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Preterm birth (PTB) is defined as the birth of an infant before 37 weeks of gestational
age. It is the leading cause of perinatal morbidity and mortality worldwide. In this
study, we present a comprehensive meta-analysis of vaginal microbiome in PTB. We
integrated raw longitudinal 16S rRNA vaginal microbiome data from five independent
studies across 3,201 samples and were able to gain new insights into the vaginal
microbiome state in women who deliver preterm in comparison to those who deliver
at term. We found that women who deliver prematurely show higher within-sample
variance in vaginal microbiome abundance, with the most significant difference observed
during the first trimester. Modeling the data longitudinally revealed a number of
microbial genera as associated with PTB, including several that were previously
known and two newly identified by this meta-analysis: Olsenella and Clostridium sensu
stricto. New hypotheses emerging from this integrative analysis can lead to novel
diagnostics to identify women who are at higher risk for PTB and potentially inform
new therapeutic interventions.

Keywords: microbiome, vaginal microbiome, preterm birth, longitudinal analysis, meta-analysis, public data
analysis

INTRODUCTION

Preterm birth (PTB) is defined as a live birth before 37 weeks of gestational age. According to the
Centers of Disease Control and prevention, one of every 10 infants born in the United States is born
prematurely (Ferré, 2016). PTB and low birth weight are among the top causes for infant death
in the United States (Mathews and MacDorman, 2010), and can cause complications to newborns
(Ward and Beachy, 2003). Despite many attempts for PTB prevention, there is still an acute problem
with prevalence rising according to the World Health Organization (Beck et al., 2010).

Spontaneous PTB, accounting for two-thirds of all PTBs (Goldenberg et al., 2008; Romero et al.,
2014a), is considered a complex phenotype which can arise due to different causes. Risk factors
for spontaneous preterm birth include a previous preterm birth, race, periodontal disease, low
maternal body-mass index (Goldenberg et al., 2008), maternal stress (Copper et al., 1996), together
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with other demographic characteristics such as maternal age,
low socioeconomic and educational status and marital status
(Goldenberg et al., 2008). In a recent analysis carried out on a
large cohort, maternal age of over 40 was associated with PTB
(Fuchs et al., 2018). The mechanism behind PTB is unknown, but
the phenomenon appears to be a collection of similar phenotypes
with many different mechanisms. One proven mechanism is
chorioamnionitis, a condition associated with microbial infection
of the amniotic fluids (Romero et al., 2001). Unfortunately,
intermittent antibiotic treatment of non-pregnant women who
had an early spontaneous PTB did not significantly reduce
subsequent PTBs (Andrews et al., 2006). Other suggested causes
of PTB are progesterone deficiency, disruption of the immune
tolerance of the mother toward the fetus and disruption of
the vaginal microbial balance, causing an inflammatory process
(Romero et al., 2014a), which is the focus of our study.

The human microbiome is becoming a major area of interest
with several large consortiums such as the Human Microbiome
Project releasing large reference datasets (Turnbaugh et al.,
2007). The main focus currently is gut microbiota, but microbial
communities from other body sites (oral, vaginal, and skin) are
also being studied (Lloyd-Price et al., 2016). In general, the
vaginal microbiome is less diverse in comparison to other body
sites (Hyman et al., 2005), especially during pregnancy (Aagaard
et al., 2012; Romero et al., 2014a). One main focus area of
vaginal microbiome research is Bacterial vaginosis (BV), which
is a risk factor for PTB (Nejad and Shafaie, 2008). A Lactobacilli-
dominated microbiome is associated with a healthy state and BV
is best described as a poly-bacterial instability state, with a shift
toward higher concentrations of anaerobic bacteria. This high
microbial diversity is associated with pro-inflammatory genital
cytokines (Anahtar et al., 2015). Romero et al. (2014c) showed
in a longitudinal study that pregnant women have a higher
abundance of Lactobacilli compared to non-pregnant women.
Others reported that the vaginal microbiome varies by gestational
age and proximity to the cervix (Aagaard et al., 2012).

Studying the differences in vaginal microbiome during
pregnancy with respect to birth timing may provide better
understanding of the role of vaginal microbiome in PTB.
Romero et al. (2014b) did not find any significant vaginal
microbiome differences longitudinally. Hyman et al. (2014)
found that uncultured bacteria are significantly different during
term and PTB pregnancies, and that black patients have the
most diverse microbial communities. DiGiulio et al. (2015) found
several differences in abundance in the vaginal microbiome
between women who deliver prematurely in comparison to
those who deliver at term. They show that women with a
Lactobacilli-poor community together with elevated Gardnerella
or Ureaplasma abundances had a higher chance to deliver
prematurely. Callahan et al. (2017) were able to confirm these
associations in one of the cohorts that they examined. Stout et al.
(2017) found that in a predominantly black population, there
is higher vaginal microbial community richness and diversity
in the first and second trimester of pregnancy in women who
delivered prematurely when compared to women who delivered
at term. Since the previous studies do not have consistent
results and vary in the number of samples, subjects and ethnic

backgrounds, we aimed to perform a meta-analysis to address
these issues and see whether there is a common microbial
signature associated with PTB.

