepatitis C
virus (HCV) to identify alleles in human genes driving viral
polymorphisms and found that IFNL4 genotypes determine HCV
viral load. Finally, Power et al. (2016a), using GWAS were able
to identify five polymorphisms that led to amino acid changes
in HIV and highlighted the potential of GWAS to identify
epistatic interactions.

Protozoa and fungi on the other hand, have highly conserved
genomes and very low mutation rates (Long et al., 2018) making
it possible to apply the tools developed for human studies

with better results than viruses and bacteria. Past fungal and
protozoa studies have therefore mostly relied on the software
tools developed for human studies such as PLINK (Purcell, 2007),
Tassel (Bradbury et al., 2007) and GAPIT (Lipka et al., 2012) that
support analysis of haploid genomes and complex traits or on
custom scripts created by the study teams (Lipka et al., 2012).

GUIDELINES FOR TOOLS SELECTION
AND PARAMETER OPTIMIZATION

With a large number of existing tools, and several others that
are still in development, it can be quite challenging for users
to determine which one is most suitable for their research.
It can also be a non-trivial problem to determine optimal
parameters to use in order to guarantee the best results.
Below we present the important features and parameters that
researchers must consider.

(1) Select a tool that supports the analysis of all/most forms
of variation as they offer the advantage of testing multiple
hypotheses. This is important because a single isolate can be
affected by multiple forms of variation. For example, it can
acquire SNPs, indels as well as MGEs. For such an isolate, testing
only for SNPs misses out MGEs. And yet these MGEs could
potentially be the driving force behind the phenotype (Dutilh
et al., 2013). k-mer based tools are able to detect all forms of
variation making them prime candidates. The main challenge
when working with k-mers however, is that they are less compact
than SNPs and thus require additional computational resources
to process (Drouin et al., 2015). In the case of machine learning,
the large number of genomic features compared to genomes also
implies a higher likelihood of overfitting i.e., learning random
noise patterns that can lead to poor generalization performance
(Drouin et al., 2015). Majority of the k-mers are usually
uninformative, occur simultaneously and are highly correlated.
k-mers have thus been superseded by uniquely assemblable
contigs (unitigs) which comprise overlapping fragments that
together spell a common sequence and do not overlap fragments
with sequences that dispute, or contest, the common sequence.
Each unitig contains on average about 30 fragments. There are
100 times fewer overlaps between unitigs than overlaps between
fragments (Myers et al., 2000). Unitigs remove redundancy
from k-mers by collapsing all nodes representing the same
sequence into a single node and branching nodes to show
sequence variation. The results from k-mer/unitigs analysis also
tend to be challenging to interpret. However, Jaillard et al.
(2018) have devised a clever use of De Bruijn graphs to aid the
effective visualization and interpretation of results. Several tools
including PySEER, DBGWAS, HAWK and others now support
the compaction of k-mers into unitigs.

(2) While it is important to control for population structure
in microbial GWAS, power to detect significant associations
is lost using some methods. Prominent methods used to
control for population structure include clustering, linear mixed
models (LMM) and, for more clonal species, phylogenetic
relatedness. The effect of recombination on several microbial
organisms makes phylogenetic methods less effective and reduces
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their power to detect associations. In selecting a pipeline,
we recommend one that implements LMMs as they offer
biological insights at both locus and lineage specific levels. It
will also identify groups of loci which are collectively significant,
even though individually insignificant, without sacrificing the
power to detect locus-specific associations. When the sample
used is homogenous, the effect of population structure is less
pronounced (Power et al., 2016a). Performing association testing
with and without population structure correction and assessing
the difference (Earle et al., 2016) would help recover power
that may be lost during population structure adjustment in
some methods. When using LMM based methods, Jaillard et al.
(2018) noted that logistic regression based tests have less power,
compared to the Poisson distribution test.

(3) Inconsistent ordering of samples between variant call,
phenotype file, and population structure adjustment can result in
spurious results, especially among tools that implement LMMs.
Unfortunately, several tools do not check ordering and therefore
leave much room for error. We recommend using a tool that
automatically checks for inconsistent labels and notifies the user
if they occur. Of the tools that we reviewed, PySEER was able to
automatically match labels and report the intersection of samples
used (Lees et al., 2018).

