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The accurate identification of the assortment of antibiotic resistance genes within a

collection of genomes enables the discernment of intricate antimicrobial resistance (AMR)

patterns while depicting the diversity of resistome profiles of the analyzed samples.

The availability of large amount of sequence data, owing to the advancement of

novel sequencing technologies, have conceded exciting possibilities for developing

suitable AMR exploration tools. However, the level of complexity of bioinformatic

analyses has raised as well, since the achievement of desired results involves executing

several challenging steps. Here, sraX is proposed as a fully automated analytical

pipeline for performing a precise resistome analysis. Our nominated tool is capable

of scrutinizing hundreds of bacterial genomes in-parallel for detecting and annotating

putative resistant determinants. Particularly, sraX presents unique features: genomic

context analysis, validation of known mutations conferring resistance, illustration of drug

classes and type of mutated loci proportions and integration of results into a single

hyperlinked navigable HTML-formatted file. Furthermore, sraX also exhibits relevant

operational features since the complete analysis is accomplished by executing a single-

command step. The capacity and efficacy of sraX was demonstrated by re-analyzing

197 strains belonging to Enterococcus spp., from which we confirmed 99.15% of all

detection events that were reported in the original study. sraX can be downloaded from

https://github.com/lgpdevtools/srax.

Keywords: antimicrobial resistance, antibiotic resistance gene, resistome profiling, stand-alone software,

sequence analysis, gene context visualization

1. INTRODUCTION

Antimicrobial resistance (AMR) constitutes a serious menace to global public health, since its rise
is being detected in samples from a wide variety of environmental sources (Munk et al., 2018). In
addition, a growing number of imputable deaths per year is evidenced and is calculated to surpass
the 10 million by 2050 (O’Neill, 2016). Under these circumstances, the accompanying development
of novel sequencing technologies—along with continually decreasing costs—have raised the
amount of available sequence data, and consequently, have led to devise viable AMR exploration
tools. Particularly, whole-genome sequencing (WGS) and whole-metagenome sequencing (WMS)
approaches have demonstrated enormous capabilities of epidemiological surveillance, outbreak
detection, and infection control of bacterial pathogens (Didelot et al., 2012). In relation to the
type of demanded sequence data, two main methodological approaches have materialized: those
capable of processing raw reads—read-based methods—and those requiring contig-assembled
genome sequences—assembly-based methods. Ultimately, both procedures exhaustively examine
for AMR determinants by aligning the input sequence data to curated antibiotic resistance

Abbreviations: AMR, antimicrobial resistance; ARG, antibiotic resistance gene; DB, data base.
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genes (ARG) from custom or public dedicated reference
AMR databases (DB). Essentially, read-based methods are
faster and less computationally demanding. However, false
positives originated from spurious mapping might arise.
Moreover, since the genomic context is generally missed, the
arrangement of adjacent genes can not be evinced and it
constitutes a major drawback (Boolchandani et al., 2019).
Quite contrary, assembly-based methods are computationally
expensive and time consuming because of the de novo
assembly step. Nonetheless, when sequencing at adequate
genome coverage, known or novel ARGs bearing low sequence
similarity with AMRDBs are normally detected, and remarkably,
genomic context, and regulatory sequence elements are captured
(Boolchandani et al., 2019).

In consequence, applying any of previously indicated
techniques, several bioinformatic tools tailored to annotate ARGs
have been produced (seeTable 1). For instance, considering read-
based methods, SRST2 (Inouye et al., 2014) and KmerResistance
(Clausen et al., 2016) are not confined to any specific
microbial species or AMR type, but both approaches completely
neglect resistance conferred by single–nucleotide polymorphisms
(SNPs). By contrast, Mykrobe predictor (Bradley et al., 2015)
is suitable for detecting sequence variants but, regrettably,
is restricted to Staphylococcus aureus and Mycobacterium
tuberculosis and to 12 types of antibiotics. On the contrary,
ARIBA (Hunt et al., 2017) can identify not merely ARGs
corresponding to AMR from any type but SNPs linked to
resistance as well. However, some visualization files (like
gene/SNP presence) must be obtained via the Phandango
server (Hadfield et al., 2017). Additionally, before mapping
the reads, ARIBA performs a clustering procedure for finding
a single sequence representative from each ARG locus on
the employed reference AMR DBs. Albeit reducing ambiguous
alignments, this strategy unaccount for substantial sequence

TABLE 1 | Features of different resistome analysis pipelines, in comparison to sraX.