Meta-analysis is a systematic approach to combine and
integrate cohorts to study a biological question or a disease
condition (Haidich, 2010). Meta-analysis provides enhanced
statistical power due to a higher number of samples when
combined. On the other hand, it requires care to ensure that
data are comparable across cohorts and hence commonly utilizes
methods such as batch correction (Chen et al., 2011) and mixed
effect modeling (Stram, 1996). Meta-analysis has been carried out
extensively in the fields of gene expression (Waldron and Riester,
2016) and genome-wide association studies (Evangelou and
Ioannidis, 2013), where the robustness of the signatures across
different studies is well established (Chen et al., 2014; Hughey
and Butte, 2015). Meta-analysis across microbiome studies is
much less common due to heterogeneity of the data and lack
of analytical standards, though a few recent publications show
that meta-analysis is possible and advantageous for microbiome
data (Koren et al., 2013; Henschel et al., 2015; Duvallet et al.,
2017; Mancabelli et al., 2017). In a recent paper by Duvallet et al.
(2017), the authors demonstrate the importance of performing
meta-analysis for gut microbiome in health and disease across a
large number of studies and samples. Haque et al. (2017) present
summary-level meta-analysis using pre-calculated abundance
tables from the original studies to draw conclusions about the
combined studies. They found that there is a difference in the
variance of the vaginal microbiome in the first trimester between
women who delivered prematurely and at term. In this study,
we perform a comprehensive meta-analysis across 3,201 vaginal
microbiome samples from 415 patients. We re-analyze all the
samples with the same pipeline, correct for batch effects and
apply a longitudinal modeling approach to demonstrate that
publicly available data and robust computational approaches can
be leveraged to identity new associations between bacterial genera
and PTB. A web application with all the analysis results of this
study is also available here: https://comphealth.ucsf.edu/app/ptb_
microbiome_metaanalysis.

MATERIALS AND METHODS

Data Availability
Raw data and metadata for the DiGiulio et al. (2015) cohort
were downloaded from ImmPort (Bhattacharya et al., 2014),
under Study SDY465 (Immport, 2011) in May 2016. Raw
data and metadata for Romero et al. (2014b) cohort were
downloaded from the Sequence Read Archive (Leinonen et al.,
2011) under BioProject PRJNA242473 (NCBI Sequence Read
Archive, 2014)1 in May 2016. Raw data for Hyman et al.
(2014) cohort were received from the authors of the study (raw
sequences and weeks of collection), metadata was downloaded
from Supplementary Figure S1 of the paper. Raw data
and metadata for the Callahan et al. (2017) cohort were
downloaded from the Sequence Read Archive under BioProject

1http://identifiers.org/ncbi/insdc.sra:SRP040750
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PRJNA393472 (NCBI Sequence Read Archive, 2014)2 in January
2018. Raw data and metadata for the Stout et al. (2017) cohort
were downloaded from the Sequence Read Archive under
BioProject PRJNA294119 (NCBI Sequence Read Archive, 2014)3

in January 2018. The processed data was uploaded to ImmPort
(Bhattacharya et al., 2014) under study SDY1162 (Immport,
2019) and to figshare (Kosti et al., 2019), together with
relevant metadata. The DiGiulio cohort were collected from
various locations within the United States. DiGiulio cohort
was collected at Stanford University (California), the Callahan
cohort was collected at Stanford University (California) and UAB
(Alabama), the Romero cohort was collected at Wayne State
University (Michigan), the Hyman cohort was collected at UCSF
(California) and the Stout cohort was collected at Washington
University in St. Louis (Missouri).

Definition of Trimesters in Study Cohorts
The raw sequences from the five studies mentioned above were
filtered based on their metadata body site information, keeping
only sequences from vaginal samples. For each cohort, the
trimester of collection was defined by the following guidelines:
samples taken in weeks 9–13 are defined as first trimester
samples, samples taken in weeks 14–25 are defined as second
trimester samples and weeks 26–36 are defined as third trimester
samples. We exclude all samples before week 9 and after week 36
from our analysis, to assure similar distributions of sampling in
PTB and term cohorts.

