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The host immune system is engaged in a constant battle with microorganisms, with the
immediate detection of pathogenic invasion and subsequent signalling acting as crucial
deterrents against the establishment of a successful infection. For this purpose, cells
are equipped with a variety of sensors called pattern recognition receptors (PRR), which
rapidly detect intruders leading to the expression of antiviral type I interferons (IFN). Type
I IFN are crucial cytokines which exert their biological effects through the induction of
hundreds of IFN-stimulated genes (ISGs). The expression profile of these ISGs varies
depending on the virus. For a small subset of ISGs, their anti- or even proviral effects
have been revealed, however, the vast majority are uncharacterised. The spotlight is now
on herpesviruses, with their large coding capacity and long co-evolution with their hosts,
as a key to understanding the impact of ISGs during viral infection. Studies are emerging
which have identified multiple herpesviral antagonists specifically targeting ISGs, hinting
at the significant role these proteins must play in host defence against viral infection,
with the promise of more to come. In this review, we will discuss the current knowledge
of the complex interplay between ISGs and human herpesviruses: the antiviral role of
selected ISGs during herpesviral infections, how herpesviruses antagonise these ISGs
and, in some cases, even exploit them to benefit viral infection.
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INTRODUCTION

The Herpesviridae is a family of large, structurally complex viruses with double-stranded DNA
genomes. This family is classified into three subfamilies according to biological and genomic
similarities: alphaherpesvirinae, betaherpesvirinae, and gammaherpesvirinae (Pellett and Roizman,
2007). Several viruses with significant medical relevance are represented in this family, which
cause a series of maladies ranging from cold sores or fever blisters to a variety of human cancers.
A distinctive feature of herpesviruses is their ability to establish lifelong latent infections, with
infected individuals serving as reservoirs from which period reactivation leads to continual and
anew transmission to naive hosts.

Herpesviruses are known for the impressive toolbox they have evolved to circumvent the host’s
immune response. Throughout the lifelong coexistence with their hosts, herpesviruses antagonise
the immune response at every level: the signalling pathways downstream of pattern recognition
receptors (PRR) (reviewed in Liu et al., 2019; Stempel et al., 2019) and the IFNα/β receptor
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(IFNAR) (Zimmermann et al., 2005), Natural Killer cell responses
(reviewed in De Pelsmaeker et al., 2018), the complement
system (reviewed in Stoermer and Morrison, 2011) and the
adaptive immune response (reviewed in Smith and Khanna,
2013). However, our understanding of the interplay between
herpesviruses and the interferon-stimulated gene (ISG) network
is only in its infancy. So far, more than 380 human ISGs, with
their functions ranging from sensors, cytokines or transcription
factors, to proapoptotic proteins or negative regulators, have
been tested for their ability to inhibit the replication of a panel
of RNA viruses, revealing that different viruses are targeted by
unique sets of ISGs (Schoggins et al., 2011). Such a screen has not
been performed for the different members of the Herpesviridae,
however, recent studies have identified multiple herpesviral
antagonists which target ISGs, showcasing the importance of
ISGs in combating herpesviral infection.

In this review, we will discuss the current knowledge regarding
the complex interaction between ISGs and human herpesviruses
and highlight how each subfamily of human herpesviruses has
evolved unique mechanisms to counteract ISGs or, in some cases,
even exploit ISGs to the advantage of the virus (Figure 1).