Bioinformatic Standalone SNP Gene context Batch Single-step Output
References

tool mode analysis analysis mode command results

CONTIG-ASSEMBLED SEQUENCE DATA

ResFinder Yes Yes No Yes Yes Tables Zankari et al., 2012

ARG-ANNOT No Yes No No No Tables Gupta et al., 2014

RAST Yes No No No Yes Tables Davis et al., 2016

RGI Yes Yes No No No Tables/Plots Jia et al., 2016

PointFinder No Yes No Yes Yes Tables Zankari et al., 2017

ARGs-OAP Yes No No Yes No Tables/Plots Yin et al., 2018

NCBI-AMRFinder Yes Yes No Yes Yes Tables Feldgarden et al., 2019

sraX Yes Yes Yes Yes Yes Tables/Plots Present study

RAW-READS SEQUENCE DATA

SRST2 Yes Yes No No Yes Tables Inouye et al., 2014

Mykrobe predictor Yes Yes No No Yes Tables Bradley et al., 2015

SSTAR Yes No No No No Tables de Man and Limbago, 2016

SEAR Yes No No No Yes Tables/Plots Rowe et al., 2015

KmerResistance No No No No Yes Tables Clausen et al., 2016

PATRIC No No Yes Yes No Tables/Plots Antonopoulos et al., 2017

ARIBA Yes Yes No No No Tables/Plots Hunt et al., 2017

GROOT Yes No No No No Tables Rowe and Winn, 2018

DeepARG Yes No No No No Tables/Plots Arango-Argoty et al., 2018

Bold characters emphasize the functional features of the proposed tool.

variation existing within gene families (Munk et al., 2017).
To circumvent this lack of accuracy, a novel method called
GROOT (Rowe and Winn, 2018) has been proposed and
it relies on building variation graphs of previously clustered
ARGs from AMR DBs, before mapping the reads to them.
Despite succeeding at characterizing variation through sequence
graphs, GROOT is mainly limited to properly perform the
annotation of ARGs on metagenome samples, without any
graphical output or further analysis. Other read-based tools
include: SEAR (Rowe et al., 2015)—already archived, SSTAR
(de Man and Limbago, 2016), PATRIC (Antonopoulos et al.,
2017)—not standalone mode, and DeepARG (Arango-Argoty
et al., 2018). Regarding assembly-based tools, certain of them
are capable of elucidating SNPs developing AMR but, to our
knowledge, none of them is suited for providing a genomic
context analysis of identified ARGs. In addition, the output
information and its visualization is generally limited (see
Table 1). Current implementations entirely relying on already
assembled sequences include: ResFinder (Zankari et al., 2012),
ARG-ANNOT (Gupta et al., 2014), RAST (Davis et al., 2016),
RGI (Jia et al., 2016), PointFinder (Zankari et al., 2017), ARGs-
OAP (Yin et al., 2018), and NCBI-AMRFinder (Feldgarden et al.,
2019).

In this context, and attempting to address the mentioned
limitations, a suit of federated modular functions was developed
and integrated into a user-friendly tool named sraX. It has
been devised as a fully automated pipeline for performing
a systematic resistome profiling analysis through a series of
operational steps, which are conveniently concatenated for
achieving a greater computational efficiency (see Figure 1 for
a schematic diagram). sraX follows this analytical workflow
by executing a montage of custom Perl and R scripts that
opportunely call external open source software and make use
of reference AMR DBs. The main capabilities of sraX and a

Frontiers in Microbiology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 52

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Panunzi An Automated and Straightforward AMR Profiling Pipeline

detailed comparison with other pipelines is shown in Table 1.
Apart from the usual strategy of retrieving AMR data from
public—or privately owned—repositories, compiling a local DB
and detecting resistance determinants in analyzed samples, sraX
has unique and noteworthy built-in features, like: gene context
exploration, SNP analysis, complete graphical output—including
drug classes and type of mutated loci—and integration of
results into a fully navigable HTML report file. In addition,
sraX is proposed as a single-command tool—envisaging that
inexperienced users without any technical or bioinformatic
knowledge would run it—and it has been devised for running on
desktop computer systems, under limited RAM and processing
resources. Wherefore, sraX operates as a standalone tool and
a simple and straightforward deployment is achieved from
source code—available at https://github.com/lgpdevtools/srax.
In addition, easier instances have been produced in the form
of a bioconda package—https://anaconda.org/lgpdevtools/srax—
and a docker image—https://hub.docker.com/r/lgpdevtools/srax.
The complete procedures for properly installing and using sraX
are described in the User Manual, Supplementary Information.

2. MATERIALS AND METHODS

2.1. Third-Party Data and Software
Requirements
2.1.1. Reference Databases
sraX depend upon a locally compiled AMRDB, which is obtained
by gathering sequence data and extensive metadata from external
reference AMR DBs. When launching the default resistome

analysis, CARD v3.0.7 (Jia et al., 2016) constitutes the primary
data source of genetic determinants. The reasoning behind
our choice is that CARD not only provides regularly updated
and curated sequence data, but additional complementary
information that is specifically organized into ontology entries.
Ultimately, sraX benefits from this level of organization for
the straightforward access and retrieval of collected AMR data.
Nevertheless, in order to conduct a more extensive and thorough
ARG homology search, the ARGminer v1.1.1 (Argoty et al.,
2019) and BacMet v2.0 (Pal et al., 2014) DBs—or even custom-
provided ARGs—are allowed to be eventually incorporated into
the sraX analysis. A noteworthy feature of ARGminer (Argoty
et al., 2019) is that it aggregates AMR data from several
dedicated repositories, including: ResFinder (Zankari et al.,
2012), ARG-ANNOT (Gupta et al., 2014), CARD (Jia et al., 2016),
MEGARes (Lakin et al., 2016), ARDB (Liu and Pop, 2008), SARG
(Yang et al., 2016), NDARO (https://www.ncbi.nlm.nih.gov/
pathogens/antimicrobial-resistance/), and DeepARG (Arango-
Argoty et al., 2018). In consequence, a larger collection of
resistance determinants is acquired by combining curated AMR
data from CARD, ARGminer and BacMet that ensures a massive
search through a wider space.