UPARSE Pipeline
The pipeline receives as input raw 16S sequences collected
from different studies as shown in Figure 1. It also receives
the metadata from all cohorts according to shared properties:
Sample and patient ID, week of specimen collection, body site of
collected specimen, delivery outcome (term or PTB), trimester
of pregnancy (as mentioned above), and patient’s race. The
sequences are entered into a UPARSE OTU analysis pipeline
using the USEARCH algorithm (Edgar, 2013). The following
steps are carried out by USEARCH: (1) reads preparation, (2)
reads de-replication by recognizing unique sequences, removing
non-biological sequences and removing singletons, (3) taxonomy
prediction using 16S reference set from RDP (Wang et al., 2007)
(4) Generating an OTU table (5) tree creation by agglomerative
clustering of reads. The reason to choose an OTU based method
(over denoising methods) is the data in use in this meta-analysis.
Earlier data, such as the Hyman cohort could only be found in
FASTA format. To address the amplification by different primers,
we carried out closed reference alignment of the data to ensure
the robustness of the results and concordance of the studies. The
closed-reference OTU picking process is the approach of choice
if non-overlapping amplicons are compared.

Data Normalization
Our first effort was directed at processing the five input data
sets to ensure these were compatible for cross-dataset analysis

2http://identifiers.org/ncbi/insdc.sra:SRP115697
3http://identifiers.org/ncbi/insdc.sra:SRP068239

and integration. t-Distributed Stochastic Neighbor Embedding
(t-SNE) of the OTUs revealed a bias in the data with samples
clustering within the original studies (as shown in Figure 2A),
when we look at the abundance of the OTUs (counts per
million) and after applying a Log transformation (Figure 2B).
To overcome this bias we applied the empirical Bayes algorithm
ComBat (Johnson et al., 2007) from the sva R package (Leek
et al., 2012) that was originally designed to remove batch effects
from gene expression microarray measurements. The results
of the parametric empirical Bayes data adjustment on the log
transformed OTUs is shown in Figure 2C. We used gPCA R
package, based on Reese et al. (2013), to show batch removal from
the data after passing ComBat correction, using the test statistic
delta (which describes batch effect magnitude).

Downstream Filtering of the OTU Table
Before Applying Weighted Model on
OTUs
The OTU table was filtered to exclude the bottom 30% of least
abundant OTUs, resulting in 8,538 OTUs. This step was taken
because including low abundance OTUs in the parallel model
fitting procedure led to convergence failures. The threshold was
chosen empirically using an analysis of progressively higher
thresholds and stopping when the convergence problem was
fixed. While the exclusion of OTUs below this quantile may
lead to us missing promising rare bacteria, this data restriction
does not increase type I error and was performed primarily
for technical convenience rather than to enrich for discoveries.
Omitting consistently low count OTU may also help remove
OTUs that arise from biases in the input data or OTU
identification procedure.

Data Aggregation by Taxonomy
The raw OTU table was aggregated by the taxonomic assignment
of UPARSE. For each genus, we sum all OTUs assigned to it,
resulting in 690 genera. We than applied log transformation
followed by ComBat on the data as mentioned above.

Within-Sample Variance Calculation,
Modeling and Statistics
In order to show correlation of evenness with within-sample
variance, both parameters were calculated on the non-normalized
data, within each dataset.

The var function in R was used to calculate the within-sample
variance in the following manner: the sum of squared deviations
of every observation from the sample mean, divided by the
degrees of freedom.

s2 =
∑n

i=1 xi − X̄
n− 1

(1)

variance equation
Where s2 is the variance, n is the number of samples, xi is the

value per sample and X̄ is the sample mean.
Evenness (J) is defined as the diversity based on Simpson

method (H) over total number of non-zero OTUs in a sample (S).

J =
H

ln(S)
(2)
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FIGURE 1 | Meta-analysis pipeline. The pipeline is divided into four sections: combining raw 16S rRNA data from five publicly available studies, processing the data
using UPARSE, data normalization, and modeling using LMER to analyze with respect to birth timing as an outcome.

Evenness equation
The diversity was calculated using the vegan R package.
Within-sample variance of OTU abundance was calculated

for overall term and preterm samples, and for term and
preterm samples in the first, second and third trimesters
separately using R’s var function. The within-sample variance
calculation shows how variable are the normalized counts
from the mean for that particular sample. The calculation
was performed for each sample individually, on the ComBat
normalized data.

For data from term and preterm pregnancies plotted by weeks
a local polynomial regression was fitted, and the Kolmogorov–
Smirnov statistic was used to test for significant differences

between distributions. The data was also modeled to correct
for difference between sampling strategies cohorts and racial
composition using linear mixed effects regression from lme4
package in R (Bates et al., 2015).

For within-sample variance analysis by outcome we used the
following model:

Variance ∼ Trimester + Outcome + Trimester :

Outcome + Race + (1|subjectID)

Trimester represents the sample’s trimester of collection,
Outcome represents the sample’s phenotype (term or preterm),
Race represents the race of the patient (white, black, asian, or
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FIGURE 2 | t-SNE Plots of Term and Preterm OTUs. Coloring of the t-SNE Plots is by: (1) Data Origin for (A) raw data, (B) data after log transformation, (C) data
after log transformation and ComBat modeling. (2) Pregnancy Outcome (D) data after log transformation and ComBat modeling.

other) and subjectID represents the subject ID for each sample.
The p-values were obtained by Satterthwaite approximation
from the model coefficients using the lmerTest R package
(Kuznetsova et al., 2017).