HOW IT ALL STARTS: ISGs ENTER THE
GAME

The DNA sensing pathway mediated by the PRR cyclic GMP-
AMP synthase (cGAS) and gamma-interferon-inducible protein
16 (IFI16) is crucial for the initial immune response to herpesviral
infection in many cell types (Ablasser et al., 2013; Li et al.,
2013; Wu et al., 2015; Paijo et al., 2016). The DNA sensors
cGAS and IFI16 bind to viral and aberrantly localised cellular
DNA. This interaction activates a signalling cascade through
the adaptor protein stimulator of interferon genes (STING)
and TANK-binding kinase 1 (TBK1), thereby activating the
transcription factors interferon regulatory factor 3 (IRF3) and
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) (reviewed in Chen et al., 2016). This leads to the
induction of type I interferons (IFN), which exert their activity in
an autocrine and paracrine manner. By binding to the interferon-
α/β receptor (IFNAR), these cytokines lead to phosphorylation
and activation of the transcription factors signal transducers and
activators of transcription, STAT1 and STAT2, recruiting IRF9
into the complex which then translocates to the nucleus, resulting
in ISG expression (reviewed in Schneider et al., 2014). Another
class of ISGs, known as non-canonical ISGs, are activated directly
by IRF3 in the absence of type I IFN (Schoggins et al., 2014).
For a third class of proteins classified as ISGs, the presence of
IRF3 or type I IFN is not an absolute prerequisite for their
expression, since they are already expressed basally or their
expression is induced by other pathways, i.e., NF-κB signalling
(reviewed in Schoggins, 2019). Thus, due to this complexity and
the wide range of functions that ISGs can exert, studying how
herpesviruses manipulate ISGs to their advantage serves as a
window into a greater understanding of the myriad of ISGs and
their role in innate immunity. Similar to the studies on ISGs
and RNA viruses (Schoggins et al., 2011), studies identifying how

herpesviruses inhibit or exploit the function of ISGs may reveal
the essential nature of the role these ISGs play in viral defence.

WHEN HERPESVIRUSES WIN:
ESCAPING THE ANTIVIRAL EFFECTS OF
ISGs

Herpes Simplex Virus 1
Herpes simplex virus 1 (HSV-1) belongs to the
Alphaherpesvirinae subfamily. HSV-1 establishes a primary
infection in mucosal epithelia and a latent infection in the
ganglia of sensory nerves. This infection, as in the case of all
herpesviruses, can be asymptomatic, but it may also present
as acute gingivostomatitis. Furthermore, HSV-1 can lead to
serious illnesses like ophthalmic infections, meningitis or
encephalitis (Pellett and Roizman, 2007). Recently, HSV-1 has
also been associated as a major risk factor for Alzheimer’s disease
(Itzhaki, 2018).

Targeting DNA Sensing: ICP0 Degrades the ISG IFI16
Herpesviruses replicate in the nucleus of their host cells. The
ISG IFI16 is a cellular DNA sensor localized in the nucleus
of many cell types (Unterholzner et al., 2010; Duan et al.,
2011; Veeranki and Choubey, 2012; Jonsson et al., 2017).
Orzalli et al. (2012) demonstrated that HSV-1 targets the IFI16
protein. During infection, when HSV-1 expresses the immediate-
early viral protein ICP0 in the nucleus of human foreskin
fibroblasts (HFF), IFI16 undergoes a change in its location and
is continuously degraded. However, another study found that
the expression of ICP0 alone is neither sufficient nor necessary
for degradation of IFI16 in the tumor-derived cell line U-2 OS,
since infection with an ICP0-null mutant still resulted in IFI16
degradation (Cuchet-Lourenco et al., 2013). A follow-up study
by Orzalli et al. (2016) clarified this discrepancy by showing
that IFI16 protein levels decrease upon HSV-1 infection in HFF,
keratinocytes (NOK), and HeLa cells, but not in the U-2 OS cell
line, and additionally discovered that ICP0 is not the only protein
involved in IFI16 degradation (Table 1). This suggests that the
role of ICP0 for IFI16 degradation is dependent on the cell type
and other cellular or viral factors contributing to IFI16 stability
(Kalamvoki and Roizman, 2014).