2.1.2. Software Dependencies
Perl v5.26.x and the following complementary Perl libraries
are required for having operative sraX modules: LWP::Simple,
Data::Dumper, JSON, File::Slurp, FindBin, and Cwd. For aligning
the ARGs to the analyzed genomes, sraX makes use of
DIAMOND dblastx v0.9.29 (Buchfink et al., 2015) and NCBI

FIGURE 1 | (A) sraX workflow. (B) ARG repertoire. (C) Heat-maps of gene presence and sequence identity. (D) Proportion of drug classes. (E) Type of mutated loci.

(F) Spatial distribution of detected ARGs per genome (gene context analysis). (G) SNP validation and detection of putative new variants.
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blastx/blastn v2.10.0 (Altschul et al., 1990). In addition, prior
to validating known polymorphic positions conferring AMR,
multiple-sequence alignment (MSA) files are created using
MUSCLE v3.8.31 (Edgar, 2004a,b), MAFFT v7.450 (Katoh
et al., 2002), or CLUSTAL � v1.2.4 (Sievers et al., 2011). The
figures generated during sraX analysis are achieved using R
v.3.6.1 and the additional following packages: ggplot2 (Wickham,
2016), dplyr (Wickham et al., 2019), and gridExtra (Auguie,
2017). Importantly, these same software versions are currently
employed for producing the docker image file.

2.2. Systematic Resistome Analysis
sraX accomplishes a series of challenging tasks for completing the
resistome profiling analysis (see Figure 1).

The main assignments are fully described as follows:

2.2.1. Creation of the Required Arrangement of

Directories
Output results and temporary files are allocated within a
defined configuration of specific folders and sub-folders, which
is systematically produced at the beginning of sraX analysis (see
Figure S1).

2.2.2. Acquisition of Data Sources for AMR DB

Compilation
The core collection of reference ARG sequences and their
associated metadata is automatically retrieved only from CARD
(Jia et al., 2016) when sraX is executed under default parameters.
Nevertheless, a more exhaustive search can be performed by
selecting the proper option, for including the ARGminer (Argoty
et al., 2019) and BacMet (Pal et al., 2014) DBs into the
analysis. Moreover, alternative user-provided and curated ARG
(nucleotide or protein) sequences in FASTA format can be added
(see the User Manual, Supplementary Information). In order
to create the corresponding hyperlinks in the final report file,
the header should include the following arrayed metadata: gene
name, NCBI Accession ID, gene description, type of evinced
AMR (protein homolog, protein variant, protein over-expression
or rRNA gene variant), drug class, and species name. The added
metadata is certainly not mandatory for sraX to incorporate the
user-provided ARG sequences, though it allows the pertinent
interrelation of acquired results. Ultimately, after appending the
user-provided ARGs some redundancymight arise, thus identical
sequences are excluded before compiling the final AMR DB.

2.2.3. Detection of ARGs
A directory containing the assembled genome files in FASTA
format is the only requirement for accomplishing the sraX
analysis. Prokaryote and eukaryote WGS data at any assembly
level (e.g., complete genome, chromosome, scaffolds, or contigs)
can be utilized. The homologous genomic regions are detected
by aligning the genome assemblies to previously compiled AMR
DB. DIAMOND dblastx (Buchfink et al., 2015) is applied by
default for making the procedure faster. However, for a higher
detection accuracy, NCBI blastx (Altschul et al., 1990) can
be chosen as well. Importantly, NCBI blastn (Altschul et al.,

1990) is regularly used for aligning rRNA gene sequences and
subsequently identifying the variants conferring resistance.

2.2.4. Analytical Processing
Genome files are examined in-parallel for optimizing speed
processing—up to 100 files are simultaneously queried, while
a series of concerted actions are performed simultaneously for
accomplishing the systematic resistome analysis. These actions
constitute the core of the AMR scanning procedure and includes:

1. Depletion of redundant BLAST hits and compilation of
the final ARG inventory. Concurrent matching ARGs—
constituting variants of large gene families—are eliminated
according to their sequence identity and coverage. Only those
hits—or gene variants—revealing the highest values of both
parameters are kept.

2. Detection of putative paralog copies of identified ARGs. The
selected gene variants—from the previously compiled list
of ARGs—which are detected in non-overlapping genome
regions, are presumed paralog copies and cataloged on a
separate file for further analyses.