(4) The length of k-mer used impacts speed and accuracy
inversely. Longer lengths increase the sensitivity of the test
and guarantee more accurate results. However, they are also
associated with a significant increase in the amount of memory
and processor usage (Aun et al., 2018). Most studies (Drouin
et al., 2015; Earle et al., 2016), especially in bacteria, have used
and recommend a length of 30 to 100 bp. Aun et al. (2018)
performed accuracy tests and the results suggested that a length of
13 bp should be sufficient. Drouin et al. (2015) performed further
experiments with k-mers of lengths 11 to 99 bps and also found
no significant variation in accuracy, affirming their findings.
Pilot experiments by Jaillard et al. (2018) reveal that a k-mer
length of 31 produced the best results when retrieving known
markers. The results indicate that an optimal k-mer length of 31
which can be lowered down to 11 to minimize computational
resources or raised up to 100 to maximize accuracy. Users need
to experiment with a range of values and carefully select a
length most suitable for the genome of interest. The length of
k-mer used is therefore often left as a user-defined parameter in
tools implementing the k-mer approach. Tools with heuristics to
automatically determine the most optimal length for the user will
ensure the best results in a shorter time frame. Other important
factors that need to be considered when deciding on the value of
k include assembly quality, complexity of the input genomes, or
presence of repeats.

(5) Converting continuous or quantitative phenotypes into
categorical values (binning) can be costly in terms of power
to detect significant associations (Power et al., 2016b), We
recommend that tools that support the analysis of quantitative
phenotypes be used when the phenotype under investigation is
quantitative. However, binning remains an option in the event
that the most suitable tool chosen only supports binary and
categorical variables (Read and Massey, 2014). On the contrary,
tools that perform well on quantitative phenotypes might not

necessarily do so for binary phenotypes due to the inherent
assumption of constant residual variation especially in tools based
on linear mixed models. Users therefore need to carefully choose
the tools based on the phenotype that is supported.

PROPOSED MICROBIAL GWAS
WORKFLOW

The significant and systemic genomic differences between human
and microbial genomes call for substantial adaptations of older,
human GWAS workflows to microbial GWAS. Here we propose a
general workflow and highlight the major steps critical to a study’s
success (Figure 3).

RECOMMENDATIONS AND FUTURE
DIRECTIONS

Even though copy number variants and structural inversions
have been shown to be quite frequent in some microbes and
to contribute significantly to phenotypic variation, methods to
perform GWAS on them remain underexplored as compared to
gene presence-absence or SNPs and INDELS (Brynildsrud et al.,
2015). A well-established method for association testing such as
logistic regression is unable to detect association if cases have two
copies of an allele against one copy in controls (Jaillard et al.,
2018). Developing methods for association testing of gene copy
number with phenotypes is clearly a high-priority research area.

Machine learning enables the prediction of phenotypes from
genomic data as new data is made available. In this article, we
cite three tools (PySEER, Kover and PhenotypeSeeker) currently
implementing machine learning methods. Models created by
Kover were found to have error rates as low as 10% (Drouin
et al., 2016). Some of the advanced machine learning techniques
currently implemented in the field of microbial GWAS include
Set Covering Machines (SCM) (Marchand and Shawe-Taylor,
2002), Classification and Regression Tree (CART) decision trees
(Marchand and Shawe-Taylor, 2002) and Linear Support Vector
Machines (LSVM) (Burges, 1998). We anticipate an influx of tools
supporting machine learning as openly accessible training data
becomes increasingly available. An important consideration in
machine learning and prediction for microbial GWAS is data set
design and the influence that clonally related samples sharing
a phenotype can have on the patterns identified by machine
learning models. For example, including related isolates that
are epidemiologically linked can result in significantly different
results (Wheeler, 2019).