Degrading ISG mRNA: UL41 Counteracts ZAP and
IFIT3
The HSV-1 tegument protein UL41, also known as virion host
shutoff (vhs) protein, is an endoribonuclease that degrades
mRNA (Everly et al., 2002; Page and Read, 2010). It is proposed
that viral and cellular mRNAs containing AU-rich elements
(ARE) in the 3′-untranslated region (3′-UTR) are the preferred
target for UL41 (Esclatine et al., 2004; Taddeo and Roizman,
2006). Since ARE regions are frequently present in transcripts
connected to the immune response, including interferons and
chemokines (Bakheet et al., 2001), UL41 could potentially target
a broad spectrum of transcripts. To date, the zinc finger CCCH-
type antiviral protein 1 (ZAP) and the ISG interferon-induced
protein with tetratricopeptide repeats 3 (IFIT3) are two ISGs
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FIGURE 1 | Herpesviruses use a variety of strategies to manipulate ISGs. Viral proteins can interfere with protein expression and stability of ISGs, inhibit signalling
pathways exerted by ISGs or, in some cases, exploit ISGs for their own benefit. Viral proteins are depicted in red, while ISGs are shown in green. Abbreviations:
HSV-1, herpes simplex virus type 1; HCMV, human cytomegalovirus; KSHV, Kaposi’s sarcoma-associated herpesvirus; IFI16, gamma-interferon-inducible protein 16;
STING, stimulator of interferon genes; IFN, interferon; ZAP, zinc finger CCCH-type antiviral protein; IFIT3, interferon-induced protein with tetratricopeptide repeats 3;
NMI, N-myc-interactor; STAT1/2, signal transducer and activator of transcription 1/2; ISG15, interferon-stimulated gene 15; IRF, interferon regulatory factor; OASL,
2′-5′-Oligoadenylate synthetase like; OAS1, 2′-5′-Oligoadenylate synthetase 1; RNase L, ribonuclease L.

that contain ARE in their 3′-UTR which have been shown to be
incapacitated by UL41 (Figure 1).

The zinc finger CCCH-type antiviral protein is a non-
canonical ISG (Schoggins et al., 2014), meaning that its
expression can also be induced in the absence of type I IFN
production. ZAP exerts antiviral activity against a diverse range
of viruses such as retroviruses, alphaviruses, filoviruses, hepatitis
B virus and Japanese encephalitis virus by binding to RNA and
indirectly mediating its degradation (Bick et al., 2003; Muller
et al., 2007; Zhu et al., 2011; Mao et al., 2013; Takata et al., 2017;
Chiu et al., 2018). However, ZAP fails to control other viruses,

e.g., influenza A virus (Liu et al., 2015; Tang et al., 2017) or
enterovirus A71 (Xie et al., 2018).

In the case of HSV-1, ectopic expression of both rat and
human forms of ZAP does not affect HSV-1 infection (Bick
et al., 2003), which suggested that a viral antagonist may
counteract the antiviral activity of ZAP. Accordingly, a luciferase-
based assay in 293T cells identified the HSV-1 UL41 protein
as a ZAP antagonist (Su et al., 2015). In accordance with
previous observations regarding the nuclease activity of UL41,
this viral protein was shown to degrade ZAP mRNA during
HSV-1 infection. Correspondingly, growth of a mutant virus
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TABLE 1 | Viral antagonists of interferon-stimulated genes (ISGs).

Virus Strain Viral antagonist Target ISG Cell type Viral evasion strategy References

HSV-1 KOS ICP0 IFI16 HFF Degrades IFI16 Orzalli et al., 2012

17+ ICP0 IFI16 U-2 OS Does not degrade IFI16 Cuchet-Lourenco et al.,
2013

KOS, 17, F UL41 (vhs) IFI16 HFF NOK, HeLa, U-2
OS

ICP0 degrades IFI16 in a cell-type specific manner; UL41
also reduces protein levels of IFI16 (presumably by RNA
degradation)

Orzalli et al., 2016

F UL41 ZAP 293Trex-hZAPL/S Degrades ZAP mRNA through its endoribonuclease activity,
preferentially binds ARE motifs

Su et al., 2015

F UL41 IFIT3 293T Decreases IFIT3 expression levels by degrading IFIT3
mRNA, does not target IFIT1 or IFIT2