3. Production of heatmaps ellucidating the gene presence and its
sequence identity with respect to the reference. The devoted
modularized function employs binary data (0 = absence, 1
= presence) and sequence similarity (0–100%) values for
generating the corresponding heatmaps.

4. Calculation of drug classes and type of mutated locus
proportions, for subsequent production of interpretive
stacked barplots.

5. Extensive gene context exploration and production of
resulting elucidative arrowplots, on every single genome (see
Figure S3).

6. Clustering of homologous genomic sequences and their
consecutive alignment by running MUSCLE (Edgar, 2004a,b),
MAFFT (Katoh et al., 2002), or Clustal � (Sievers et al., 2011)
on each ARG.

7. Detection of sequence variants on previously obtained
MSA files, for the subsequent validation of known SNPs
conferring AMR.

8. Creation of the readily navigable HTML-formatted final
report, by integrating the corresponding text and plot files.

2.3. Genome Collection: Phenotyping and
Genotyping Assays
The genome sequence files from 100 Enterococcus faecium and
97 Enterococcus faecalis strains that were previously obtained
(Tyson et al., 2018a,b), and whose AMR profiles were further
characterized employing a panel of 9 antibiotic drugs (Tyson
et al., 2018b), were downloaded from the NCBI repository
(Accession: PRJNA292665 and PRJNA292669) in July 2019, and
alternatively, have been made available from a dedicated Zenodo
repository (Panunzi, 2019). The main biological and genomic
features, including their genome, assembly and BioSample
Accession IDs, sequence coverage, N50 values as well as isolation
sources and antibiotic drug susceptibility characterization can be
found in Table S1.
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The authors (Tyson et al., 2018b) appraised the antimicrobial
susceptibilities of the selected strains by comparing the
minimum inhibitory concentration (MIC) values, which
were determined using an automated broth microdilution
method (Trek Diagnostics, Independence, OH) with the
US National Antimicrobial Resistance Monitoring System
(NARMS) CMV3AGPF plates, to the breakpoints defined in
the 2015 Clinical and Laboratory Standards Institute (CLSI)
guidelines (CLSI, 2015). However, since the analyzed dataset
is mainly composed of bacterial isolates derived from animals,
the zone diameter interpretations should be made using
veterinary standards. Regrettably, this relevant information
was not provided by Tyson et al. (2018b). Therefore, in our
present study we specify that these reported susceptibilities
were employed only for validation purposes. Afterwards, the
contrast between the measured and the MIC breakpoint values
allowed the determination of the “resistant” and “susceptible”
phenotypes. With reference to the ARG determination at
genomic level, Tyson et al. (2018b) employed the ResFinder
(Zankari et al., 2012) and the NCBI Pathogen Detection
(https://www.ncbi.nlm.nih.gov/pathogens/) DBs. Thereafter,
Tyson et al. (2018b) added two further categories—“resistant*”
and “susceptible*”—when differences between genotype
(presence or absence of corresponding ARG) and phenotype
(resistant or susceptible) occurred. The “resistant*” label
indicated a resistant phenotype but the absence of a verified
ARG, while the “susceptible*” label indicated the opposite:
a susceptible phenotype but the presence of a verified ARG.
Nevertheless, in our study we have replaced this latter category
for “silenced resistance.”

2.4. Genome Annotation, Pan-Genome
Estimation, and Phylogeny Assessment
The automated annotation of genomes from both datasets
(Accession: PRJNA292665 and PRJNA292669) was performed
using PROKKA v1.11 (Seemann, 2014), while the core-genome
and pan-genome were estimated using CD-HIT (Fu et al., 2012)
by clustering predicted genes when ortholog loci shared≥ 95% of
amino acid sequence identity and ≥ 95% of alignment coverage.
A total of 424 genes existing in all strains were estimated
to compose the core set. Afterwards, those 424 genes were
aligned using MUSCLE (Edgar, 2004a,b) and concatenated into
a final MSA file comprising 327,376 bps of DNA sequence. A
phylogenetic tree was built from this core-genome MSA after
filtering recombination regions using GUBBINS (Croucher et al.,
2014) under default parameters. Visualization of the tree and
AMR phenotypes was conducted using the Interactive Tree Of
Life (iTOL) v4 online tool (Letunic and Bork, 2019).

3. RESULTS

3.1. Phylogeny and Distribution of AMR
Phenotypes
A total of 100 E. faecium and 97 E. faecalis isolates constituted our
validation set. This collection of genomes had been sequenced
and phenotyped–phenotyping is described in Methods, while

genome samples accession codes and phenotyping data are
included in Table S1—in previous studies (Tyson et al., 2018a,b).
However, the authors did not include a phylogeny of the
analyzed samples.