Data Modeling for OTUs
Weighted linear mixed effects regression with the lme4 (v1.1-15)
R package was used to test for differences in OTU abundance
between term and preterm vaginal swab samples. For each of
OTU the following model was fit:

Log (read counts per million) ∼ Trimester + Outcome+

Trimester : Outcome + Race + (1|subjectID) + (1|Study)

Trimester represents the sample’s trimester of collection,
Outcome represents the sample’s phenotype (term or preterm),
Race represents the race of the patient (white, black, asian,
or other), subjectID represents the subject ID for each sample
and Source is the sample’s original cohort (DiGiulio, Romero,
Callahan, Stout, or Hyman).

The weights used were obtained by running the voom
function in limma (v3.30.13) (Ritchie et al., 2015) with a
similar regression formula, minus the random effects. Contrasts
of interest were tested with the emmeans package (v1.1),
which allowed us to find group differences conditional on
the trimester of observation and averaging over the effect of
race. The log fold change we report represents the average
change in logCPM when comparing term and preterm samples:
log(CPM_preterm/CPM_term). The p-values from all trimesters
and OTUs were then adjusted for multiple testing using
the Benjamini-Hochberg procedure as implemented in the
“p.adjust” function in R.

Code Availability
R custom code used to generate the figures and analysis
in the meta-analysis can be found on figshare (Kosti
et al., 2019). An Rdata file with computed summary
counts tables and other necessary input files for the
code (such as metadata) is also available on figshare
(Kosti et al., 2019).
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RESULTS

Study Cohorts
We searched the literature for raw 16S data from publicly
available microbiome studies from vaginal samples of pregnant
women who went on to deliver either preterm or at term.
We excluded studies with only processed data or studies
lacking metadata and outcome information. Five studies met
our criteria: Hyman et al. (2014), Romero et al. (2014b),
DiGiulio et al. (2015), Callahan et al. (2017), and Stout et al.
(2017)(Table 1). To our knowledge there were no other publicly
available PTB related microbiome studies that meet the above
criteria at the time of study design. The prevalence of PTB
in all five cohorts (ranging from 12.5 to 37%) is higher
than in the general population, likely reflecting study design
and clinical settings (Ferré, 2016). The experimental design
and sampling strategy was different for each cohort (as listed
in Table 1) yielding a different number of overall samples.
For all three cohorts, the most samples were collected in
the second and third trimesters (defined as 14–25 and 25–
37 weeks of gestation, respectively). The five cohorts are different
from one another not only in their sampling study design
and number of patients but also in the racial composition
of the cohorts (Table 1 and Supplementary Figure S1). In
the Hyman et al. (2014) and DiGiulio et al. (2015) cohorts,
most samples are from white patients, while in the Romero
et al. (2014b), Callahan et al. (2017), and Stout et al. (2017)
cohorts, most samples are from black patients (Supplementary
Figure S1). By combining these groups together in a meta-
analysis (see section “Materials and Methods”), we are able
to capture variability across a more diverse population of
patients. The combined data set contains vaginal 16S sequences
and metadata for 3,201 samples from 415 pregnant women,
mostly split between black and white individuals (44 and
34% accordingly).

Analytical Pipeline Overview
We quantified the taxonomic composition of all vaginal
microbiome samples with a consistent 16S pipeline that
estimates the relative abundance of each species-level operational
taxonomic unit (OTU) in each sample (Figure 1; see section
“Materials and Methods”). As expected, samples cluster by
cohort if no normalization is applied to the OTU abundances
(Figure 2A) or if log transformation is applied (Figure 2B), but
this bias is gone after batch normalization (Figure 2C; see section
“Materials and Methods”). We also used a guided PCA analysis
(see section “Materials and Methods”) after batch removal by
ComBat, resulting in the test statistic delta of 0.05 (when 1
represents full batch effect) and p-value < 0.01. This result means
no batch effect was indicated after ComBat. To confirm the
successful removal of cohort bias, we fit a linear mixed effect
model to the corrected data and did not observe any significant
associations between individual species and a specific cohort.
We observe a partial clustering of samples by outcome based
on their overall OTU abundance profiles (Figure 2D), however,
there was no obvious clustering by race or trimester of collection
(Supplementary Figures S2A,B). We then aggregated the data
by genera and taxonomic assignment to each OTU (see section
“Materials and Methods”), and repeated the same normalization
process to ensure that there is no bias toward original studies and
observed comparable results (Supplementary Figure S3).

Higher Microbial Within-Sample Variance
Is Observed in Women Who Delivered
Prematurely and Is Consistent Across
Racial Groups
Recent attempts to compare microbiome diversity between
women who deliver at term and preterm has resulted in mixed
findings with some studies reporting a higher diversity in women
who delivered preterm (Haque et al., 2017; Stout et al., 2017) and

TABLE 1 | General properties of individual studies included in the meta-analysis: vaginal microbiome of five cohorts of term and preterm patients: Hyman et al. (2014),
Romero et al. (2014b), DiGiulio et al. (2015), Callahan et al. (2017), and Stout et al. (2017).