Jiang et al., 2016

HCMV AD169 UL83 (pp65) IFI16 HFF Interacts with IFI16 to block its oligomerisation and prevents
signalling; promotes transcription of immediate early genes
by exploiting the binding capacity of IFI16 to DNA

Li et al., 2013

TB40/E Biolatti et al., 2016

AD169 Cristea et al., 2010

Towne
(BAC-derived)

UL23 NMI U251 Inhibits ISG transcription by binding to NMI and disrupting
its association with STAT1

Feng et al., 2018

Towne IE1 (UL123) ISG15 HF Inhibits HCMV-induced ISG15 expression and thereby
prevents ISGylation

Kim et al., 2016

AD169 UL26 ISG15 HF Reduces the accumulation of ISGylated proteins by acting
as a decoy target for ISG15

Kim et al., 2016

Towne ORF94 (UL126a) OAS1 HF Inhibits mRNA and protein expression of OAS1, leading to
reduced viral RNA degradation

Tan et al., 2011

KSHV iSLK.219
harbouring
rKSHV.219*

vIRF1 ISG15 293, 293-TLR, BCBL
PEL, iSLK.219

Reduces ISGylation of cellular target proteins, leading to
IRF3 instability and decreased ISG transcription; acts as a
decoy target for ISG15

Jacobs et al., 2015

HuARLT2
harbouring
rKSHV.219*

ORF20 OASL 293T, HeLa, HFF,
HuARLT2-rKSHV.219

ORF20 and OASL interact; ORF20 increases RIG-I
dependent OASL expression; OASL and ORF20
concomitantly enhance KSHV infection

Bussey et al., 2018

*These studies used iSLK or HuARLT2 cells that were latently infected with recombinant rKSHV.219 (Vieira and O’Hearn, 2004; Myoung and Ganem, 2011;
Lipps et al., 2017). HFF, human foreskin fibroblasts; HF, human fibroblasts.

lacking UL41 expression was impaired in the presence of ZAP
(Su et al., 2015).

Similarly, IFIT3 was reported to have no effect on HSV-1
infection (Jiang et al., 2016). As for ZAP, human IFIT proteins
with the family members IFIT1, IFIT2, and IFIT3 belong to
the subgroup of non-canonical ISGs (Schoggins et al., 2014).
IFIT3 mediates the association of TBK1 with mitochondrial
antiviral-signalling protein (MAVS) at the mitochondria (Liu
et al., 2011), enhancing the MAVS-TBK1 signalling axis.
Notably, IFIT3 inhibits the replication of HSV-1 lacking UL41
expression, underlining the importance of UL41 in evading
the antiviral effect of IFIT3. The authors showed that UL41
degrades IFIT3 mRNA, but not that of IFIT1 or IFIT2 (Jiang
et al., 2016), indicating that HSV-1 may specifically target
IFIT3 to prevent the MAVS-TBK1 association, thus suppressing
downstream signalling.

Human Cytomegalovirus
Human cytomegalovirus (HCMV), also called human
herpesvirus 5 (HHV-5), is a member of the Betaherpesvirinae
subfamily. HCMV usually causes only mild disease in
immunocompetent individuals. However, in immunosuppressed
individuals such as AIDS or transplant patients, HCMV infection
can cause severe complications (reviewed in Arvin and National
Center for Biotechnology, 2007). HCMV infection during

pregnancy can cause long-term sequelae in newborns, such
as hearing loss, vision abnormalities, microcephaly or global
development delays.