In our present study, the annotation of the 197 genome
assemblies produced a sum of 531,915 putative protein-coding
sequences, that were subsequently grouped into 13,702 clusters of
orthologous genes (COGs). The pan-genome calculation evinced
that 424 of these COGs were present in all the samples and
constituted the core-genome. The successive alignment and
catenation of core-genome COGs procured a MSA composed
of 327,376 nucleotides that was later employed in the phylogeny
reconstruction (illustrated on the uppermost of Figure 2).

The phylogeny showed a large evolutionary distance between
both species—faecium and faecalis—that produced, as awaited,
a complete break inside the tree. Briefly, in terms of AMR
distribution, the original study (Tyson et al., 2018b) found that
46 isolates were pan-susceptible, with 90 isolates resistant to
drugs in at least three antimicrobial classes (Table S1).We further
compared the number of resistant isolates between both species
according to the antimicrobial classes, and found important
differences in: aminoglycosides (E. faecalis: 50, E. faecium: 38),
β-lactams (E. faecalis: 6, E. faecium: 23), fluoroquinolones (E.
faecalis: 1, E. faecium: 0), lipopeptides (E. faecalis: 2, E. faecium:
12), macrolides (E. faecalis: 55, E. faecium: 34), nitrofuran (E.
faecalis: 1, E. faecium: 41), phenicol (E. faecalis: 20, E. faecium: 2),
and streptogramin (E. faecalis: 0, E. faecium: 30). On the contrary,
tetracyclines (E. faecalis: 69, E. faecium: 64), glycopeptides
(all susceptibles) and oxazolidinones (all susceptibles) indicated
somewhat similar AMR profiles.

3.2. Efficiency of sraX in Resolving AMR
Determinants: Concordance With
Phenotypes
The automated in silico resistome analysis using sraX was
performed for establishing the one-to-one correspondence
between the phenotyping and genotyping data (see Figure 2).

As previously mentioned, all isolates were vancomycin and
linezolid susceptibles, and consistent with this phenotype,
neither related ARG nor 23S rRNA mutations were discovered.
Regarding ciprofloxacin, only one E. faecalis isolate evinced
the resistant phenotype. The sraX’s SNP analysis detected
the gyrA S84F mutation, in agreement with previous studies
accounting for its association with the resistant phenotype
(El Amin et al., 1999) (see the corresponding MSA file inside the
“SNPs_conferring_AMR” folder, Supplementary Information).

Considering chloramphenicol resistance, phenotyping data
revealed a remarkable species restraint that made E. faecalis
almost exclusive. The chloramphenicol acetyltransferase genes
cat, cat(pC221), and cat(pC194)were responsible for the exhibited
resistance, although 2 isolates had the genes but were phenotyped
as susceptibles (see Table 2).

In respect to erythromycin and tylosin resistance, it was
revealed that both phenotypes consistently co-occurred: 80
tylosin-resistant isolates out of 86 erythromycin-resistant isolates
were the same samples. Among these isolates, 81 harbored the
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FIGURE 2 | AMR activities of the collection of 197 Enterococcus spp. strains. A phylogenetic tree is shown on top of the heatmap. Red and light-green colors indicate

resistance and susceptibility to corresponding antibiotics. Dark-red color indicates an exhibited resistance phenotype in the absence of an in silico detected ARG,

while a dark-green color indicates an exhibited susceptible phenotype in the presence of an in silico detected ARG.

erm(B) gene, while 3 of them the erm(A) gene. In addition, the
msr(C) gene was also present in macrolide-resistant isolates.

Regarding streptomycin resistance, many strains were
phenotyped as susceptible but harbored the aadE and str genes.
In the original study the authors mentioned to have employed the
same resistance cutoff for both species, a decision that probably

was the source of the experimental error (Tyson et al., 2018b).
For this reason, we had not further considered the streptomycin
phenotyping data in our present study.

Concerning kanamycin and gentamicin resistance, the
aac(6’)-aph(2”), aph(2”)-Id, aph(3’)-III, and aadD genes were
responsible for the resulting phenotype in 96.75% of resistant
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TABLE 2 | Genotype–phenotype concordance of sraX analysis for selected E.

faecalis and E. faecium strains.

Phenotype: resistant

(R)

Phenotype:

susceptible (S)

Concordance

(%)

Drug Species Genotype:

R

Genotype:

S

Genotype:

R

Genotype:

S

GEN
E. faecium 12 1 0 87 99

E. faecalis 37 1 4 55 95

KAN
E. faecium 18 4 1 77 95

E. faecalis 47 1 1 48 98

ERY
E. faecium 25 7 3 65 90

E. faecalis 53 1 2 41 97

TYL
E. faecium 26 2 2 70 96

E. faecalis 54 1 1 41 98

CHL
E. faecium 2 0 0 98 100

E. faecalis 20 0 2 75 98

TET
E. faecium 64 0 5 31 95

E. faecalis 68 0 3 25 97

QDA E. faecium 22 8 4 66 88

CIP E. faecalis 1 0 0 96 100

VAN
E. faecium 0 0 0 100 100

E. faecalis 0 0 0 97 100

LZD
E. faecium 0 0 0 100 100

E. faecalis 0 0 0 97 100

Total 449 26 28 1269 97

GEN, gentamicin; KAN, kanamycin; ERY, erythromycin; TYL, tylosin; CHL,

chloramphenicol; TET, tetracycline; QDA, quinupristin-dalfopristin; CIP, ciprofloxacin;

VAN, vancomycin; LZD, linezolid.