Callahan et al., 2017 DiGiulio et al., 2015 Hyman et al., 2014 Romero et al., 2014b Stout et al., 2017

Number of participants 135 37 82 87 74

Number sampled while pregnant 135 37 82 87 74

Number delivering preterm 50 5 16 18 23

Overall preterm ratio 37% 12.5% 21% 17.33% 31.1%

Number sampled during trimester 1 42 (10 PTB) 21 (4 PTB) 37 (5 PTB) 6 (2 PTB) 14 (4 PTB)

Number sampled during trimester 2 135 (50 PTB) 31 (4 PTB) 50 (10 PTB) 76 (17 PTB) 55 (18 PTB)

Number sampled during trimester 3 123 (39 PTB) 36 (4 PTB) 46 (9 PTB) 60 (5 PTB) 59 (17 PTB)

Sampling time points One per week One per week One per trimester One every 4 weeks (<24 GW)
One every 2 weeks (>24 GW)

One per trimester

Number of samples collected during trimester 1 116 (28 PTB) 58 (12 PTB) 27 (4 PTB) 4 (2 PTB) 15 (4 PTB)

Number of samples collected during trimester 2 987 (310 PTB) 303 (46 PTB) 49 (10 PTB) 178 (47 PTB) 56 (19 PTB)

Number of samples collected during trimester 3 909 (204 PTB) 270 (21 PTB) 28 (8 PTB) 141 (7 PTB) 60 (18 PTB)

Number of samples from white individuals 578 (65 PTB) 413 (45 PTB) 51 (11 PTB) 14 (4 PTB) 33 (9 PTB)

Number of samples from black individuals 1004 (356 PTB) 16 (0 PTB) 8 (2 PTB) 281 (52 PTB) 88 (30 PTB)

Number of samples from Asian individuals 110 (15 PTB) 45 (0 PTB) 17 (5 PTB) 5 (0 PTB) 0 (0 PTB)

Number of samples from other race individuals 267 (95 PTB) 157 (34 PTB) 28 (4 PTB) 28 (4 PTB) 10 (2 PTB)
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others showing no change in diversity (Romero et al., 2014b). We
looked at the microbial variability across samples with different
pregnancy outcomes. To explore this, we computed the within-
sample variance of OTU abundances for each sample, as an
extension of previous uses of variance. In general, variance
is a commonly employed metric in gene expression analysis
(Pritchard et al., 2001; Mar et al., 2011) and usually is in
use to compare genes across samples. It has also been used
in microbiome analysis to compare individuals with different
clinical outcome (Reddy et al., 2018). The within-sample variance
represents how much the normalized OTU abundances for
that sample differ from the sample’s mean value (see section
“Materials and Methods”). We chose to use within-sample
variance to describe OTU abundance for several reasons. First,
we seek to quantify how uniform abundances are across OTUs
for a given sample, because evenness and other metrics of alpha
diversity have associated with microbiome health (Turnbaugh
et al., 2009). Supplementary Figure S4 shows the correlation
between evenness and variance within each of the dataset, before
batch removal. In all datasets we see a negative significant
correlation between the two parameters, as expected. Second,
the data transformation that we used to correct for batch effects
produces an OTU matrix whose entries are no longer read counts.
Therefore, richness and the Shannon index–commonly employed
measures of alpha diversity–are not appropriate to use here.

We took advantage of the rich longitudinal cohort that we
obtained and compared the within-sample variance across the
three trimesters in women who delivered at term and preterm
using a mixed linear effects regression (see section “Materials and
Methods”). In this model, we take into account the trimester of
collection, race and the delivery outcome, while correcting for
the study and sampling frequency (see section “Materials and
Methods”). The longitudinal trend of microbiome within-sample
variance differs between samples from women who deliver at
term and preterm (Figure 3A), with higher OTU variability
across trimesters in the PTB group when compared to the
term group throughout pregnancy [trimesters 1–3 (weeks 9–
36); p-value < 2.2e-16, Two-sample Kolmogorov–Smirnov test]
with the biggest difference in the first trimester (Figure 3B). We
repeated the same analysis for the data aggregated by genera
(see section “Materials and Methods”) and observed consistent
results (Supplementary Figure S5). This finding also appears
in four out of the five cohorts individually (Supplementary
Figure S6, DiGiulio p-value < 2.2e-16, Romero p-value = 2.8e-9,
Callahan p-value < 2.2e-16, and Stout p-value = 0.01, two-sample
Kolmogorov–Smirnov test). The difference is not observed in
Hyman et al. (2014) where we see very low within-sample
variance in both sets, with patients who deliver at term having
slightly higher within-sample variance (p-value = 1.1e-4, two-
sample Kolmogorov–Smirnov test). It is important to note
that the overall within-sample variance for this cohort is very
low compared to the other cohorts and the magnitude of the
difference is very small. Those results show that genus level trends
are in agreement with species level trends although the V region
targeted is different for the five original cohorts.