Targeting DNA Sensing: UL83 Hijacks the ISG IFI16
Human cytomegalovirus, as for HSV-1, interferes with DNA
sensing by targeting IFI16 via the UL83 encoded tegument
protein pp65. Upon HCMV infection, IFI16 is activated in the
nucleus and undergoes oligomerisation, which is a prerequisite
for it to promote the immune response (Cristea et al., 2010;
Li et al., 2013). Accordingly, siRNA-mediated silencing of
IFI16 dampens cytokine transcription in response to HCMV
infection (Li et al., 2013). However, UL83 prevents IFI16
oligomerisation, thus disarming the antiviral effect of IFI16
during HCMV infection (Li et al., 2013). UL83 even goes a
step further in its manipulation of host responses: it exploits
the binding capacity of IFI16 to DNA in order to form a
complex with the major immediate early promoter (MIEP)
of HCMV, thereby triggering viral transcription in the early
stages of infection (Cristea et al., 2010; Biolatti et al., 2016). In
this manner, UL83 not only prevents the antiviral activity of
IFI16 but also hijacks it to promote HCMV gene expression
(Figure 1). This viral protein serves as a stellar example of
the resourcefulness of herpesviruses in encoding a protein
that can simultaneously inhibit a host antiviral strategy while
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exploiting this same host response factor to promote its
own replication.

Fooling the Type I IFN Response: UL23 Inhibits ISG
Transcription by Targeting the ISG NMI
The ISG N-myc interactor (NMI) interacts with all STATs, except
STAT2, and enhances the recruitment of co-activators, such as
the transcription factors CREB-binding protein (CBP)/p300, to
the STAT complex. NMI specifically modulates IFN-induced
signalling to foster efficient STAT-dependent transcription
(Zhu et al., 1999). Recently, the HCMV tegument protein
UL23 was reported to inhibit the transcription of ISGs by
targeting NMI. Through a yeast two-hybrid screen, NMI
was identified as an interacting partner of UL23, which
was confirmed by co-immunoprecipitation in HCMV-infected
U251 cells (Feng et al., 2018). Using a combination of
immunofluorescence, cell fractionation and immunoblotting,
the authors showed that the binding of UL23 to NMI
disrupts its association with STAT1, thereby preventing the
translocation of both proteins to the nucleus (Figure 1). Infection
of U251 cells with an HCMV UL23-null mutant resulted
in enhanced transcription of antiviral genes and controlled
viral replication.

HCMV Finds Ways to Avoid ISGylation: Both IE1 and
UL26 Target ISG15
Interferon-stimulated gene 15 (ISG15) encodes an ubiquitin-like
protein that, in a similar way to ubiquitin, covalently conjugates
to lysine residues, thereby regulating protein function (reviewed
in Jeon et al., 2010). ISG15 modification is known as ISGylation,
which marks proteins for either degradation or stabilisation.
ISG15 is one of the most abundantly produced transcripts upon
induction of the type I IFN response (Der et al., 1998; Potter et al.,
1999) and exerts antiviral effects against DNA and RNA viruses
(Lenschow, 2010; Morales and Lenschow, 2013).

Human cytomegalovirus infection induces ISG15 expression,
which, through ISGylation, inhibits viral replication (Kim et al.,
2016). HCMV employs two proteins with two separate strategies
to evade this process (Figure 1). First, the viral immediate-
early protein IE1 suppresses ISG15 transcription (Kim et al.,
2016). However, this effect is only partial, and therefore some
ISG15 protein is still expressed to carry out ISGylation, which is
protected from the antagonistic activity of IE1. To counteract this
remnant ISG15, HCMV expresses the tegument protein UL26,
which reduces the accumulation of other viral ISGylated proteins
by acting as a decoy for ISGylation itself (Kim et al., 2016).
UL26 is known as an antagonist of the NF-κB pathway (Mathers
et al., 2014), but ISGylated UL26 can no longer antagonise NF-κB
signalling (Kim et al., 2016), suggesting that the virus sacrifices
one of its own proteins to avoid ISGylation of other viral proteins.
Why UL26 is more prone to ISGylation compared to other
viral proteins, and the impact of the loss of its effect on NF-κB
signalling during HCMV infection remains unclear at this stage.
This in turn raises the question of whether the dominant role of
UL26 is to inhibit NF-κB signalling or to act as an ISGylation
decoy, since these seem to be opposing functions.