Bold character indicates the verified global average concordance rate.

isolates. Remarkably, the co-occurrence of the aac(6’)-aph(2”),
aph(3’)-III, and erm(B) genes was revealed, indicating their
putative transmission on a mobile element.

In view of tetracycline resistance, the tet(L), tet(M), tet(S), and
tet(O) genes were detected in 96% of 133 resistant strains. On
the contrary, eight susceptible isolates held a copy of tet(L) or
tet(M) genes. In respect to streptogramin resistance, E. faecalis
is considered constitutionally resistant, while the vat(D) and/or
vat(E) genes were found in E. faecium in 22 out of 30 resistant
strains and in 4 out of 70 susceptible isolates, what produced a
88% of concordance.

Considering penicillin resistance, previous studies have shown
that mutations on the pbp4 (Duez et al., 2001) and pbp5 (Zorzi
et al., 1996; Rice et al., 2004) genes accounted for the observed
resistant phenotypes in E. faecalis and E. faecium, respectively.
In accordance with these results, our SNP analysis (see the
corresponding MSA file, Supplementary Information) verified
the occurrence of the T500I and E630V mutations in 17 out of
21 resistant E. faecium strains. Additionally, the co-occurrence
of the serine or aspartate codon insertion at position 467 was
detected in 4 resistant isolates harboring the E630V mutation.
The event of concurrent mutations was detected likewise in the
M486A and P668S mutations, which were found in 3 and 6
resistant isolates harboring the E630V mutation, respectively.
However, the T500I and P668S mutations were also found in
several susceptible isolates and 2 resistant E. faecium strains
neither evidenced any recognized mutations on the pbp5 gene

nor revealed alternative genetic determinants, like β-lactamases
enzymes. In view of recognized pbp4 mutations, our SNP
analysis has validated the D573E amino-acid change that has
been recently reported (Conceição et al., 2014; Infante et al.,
2016) in 11 E. faecalis strains (see the corresponding MSA
file, Supplementary Information). Furthermore, we detected
an alternative mutation (I50T) in the same sequence position
where a validated mutation (I50Y) was formerly reported (Ono
et al., 2005). Nevertheless, none of the E. faecalis strains were
phenotyped as penicillin-resistant in the original study (Tyson
et al., 2018b). For this reason, and because of the apparent
inconsistencies in the pbp5 phenotypes, we did not include the
penicillin in the concordance estimation study.

Regarding daptomycin resistance, some mutations occurring
on the lia(F), lia(S), lia(R), YybT, gsh(F), gdp(D), and cls genes
were previously reported (Arias et al., 2011). However, a similar
situation was found: our SNP analysis was capable of confirming
the E192Gmutation on the lia(S) gene in 5 E. faecium strains (see
the corresponding MSA file, Supplementary Information), but
none of these samples were phenotyped as resistant in the original
study (Tyson et al., 2018b). Still, the putative existence of not yet
recognized alternative mutations or unknown mechanisms is a
possibility, since several other strains were certainly phenotyped
as resistant.

Finally, tigecycline and nitrofurantoin susceptibilities were
assayed as well. With regard to tigecycline resistance, only
8 resistant strains were detected and all of them possessed
the tet(L) and tet(M) genes. A previous study linked the
upregulation of these tetracycline resistance genes with the only
known resistance mechanism (Fiedler et al., 2015). However,
regarding nitrofurantoin resistance, the discovery of genomic
AMR determinants is impracticable since any clear mechanism
has been established so far.

In addition, the in silico analysis allowed to identify
further ARGs which confer resistance to trimethoprim,
lincomycin, spectinomycin, biocides and metals, and some other
antimicrobials. However, none of them are currently employed
for treating Enterococcus spp. infections. Probably, these ARGs
are involved in conferring resistance to susceptible organisms via
their horizontal transference. Notably, trimethoprim resistance
genes dfr(D), dfr(E), and dfr(G) were only detected in E. faecalis
strains, as well as the efr(A) and efr(B) genes conferring resistance
to multiple drugs and the macrolide resistance gene mph(D).
Additionally, the bacitracin resistance gene bac(A) and the
streptogramin resistance gene lsa(A), along with the efp(A),
eme(A) and major facilitator superfamily transporter genes
conferring resistance to multiple drugs, were only found in E.
faecalis strains likewise. Conversely, the macrolide resistance
genes mph(B) and msr(C) were only found in E. faecium strains,
as well as the aac(6’)-li and spc genes conferring resistance to
aminoglycosides. In addition, the ade(C) and efm(A) genes
conferring resistance to multiple drugs were also detected
only in E. faecium strains. In contrast, the lsa(E) and lnu(B)
genes conferring resistance to streptogramin and lincosamide,
respectively, were observed in both E. faecalis and E. faecium
strains. Lastly, the bcr(A), bcr(B), and bcr(C) biocide genes,
which are involved in benzalkonium chloride—a quaternary
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ammonium compound—resistance (Dutta et al., 2013), were
detected in both E. faecalis and E. faecium strains as well as
the tcr(A), tcr(B), tcr(Y), and tcr(Z) copper resistance genes.
Additionally, the cht(R), cht(S), cop(B), and cop(Y) copper
resistance genes were only detected in E. faecium strains, while
the mer(A)mercury resistance gene was only found in E. faecalis
strains, respectively. For a thorough and comparative analysis of
in silico detected ARGs (see Figure 2, Figure S2, and Table S1).