We use the metadata of the five studies to subset the data into
four racial groups: white, black, asian and other. Figure 4A shows

that the trend of higher within-sample variance in the PTB group
is true consistently across different racial groups. We chose to
exclude two groups in this analysis: (1) the asian group that had
no PTB samples in the first trimester (as can be seen in Table 1);
(2) the “other” group, as the race composition in the group
is unknown. We then plotted the results longitudinally. Our
method shows that the higher within-sample variance trend in
PTB is found across different racial groups. The results are shown
in Figure 4B for black patients (p-value = 2.6E-4, two-sample
Kolmogorov–Smirnov test) and Figure 4C for white patients
(p-value = 1.7E-6, two-sample Kolmogorov–Smirnov test).

Vaginal Microbiome Meta-Analysis
Uncovers Novel Bacterial Genera
Associated With PTB
Finally, we performed an association meta-analysis comparing
the abundance of the bacterial species in women who deliver
preterm vs. at term. It is important to recognize that in our final
cohort there is a bias arising from the difference in sampling time
and study design between combined studies. The DiGiulio et al.
(2015) and Callahan et al. (2017) cohorts are the largest cohorts,
with the samples collected weekly from the patients whereas the
Hyman et al. (2014) and Stout et al. (2017) are smaller, with one
sample collected per trimester. In order to address the potential
bias arising as a result of combining cohorts with different design
and sampling strategy, we assessed the differences between term
and preterm samples for each OTU by applying a weighted linear
mixed effects regression model correcting for study, sampling
bias, race (see section “Materials and Methods”) and adjusting the
p-values by FDR.

Tables 2–4 show genera labels for OTUs that we identify as
significantly associated with PTB in the first, second, and third
trimesters, respectively. The abundance of these OTUs are shown
in Supplementary Figure S7. Across all trimesters, there was only
one OTU (Otu4172), Lactobacillus, that was more prevalent in
patients who deliver at term. Other than this specific OTU, all the
significant OTUs were more abundant in patients who delivered
prematurely. In the first trimester, we were able to identify the
association of a total number of six bacterial genera with PTB,
shown in Table 2: Olsenella, Dialister, Prevotella, Megasphaera,
Lactobacillus, and Atopobium. Five of the bacterial genera were
reported previously in all or some of the original cohorts as
having a higher abundance in those who deliver preterm. We
also found one novel association in the first trimester using
our method: Olsenella. Olsenella is a known oral bacterial genus
(Dewhirst et al., 2010) and reported in the past as associated
with BV (Srinivasan and Fredricks, 2008) but not PTB. In the
second trimester, we were able to show the association of one
bacterial genus with PTB, shown in Table 3: Lactobacillus. In
the third trimester, we were able to show the association of
three bacterial genera with PTB, shown in Table 3: Gardnerella,
Lactobacillus, and Aerococcus. Our method now confirmed those
genera as significantly associated with PTB. We also found one
completely novel association using our method: Clostridium
sensu stricto in the third trimester. There are reports of other
strains of the Clostridiales order as involved in BV and PTB
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FIGURE 3 | Analysis of modeled within-sample variance in PTB and term samples. (A) Modeled within-sample variance by weeks of gestation (trimesters 1–3).
(B) Modeled within-sample variance by trimester of collection. The modeling takes into account the race, outcome, trimester of collection and the interaction
between outcome and trimester of collection, while correcting for number of samples per patient.

(Fredricks et al., 2005), but there is no report in the literature of
the association of Clostridium sensu stricto with either phenotype.

DISCUSSION

We carried out a comprehensive longitudinal meta-analysis of
vaginal microbiome in PTB, merging five independent studies
totaling 3,201 samples from 415 pregnant women that delivered
at term or prematurely. Overall, looking at the t-SNE plot of
normalized OTUs, partial clustering of the phenotypic groups
was observed on a global scale. We found that the microbial
within-sample variance in patients who deliver preterm is
significantly different from those who deliver at term, with a
higher microbial within-sample variance in the group that went
on to deliver preterm. We looked at within-sample variance using
a measure of sample variance. In general, variance is a method
used in the gene expression field. This measure is also used by new
emerging tools for microbiome analysis (Bradley and Pollard,
2017). The observed difference in within-sample variance agrees
with two of the original studies (Hyman et al., 2014; Stout et al.,
2017), whereas the others do not report differences in variance
between patients who go on deliver preterm in comparison to
those who deliver at term. DiGiulio et al. (2015) for example did
not find changes in the variance throughout the pregnancy, but
did find change between the pregnancy period to the post-partum
period. Differences in vaginal composition between black and
white non-pregnant women has been shown in the past (Fettweis
et al., 2014). In our analysis we show that the higher within-
sample variance in women who delivered prematurely is found

in both populations, showing that this finding holds in different
ethnic and racial groups.