Targeting an Essential Player of the Innate Immune
Response: ORF94 Against the ISG OAS1
Human cytomegalovirus expresses several genes during latency
to avoid immune recognition of infected cells (Jenkins et al.,
2004; Cheung et al., 2009), the so-called CMV latency-associated
transcripts (CLTs). These products are also expressed during
lytic HCMV infection. HCMV ORF94 (also known as UL126a)
is one such transcript, and its localization in the nucleus
suggests a potential role in cellular gene regulation (White et al.,
2000). ORF94 was shown to inhibit both the transcription and
translation of the ISG 2′-5′-oligoadenylate synthetase 1 (OAS1)
(Tan et al., 2011). OAS1, together with OAS2, OAS3, OAS-
like (OASL), and cGAS, forms the OAS family (Justesen et al.,
2000). Upon detection of double stranded RNA (dsRNA), OAS1-
3 proteins are activated and oligomerise ATP into 2′,5′-linked
oligoadenylate products (2-5A). This leads to the activation of
endoribonuclease L (RNase L), which in turn degrades viral
and cellular RNA. Thus, expression of HCMV ORF94 reduces
OAS mRNA and protein levels and consequently the formation
of 2-5A during productive infection in human fibroblasts
(Figure 1; Tan et al., 2011). However, as ORF94 is expressed
in both the productive and latent phases of HCMV infection,
it could potentially contribute to latency by modulating the
immune response, which would be an intriguing avenue of
further research.

Kaposi’s Sarcoma-Associated
Herpesvirus
Kaposi’s sarcoma-associated herpesvirus (KSHV), also
called human herpesvirus 8 (HHV-8), belongs to the
Gammaherpesvirinae subfamily. KSHV is one of the seven known
human oncoviruses. It can cause multiple malignancies, namely
Kaposi’s sarcoma, primary effusion lymphoma, multicentric
Castleman’s disease, or KSHV inflammatory cytokine syndrome
(Chang et al., 1994; Ablashi et al., 2002; Ganem, 2006).

Targeting ISGylation: vIRF1 and ISG15
Kaposi’s sarcoma-associated herpesvirus encodes four viral
homologs of cellular interferon regulatory factors (vIRFs) (Jacobs
and Damania, 2011). In 2013, Jacobs et al. (2013) showed
that vIRF1 inhibits the type I IFN response. By performing
affinity purification coupled to mass spectrometry with cells
expressing vIRF1 and in which TLR3 signalling was activated,
the authors identified the cellular ISG15 E3 ligase, HERC5, as
an interaction partner of vIRF1 (Jacobs et al., 2015). HERC5
interacts with the C-terminus of vIRF1. Moreover, vIRF1 reduces
total ISG15 conjugation levels on cellular target proteins, which
in turn inhibits IRF3 function as it relies on ISGylation
for stabilisation (Figure 1; Shi et al., 2010). Additionally,
siRNA-mediated knockdown of ISG15 or HERC5 increases
KSHV replication upon reactivation. Therefore, it is possible
that vIRF1 negatively regulates ISGylation by interacting with
HERC5, leading to a decrease in IRF3 stability and reduced
transcription of ISGs. Interestingly, the authors observed by
immunoprecipitation that vIRF1 is conjugated to ISG15 at
multiple sites, suggesting a role as a viral ISGylation target
similar to the HCMV protein UL26 (Kim et al., 2016),
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which may reflect a conservation of this function between
herpesvirus subfamilies.

While KSHV vIRFs inhibit IFN signalling, type I IFN is not
always detrimental for herpesviruses as it plays an important role
for the maintenance of latency (Zhang et al., 2004; De Regge
et al., 2010; Dag et al., 2014; Holzki et al., 2015). In line with
these findings, vIRF2 has been recently described to manipulate
the innate immune response. vIRF2 regulates the expression of
51 genes known to be involved in innate or intrinsic defences,
boosting the formation of the antiviral cellular state to restrict
KSHV early lytic protein expression and promote latency (Koch
et al., 2019). This is an intriguing illustration of the fine-tuned
balance between herpesviruses and their host, which dictates the
outcome of the infection course.