3.3. Confirmation Rate of Detected AMR
Determinants
Our previous results have proven a close correspondence
between the in silico AMR genotype predictions and the
experimentally assessed phenotypes. These findings were in
accordance with the original study (Tyson et al., 2018b).
Following the fidelity assessment of sraX, we next calculated
the proportion of matching ARGs in corresponding genomes
(see Table 3) and contrasted with the original values (Tyson
et al., 2018b). A total of 25 ARGs conferring resistance
to nine antimicrobial classes were distinguished across the
samples. Among identified ARGs, 18 of them had a direct

connection with phenotyping assays, while the remaining
were related to drugs not usually employed for treating
Enterococcus spp. infections. Comparing to original findings
(Tyson et al., 2018b), we globally verified 425 out of 436
detection events that were reported. Our results implied almost
an exact correspondence with the original study (validation
rate: 99.15%), suggesting a considerable accuracy of our
proposed tool.

4. DISCUSSION

Several studies have proven the significant advantages of WGS
approaches over traditional methods for the molecular disease
characterization and further epidemiological surveillance of
bacterial pathogens. Nevertheless, major technical difficulties
are encountered not only with implementing WGS in clinical
and reference laboratories, but when analysing the obtained
data as well. The amount and complexity of data impose the
requirement of specific bioinformatics skills. However, these
tough challenges are largely overcome in the laboratories by
employing automated and user-friendly bioinformatics pipelines.

TABLE 3 | List of detected ARGs in isolates.

Gene Drug class Drug on panel
Number of E. Number of E.

Validation (%)
faecium isolates faecalis isolates

aac(6)-aph(2) Aminoglycoside GEN, KAN 3 (4) 39 (41) 93.4

aph(2)-Id Aminoglycoside GEN, KAN 8 (8) 0 (0) 100

aph(3)-III Aminoglycoside KAN 13 (13) 38 (42) 92.7

aadD Aminoglycoside KAN 1 (1) 0 (0) 100

erm(A) Macrolide ERY TYL 3 (3) 0 (0) 100

erm(B) Macrolide ERY TYL 27 (27) 54 (55) 98.8

cat Phenicol CHL 0 (0) 17 (18) 94.5

cat(pC221) Phenicol CHL 0 (0) 4 (4) 100

cat(pC194) Phenicol CHL 2 (2) 0 (0) 100

vat(E) Streptogramin QDA 20 (20) 1 (1) 100

vat(D) Streptogramin QDA 2 (2) 0 (0) 100

lsa(A) Streptogramin QDA 0 (0) 96 (97) 99

tet(L) Tetracycline TET 50 (50) 53 (53) 100

tet(M) Tetracycline TET 59 (59) 69 (70) 99.2

tet(O) Tetracycline TET 1 (1) 1 (1) 100

tet(S) Tetracycline TET 3 (3) 1 (1) 100

gyrA (S84F) Fluoroquinolone CIP 0 (0) 1 (1) 100

pbp5 (E630V) β-lactam PEN 3 (3) 0 (0) 100

pbp5 (ins D467) β-lactam PEN 1 (1) 0 (0) 100

pbp5 (ins S467) β-lactam PEN 3 (3) 0 (0) 100

spc Aminoglycoside None 3 (3) 0 (0) 100

lnu(A) Lincosamide None 0 (0) 2 (2) 100

lnu(B) Lincosamide None 38 (38) 15 (15) 100

mph(B) Macrolide None 1 (1) 0 (0) 100

msr(C) Macrolide None 85 (85) 0 (0) 100

dfrD Trimethoprim None 0 (0) 1 (1) 100

dfrG Trimethoprim None 0 (0) 7 (7) 100

Total 325 (327) 400 (409) 99.15

The numbers represent their prevalence within the analyzed dataset, that was established by sraX. In parentheses are shown the original values reported by Tyson et al. (2018b). For

computing the confirmation rate, only those ARGs and SNPs which were coincidental in both studies were considered.

Bold character indicates the corroborated global average validation rate.
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In addition, the application of standardized analytical methods
allows the reproducibility of results that might be subsequently
shared among laboratories.