Long range linkage disequilibrium (LD) is a common
phenomenon in microbial genomes (Mueller, 2004). It occurs
when short sequence blocks of DNA are replaced during
homologous recombination, removing variants in short LD and
leaving variants further apart in LD. The presence of long-
range LD is a major confounding effect in microbial GWAS that
makes the identification of causal variants problematic. Testing
without accounting for LD can also result in overweighting of
redundant information thus inflating the effect size of a given
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FIGURE 3 | Proposed GWAS workflow reflecting major steps that should be followed for the successful conduct of microbial GWAS. We present three options to
consider for any given study and tools that support the option. (A) Uses the pan-genome approach to determine unique genes in related Genus, species or strains
that are significantly associated which the phenotype, (B) The use of k-mers, suitable in events where indels and genes are responsible for the phenotypes of interest
and finally (C) SNP association, which is effective for strain-level analysis were point mutations are responsible for the phenotype of interest.
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variant (Yang et al., 2014). LD is usually evaluated by comparing
the distribution of the pairwise distance between the allelic
profiles. Corrections for LD can be done through a kinship
matrix representing the average amount of LD between samples.
While LD might make discovery power higher by linking other
variants into a test, in microbial genomes, it usually severely limits
mappability of associations due to its range. We recommend
more work to be done toward correcting LD both in existing and
new tools.

Pre-processing of raw data prior to performing any form of
analysis is an important step to avoid spurious results. Many
of the tools presented here depend on pre-processed results
from other tools implying, that burden of ensuring appropriate
input is left on the user. Extending these tools to integrate pre-
processing tools for raw sequencing data through transparent
calls to existing software or improved implementation of existing
methods will greatly enhance the utility of the tools. In a similar
manner, integration or implementation of post GWAS methods
will also contribute immensely to the utility of existing tools.
For example, MAGNAMWAR (Sexton et al., 2018), provides the
functionality to perform functional annotation of its results.

Finally, we recommend the development of methods to
improve the power and precision with which polygenic effects
are detected and measured as an important future direction.
The presence of these effects can be determined by the genomic
inflation test and inferred from the Q-Q plot showing the
difference between the expected and observed p-values (Power
et al., 2016b) or using LMMs (Yang et al., 2014).

COLLABORATION AND COMMUNITY
ENGAGEMENT

Successful development of tools and methods is a direct result
of collaborative development between the software development
community and their user communities. GitHub2, GitLab3 and
other open source code repositories have emerged as powerful
tools for collaboration. For example, nine of the tools reviewed
have their code repositories on GitHub or GitLab and these
also stand out as the most prominent solutions currently
available. The success of these tools can be attributed among
others to the useful interaction between users and developers
through issues filed.

GitHub issues is one of the important features available to
facilitate interaction between users and developers concerning
the tools. Through this feature, users can request feature
enhancements or new features, clarification on existing
functionality and report bugs that they come across while
running the tools. Users are encouraged to file more issues that
can help improve the solutions available.

For the developers and users with technical skills, the pull
request feature on GitHub provides the functionality to modify
and share their contributions to a project. Pull requests remain
fairly rare in bioinformatics projects. With most repositories

2https://github.com
3https://gitlab.com

having under four direct contributors, this feature presents a
great opportunity to increase the utility of tools. As of this writing,
only one tool (HAWK) had a single pull request where a user
shares an improvement to the countKmers script. To improve the
utility of existing tools, we recommend more collaborative efforts
among the developer community.

Furthermore, we encourage open data sharing to improve the
quality of testing and thus solve the problem of overfitting of
tools to specific datasets or organisms. For machine learning, data
sharing enables training of models that predict anti-microbial
resistance (AMR) phenotypes without relying on a database
of preexisting AMR genes or mutations (Nguyen et al., 2018).
We recommend depositing of raw sequences in the sequence
read archive (SRA), an international public archival resource
for next generation sequencing data (Leinonen et al., 2011)
and publishing the accession numbers. Phenotypic data, data
simulation scripts and analytical results can be shared on zenodo4

and GitHub which are free and reliable general-purpose, open-
access platforms designed for scholars and researchers.

CONCLUSION

Significant strides have been made to advance the field of
microbial GWAS. Several tools and methods have been developed
targeting the analysis of microbial genomes however, the
need for a complete, freely available and easy to use tool
for microbial GWAS still remains. Biological researchers and
software developers will need to work together to achieve this
important cause.
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