Profiting From ISGs: ORF20 Fancies the ISG OASL
The OAS family member OASL shares a highly conserved
N-terminal OAS-like domain with the OAS enzymes, but it lacks
enzymatic activity and has a unique C-terminus composed of
two ubiquitin-like domains (Hartmann et al., 1998). In addition,
OASL binds dsRNA (Ibsen et al., 2015). OASL was identified as
an ISG with targeted, but not broad antiviral specificity against a
variety of RNA viruses (Schoggins et al., 2011, 2014). Its role for
HSV-1 is more controversial - while one study observed no role
for OASL on HSV-1 replication (Marques et al., 2008), another
reported that OASL inhibited HSV-1 (Zhu et al., 2014).

We showed that the KSHV protein ORF20 interacts with
OASL, presumably in the nucleoli given their subcellular
localization (Bussey et al., 2018). Interestingly, stable expression
of OASL enhances KSHV replication in an ORF20-dependent
manner (Figure 1). Since both proteins interact with ribosomal
proteins and co-sediment with ribosomal subunits, which are
involved in the formation of active ribosomal complexes, ORF20
may manipulate OASL so that KSHV can seize control of the host
translational machinery. However, further studies are needed
to understand the mechanism by which KSHV ORF20 usurps
OASL. It is worth noting that the expression of ORF20 in 293T
cells specifically enhances OASL mRNA and protein levels. This
may be congruent with the observation of a recent study that
OASL negatively affects the DNA-binding ability of the DNA
sensor cGAS (Ghosh et al., 2019), which is a crucial sensor of
KSHV infection (Wu et al., 2015). Thus, enhanced levels of
OASL during lytic KSHV replication may inhibit cGAS-mediated
activation of the innate immune response and therefore provide
a more conducive environment for infection.

FINAL REMARKS

The complex interaction between herpesviruses and their host
is essential for the outcome of infection. In the case of
ISGs, understanding the mechanisms by which herpesviruses
manipulate these effectors gives an insight into both how
viruses establish lifelong infections and the role that ISGs
play in immune defence. The importance of ISGs for antiviral
defence is indisputable, given that IFNAR knockout mice readily
succumb to infection with herpesviruses (Strobl et al., 2005;

Lenschow et al., 2007; Rasmussen et al., 2007). Interestingly,
several studies reported only minor defects in mice lacking
individual ISGs (Lenschow et al., 2007), supporting the notion
that at least some ISGs may act in concert to exert their full effect,
or the existence of ISGs with redundant functions. Moreover,
a recent study revealed the complex network that ISGs create
during viral infection, not just by binding to other ISGs, but also
to many other cellular proteins (Hubel et al., 2019), adding an
even greater level of complexity to the host immune response
against infection.

We have only just crossed the starting line to understanding
whether certain ISGs are proviral or antiviral in the context
of herpesviral infections. This investigation into the role and
mechanism of action of ISGs is challenging. Overexpression
studies may give some valuable insights into the function
of these ISGs. However, since viral infections induce the
expression of multiple ISGs that may cooperate, studies on
a single ISG may not reflect reality or at least may not
reveal the full potential of the individual ISG tested. Ideally,
tagged, endogenously expressed ISGs would be used for co-
immunoprecipitation studies in infected cells to identify viral
and/or cellular binding partners of them. To expand on these
studies, analysis of single and combined ISG knockouts will help
to determine whether ISGs have a proviral role, an antiviral role,
or neither. Another point to consider is that some ISGs may have
diverse functions in different cell types while other ISGs may
be species-specific.

Herpesviruses are a very valuable tool in the endeavour
to uncover the role that ISGs play in antiviral defence as
they are highly adapted and have likely developed multiple
antagonists (Table 1). However, viral antagonists can be friend
or foe: while the function of ISGs may only be revealed in the
absence of viral antagonists, these opponents may be key to
our greater understanding of how cellular defence is regulated.
Through our bid to decipher the intricacies of this complex
interplay between herpesviruses and the tailored ISG response to
individual infections, we may uncover novel targeted therapies
against these masters of immune escape and manipulation.
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