We were also able to identify bacterial genera that are
significantly associated with birth timing across all trimesters
using linear mixed effects regression. First, an OTU representing
Lactobacillus is found to be more abundant in patients who
deliver at term across all trimesters. Since this finding is only
at a genera level, further experiments are required here to
carry out species and strain level identification. This finding is
in agreement with other studies showing that the absence of
Lactobacillus species can be used as a predictor for PTB (Usui
et al., 2002; Petricevic et al., 2014). Second, we found several
bacterial genera that are associated with PTB. Two of those,
Olsenella and Clostridium sensu stricto, were not reported in the
original studies we used in this meta-analysis. Olsenella is shown
to be involved in BV, but not in PTB, and Clostridium sensu stricto
was not reported as associated with BV or PTB.

An interesting attempt to predict PTB in the first trimester
vaginal microbiome data was performed in a publication by
Donders et al. (2009). The authors were able to show that women
with normal vaginal microbiome had a 75% lower risk for PTB
and that the absence of Lactobacilli, rather than BV, was the
strongest risk factor. Based on the associations that we observe,
with Lactobacillus as a protective genus found to be significantly
higher in term patients across pregnancy trimesters, we would
suggest that the lack of Lactobacillus, in combination with other
anaerobic bacteria could be used as a stronger predictor for PTB
when being tested across pregnancy trimesters.

There are a few limitations in this study. The first one reflects
differences in 16S rDNA amplification. DiGiulio et al. (2015) the
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FIGURE 4 | Analysis of modeled variance in different racial groups. (A) Modeled within-sample variance stratified by race (trimesters 1–3). (B) Modeled
within-sample variance by weeks of gestation (trimesters 1–3) and outcome in black patients. (C) Modeled within-sample variance by weeks of gestation (trimesters
1–3) and outcome in white patients.

amplification was targeted toward the V3–V5 and V4 region of
the 16S rRNA gene, in Callahan (Callahan et al., 2017) the V4
region was amplified, in Romero et al. (2014b), and Hyman et al.
(2014) the V1–V3 region was amplified, and in Stout et al. (2017)
both V1–V3 and V3–V5 regions were amplified. This may lead to
unevenness in amplification of certain bacteria. One example of
such known mismatch is amplification of Gardnerella (Hyman
et al., 2005) and in both Romero et al. (2014b) and DiGiulio
et al. (2015) the authors added primers to correct for this known
bias. In our meta-analysis, we address this issue in several ways.
The first is processing the data with a closed reference alignment
method to address the amplification by different primers. In a
closed-reference OTU picking process, reads are clustered against
a reference sequence collection and any reads which do not hit
a sequence in the reference sequence collection are excluded

from downstream analyses and is the approach of choice if non-
overlapping amplicons are compared. This way we limit the
results only to known bacteria that is found in RDP, and the
chance for mismatches that may arise from open-reference or de
novo OTU picking decrease. Also, using a trustworthy reference
database with full or almost full coverage to many of the 16S
rRNA molecules, we decrease the chance of not identifying the
same molecule by 2 different amplified regions from different
studies. In addition, we carry out data normalization using
ComBat to account for potential batch effects (Johnson et al.,
2007). We show the removal of those batch effects by using gPCA
and t-SNE plots. We apply linear mixed effects regression that
takes into account patient-specific and cohort-specific effects (see
section “Materials and Methods”) when carrying out association
analysis. Finally, we have merged the OTUs into taxa to reduce
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TABLE 2 | Significant bacterial OTUs in first trimester in PTB vs. term samples.

OTU Genera Log fold change Adj. P-value DiGiulio Romero Hyman Callahan Stout

Otu18735 Atopobium 0.143 7.99E-26 Significant Reported

Otu4548 Lactobacillus 0.295 2.84E-23 Reported Reported Reported

Otu7770 Prevotella 0.14 4.11E-17 Reported Reported Reported Reported Reported

Otu4172 Lactobacillus −8.00E-09 9.06E-16 Reported Reported Reported

Otu875 Olsenella 0.38 4.39E-09

Otu5055 Prevotella 0.155 1.00E-06 Reported Reported Reported Reported

Otu10435 Prevotella 0.11 1.90E-05 Reported Reported Reported Reported

Otu6000 Prevotella 0.135 1.45E-04 Reported Reported Reported Reported Reported

Otu507 Megasphaera 0.75 1.92E-02 Reported Reported Reported Reported

Otu630 Dialister 0.46 1.92E-02 Significant

For each OTU we show the internal OTU label, the genera label, log fold change between preterm and term models (where positive values show a higher change in
preterm), the adjusted p-value by FDR (see section “Materials and Methods”) for the model and whether the taxa were “Significant” or “Reported” in the original cohorts.
“Significant” represents a reported significant difference between term and PTB abundance. “Reported” represents abundance measurement reported in the original
cohorts in the original papers.