Aiming at fulfilling these technical needs, in the current study
we present sraX as a novel bioinformatic tool for detecting,
characterizing, plotting and producing a final comprehensive
report about the presence of AMR determinants on assembled
genomes. It constitutes a comprehensive, automated, and
efficient standalone tool for performing diverse complex analyses
and producing graphical results embedded in a HTML-based
summary. The simplicity of its computational operation allow
users to easily download, install, configure and finally complete
several difficult assignments, by orchestrating diverse algorithms
through a primary single-step command. It can properly be
deployed from source code, by running an assistance bash
script, or even simpler, as a docker image. Regarding its
functionalities, despite apparent similarities with previously
developed tools, sraX offers several unique advantages over
them as it supplies non-redundant ARG annotations, SNP
analysis through multiple-sequence alignment (MSA) files and
graphic representation of discovered ARGs illustrating their
existence and corresponding sequence identity percentage on
each genome, their subsequent genomic context analysis and the
global proportions of drug classes and type of mutated locus.

Concerning the performance of our tool, we have evaluated
the walltime and memory required to achieve the resistome
analysis. Both metrics were obtained after processing with sraX
increasing amount of data, that was acquired by randomly
sampling intervals of 100 up to 1,000 genome sequence files,
in a five replicates bootstrapped operation (see Figure 3).
These sequence files were selected from a set composed of
5,000 Klebsiella pneumoniae distinct genomes. We have chosen

this organism since its genome size (≈5.5 Mbp) is typical
from a Gram-negative bacteria. Our results indicated a linear
scale of running time (≈12.5 min) and memory consumption
(≈250 MB) with the processing of every 100-genome interval
(Figures 3A,B, respectively). Defaults parameters were employed
to ensure consistency during the testing. Each test was
independently performed on a desktop computer Intelr

Xeonr W-2104 processor (4-core, 3.20 GHz) with 32 GB
RAM. The fact of employing a simple desktop computer and
completing the resistome analysis quite rapidly, envisages a
greater performance when running sraX under more powerful
computational resources.

Afterwards, in order to assess the functionality and verify
the accuracy of our proposed tool, we selected a genome
dataset belonging to Enterococcus spp. for which AMR has
been previously analyzed and genome sequences were available
(Tyson et al., 2018b). When examining the genotype-phenotype
correspondence for each assayed antimicrobial drug, sraX
achieved an overall 97% of success and completely matched
original results (Tyson et al., 2018b). Regarding the overall
accuracies, our implementation was able to confirm a global
99.15% of all detection events—involving AMRdeterminants and
genomes—reported in the original study (Tyson et al., 2018b). In
addition, sraX confirmed the existence of distinct AMR profiles
according to the involved species. For example, phenotyping
and genotyping data evinced that phenicol resistance was almost
exclusively determined in E. faecalis strains, while streptogramin
resistance was only detected in E. faecium strains. However,
in both species, tetracycline resistance genes were extremely
frequent. Regarding not assayed drugs, the in silico AMR
profiling analysis showed that trimethoprim resistance genes
dfrD and dfrE were detected only in E. faecium, while macrolide

FIGURE 3 | Benchmark comparisons of (A) walltime and (B) RAM consuming that were required by sraX to complete the resistome analysis. A collection of 5,000

Klebsiella pneumoniae genomes (average size: 5.5 Mbp) were randomly sampled five times at increasing 100-genome intervals and run on a desktop computer (4

cores, 32GB RAM). The processing of additional genomes evidenced a linear scaling of sraX performance, based on running time and RAM usage.
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and streptogramin resistance genesmph(B) andmsr(C)were only
found in E. faecalis. Globally, except for a few discrepancies,
the results were entirely compatible with published findings
(Tyson et al., 2018b). On that account, sraX has demonstrated
a proven capability for discovering AMR determinants and
has supported the utility of WGS applications in clinical
microbiology. In addition, sraX was able to validate known SNPs
conferring resistance.

Considering the drawbacks, sraX is wholly dependent on
assembled genomic contigs that must be provided. Since the
de novo assembly is a time consuming and computationally
expensive procedure which, in addition, its accuracy is
overwhelmingly influenced by the nature of the genome, we
have finally decided to omit this step and give priority to AMR
detection facets. In general, the tools that exploit read mapping-
based methods or generate de novo or reference-based assemblies
are targeted for metagenomic samples. The main problem with
these samples is their high microbial diversity and unbalanced
abundance that clearly limit the AMR profiling analysis.

5. CONCLUSIONS

sraX facilitates the resistome analysis of all-levels assembled
genomes through a series of automated procedures. In the end,
the obtained results are easily visualized as fully navigableHTML-
formatted files containing summarized data and embedded plots.
Challenging analysis, such as the SNP validation or gene context
examination, can be performed in a one-step systematic and
user-friendly manner. Additional tough assignments on ARG
multiple-hits depletion and complex graphical representations

are effectively completed as well. Lastly, sraX is capable of
analyzing a variety of curated data-sets of properly formatted
ARG sequences.
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