TABLE 3 | Significant bacterial OTUs in second trimester in PTB vs. term samples.

OTU Genera Log fold change Adj. P-value DiGiulio Romero Hyman Callahan Stout

Otu4172 Lactobacillus −8.00E-09 9.06E-16 Reported Reported Reported

Otu5546 Lactobacillus 0.185 2.96E-02 Reported Reported Reported

For each OTU we show the internal OTU label, the genera label, log fold change between preterm and term models (where positive values show a higher change in
preterm), the adjusted p-value by FDR (see section “Materials and Methods”) for the model and whether the taxa were “Significant” or “Reported” in the original cohorts.
“Significant” represents a reported significant difference between term and PTB abundance. “Reported” represents abundance measurement reported in the original
cohorts in the original papers.

TABLE 4 | Significant bacterial OTUs in third trimester in PTB vs. term samples.

OTU Genera Log fold change Adj. P-value DiGiulio Romero Hyman Callahan Stout

Otu4172 Lactobacillus −8.00E-09 9.06E-16 Reported Reported Reported

Otu868 Gardnerella 0.11 3.24E-04 Significant Reported Significant

Otu1238 Clostridium sensu stricto 0.03 1.58E-03

Otu10429 Aerococcus 0.02 1.64E-02 Reported

Otu22110 Lactobacillus 0.11 2.50E-02 Reported Reported Reported

For each OTU we show the internal OTU label, the genera label, log fold change between preterm and term models (where positive values show a higher change in
preterm), the adjusted p-value by FDR (see section “Materials and Methods”) for the model and whether the taxa were “Significant” or “Reported” in the original cohorts.
“Significant” represents a reported significant difference between term and PTB abundance. “Reported” represents abundance measurement reported in the original
cohorts in the original papers.

variability and repeated the within-sample variance analysis.
Those results show that genus level trends are in agreement with
species level trends although the V region targeted is different for
the five original cohorts.

Another potential limitation is the use of within-sample
variance as the metric of difference between women who
delivered at term vs. preterm. We are aware that this metric is
not commonly employed microbiome studies, though it has been
useful in gene expression analysis. Due to the nature of the OTU
data we sought to model and the complexity of the normalization
done by ComBat, we could not use any of the traditional metrics
of alpha diversity. It is not a measure of richness, although it
does quantify a particular notion of evenness because it is the
sum of deviations of normalized OTU abundances from the
mean abundance of a given sample. Furthermore, within-sample
variance has a mathematical relationship to beta-diversity and

provides a potentially useful measure of how unique a sample is
in the data set. This within-sample variance approach produced
results that are in agreement with the results in the individual
studies we analyzed.

A last possible limitation is patient selection criteria. Patients
in the combined studies come from different backgrounds in
terms of geography, diet, lifestyle and other characteristics such
as height, weight, medical conditions that may affect the results.

We included all available metadata we had in our models,
but couldn’t account for missing information in the five studies
we combined. While it is clear that other important variables
such as prior medical conditions, prior pregnancies information,
maternal age, periodontal disease, low maternal body-mass index,
low socioeconomic and educational status and single marital
status (Goldenberg et al., 2008) and maternal stress (Copper et al.,
1996) have a huge impact on PTB, in most cohorts we used
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those variables do not exist. Also, we lack information about
the mode of delivery (vaginal or c-section), about infections and
other conditions during the pregnancy and have only partial
information on medications given during pregnancy in a few
of the studies. Having access to detailed phenotypic data can
improve the models and allow us to explore other relevant
questions in association with the microbial genera. Finally, the
clinical definition of PTB may be different depending on the
exact obstetrical definition that was used in the individual studies,
however, the majority of the cohorts we investigated focused
on spontaneous PTB and the signals that are robust despite
the potential patient heterogeneity are more likely to be real as
we have seen from prior gene expression meta-analysis studies
(Dudley et al., 2009; Haynes et al., 2017; Sweeney et al., 2017).
As more data becomes publicly available, we hope that additional
standardization and meta-data availability will help address some
of the aforementioned issues.

CONCLUSION

We have shown that meta-analysis of the vaginal microbiome
can shed light on outcomes of pregnancy, such as PTB. We first
showed that there is a significant difference between the microbial
within-sample variance in women who delivered prematurely
when compared to patients who deliver at term. We then showed
that this differential within-sample variance between women who
deliver preterm in comparison to those who deliver at term is
observed across pregnancy trimesters and is consistent across
different racial or ethnic backgrounds. We also found that while
Lactobacillus abundance is associated with term delivery, several
genera are associated with PTB. Among those, two associations
are novel. This result can inform future diagnostics and help
in monitoring pregnancies with a simple swab done in the first
trimester of pregnancy, and may in the future decrease the rates
of PTB around the world.
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