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Super-resolution microscopy has evolved as a powerful method for subdiffraction-
resolution fluorescence imaging of cells and cellular organelles, but requires
sophisticated and expensive installations. Expansion microscopy (ExM), which is based
on the physical expansion of the cellular structure of interest, provides a cheap
alternative to bypass the diffraction limit and enable super-resolution imaging on a
conventional fluorescence microscope. While ExM has shown impressive results for
the magnified visualization of proteins and RNAs in cells and tissues, it has not yet
been applied in fungi, mainly due to their complex cell wall. Here we developed a
method that enables reliable isotropic expansion of ascomycetes and basidiomycetes
upon treatment with cell wall degrading enzymes. Confocal laser scanning microscopy
(CLSM) and structured illumination microscopy (SIM) images of 4.5-fold expanded
sporidia of Ustilago maydis expressing fluorescent fungal rhodopsins and hyphae of
Fusarium oxysporum or Aspergillus fumigatus expressing either histone H1-mCherry
together with Lifeact-sGFP or mRFP targeted to mitochondria, revealed details of
subcellular structures with an estimated spatial resolution of around 30 nm. ExM is thus
well suited for cell biology studies in fungi on conventional fluorescence microscopes.

Keywords: Expansion microscopy, fluorescence microscopy, fungi, Aspergillus, Ustilago, Fusarium, sporidia,
hyphae

INTRODUCTION

Fungi play important roles in human nutrition and well-being. These tiny organisms serve as
biofactories in biotechnology and food industry, are essential for the biodegradation of complex
organic compounds, but also act as highly destructive pathogens of plants, animals, and humans
(Kendrick, 2011; Lange, 2014; Meyer et al., 2016; Cerimi et al., 2019). Recent studies estimate
the number of fungal species to more than one million, many of which are specialized to specific
ecological niches, thereby providing an arsenal of useful compounds (Blackwell, 2011; Hawksworth
and Lücking, 2017; Naranjo-Ortiz and Gabaldón, 2019).
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Microscopy allows to gain new insights at high spatial and
temporal resolution into essential cellular processes such as
protein localization, physiological activity, and growth dynamics
(Hickey et al., 2004; Knaus et al., 2013; Chapuis et al., 2019).
However, fluorescence microscopy of fungi is limited by the small
size of their organelles, which is below the diffraction-limited
resolution provided by conventional fluorescence microscopes.
In addition, fungi tend to exhibit strong autofluorescence (Knaus
et al., 2013), further complicating high-end fluorescence imaging.

To overcome these limitations, super-resolution microscopy
has been developed and denoted substantial progress in the
recent years (van de Linde et al., 2011; Coltharp and Xiao,
2012; Endesfelder and Heilemann, 2014; Dodgson et al.,
2015; Heintzmann and Huser, 2017). Most applications, such
as stimulated emission depletion (STED), photoactivated
localization microscopy (PALM), direct stochastic optical
reconstruction microscopy (dSTORM) or structured
illumination microscopy (SIM), adapt either the optical
setup or exploit distinct photophysical properties of the sample,
to allow image acquisition below the diffraction limit (Hohlbein
et al., 2010; Chen et al., 2014). Such applications typically require
guidance by experts and high financial investments to obtain the
specialized microscopy setups.

By contrast, expansion microscopy (ExM) consists of
expanding the whole cell including its subcellular structures
in order to improve the resolution of fluorescence-based
microscopy (Chen et al., 2015). Cells are fixed and immuno-
stained, before amino groups are modified e.g., by glutaraldehyde
(Chozinski et al., 2016), to enable incorporation of proteins,
dyes and antibodies into a polyacrylamide hydrogel. After
homogenization of the entire cellular context, e.g., by enzymatic
treatment with proteinase K (Gao et al., 2017), the gel is
isotropically expanded in water to uniformly extend the distances
between fluorophores, allowing a lateral resolution of ∼60 nm
by confocal microscopy (Chen et al., 2015). This simple idea
was rapidly adapted by various laboratories, leading to the
development of new protocols that allow expansion factors
of up to 10× (Truckenbrodt et al., 2019) or even 20× by
iterative expansion (Chang et al., 2017). Other protocols focus on
preservation and isotropic expansion of ultrastructure (U-ExM)
(Gambarotto et al., 2019) or on precise tuning of the expansion
factor between 2 and 8 (ZOOM) (Park et al., 2019). Recently, ExM
has been applied also to bacterial pathogens (Kunz et al., 2019)
and to plants (Kao and Nodine, 2019), paving the way for new
methodological approaches in these fields.

So far, ExM has not been used to visualize fungi. The
application of ExM to fungi is challenging, since these organisms
are surrounded by a complex cell wall that prevents uniform
expansion of the cell content and largely differs in its composition
from the cell walls of bacteria and plants (Latgé et al., 2017; Kang
et al., 2018). Complete digestion of the cell wall is a prerequisite
for the isotropic expansion of fungal cells. Since protoplasting
protocols have been developed for a number of fungal species
(Anderson and Millbank, 1966; Peberdy, 1979), we hypothesized
that this approach could be applied to remove the cell wall
after fixation and before embedding in the hydrogel to enable
isotropic expansion.

The fungal cell wall consists of a complex mesh of
components including chitin, β-1,3-glucan, α-1,3-glucan as well
as different mannans and mannoproteins (Osherov and Yarden,
2010). Degradation of the cell wall is accomplished using
combinations of lytic enzymes such as glucanex, which includes a
cocktail of β-glucanases, cellulases, proteases and chitinases from
Trichoderma species. Glucanex has been used for production of
protoplasts in a number of fungi, including Aspergillus spp. (de
Bekker et al., 2009) and Fusarium spp. (Ramamoorthy et al.,
2015). Because cell wall composition varies strongly across fungal
species and culture conditions (Reilly and Doering, 2010; Li et al.,
2017), cell wall lysis protocols need to be carefully optimized for
each condition and fungal strain.

In this study we show that both ascomycete and basidiomycete
fungi are suitable for ExM after treatment with cell wall lytic
enzymes. Isotropically expanded fungal cells (∼4.5-fold) were
submitted to CLSM and SIM (Gustafsson et al., 2008) for super-
resolution fluorescence imaging. We imaged Ustilago maydis
sporidia expressing a fluorescent version of the membrane
rhodopsin UmOps1 (Panzer et al., 2019) as well as Fusarium
oxysporum hyphae expressing histone H1-mCherry (Ruiz-
Roldan et al., 2010) and the F-actin marker Lifeact-sGFP
(Fernández-Ábalos et al., 1998; Riedl et al., 2008). Moreover, we
show that the ExM protocol can be used successfully for super-
resolution fluorescence imaging of the clinically relevant human
pathogen Aspergillus fumigatus.

MATERIALS AND METHODS

Fungal Strains / Cultivation
The F. oxysporum f. sp. lycopersici race 2 strain 4287 (FGSC
9935) was used in all experiments. The F. oxysporum mutant
constitutively expressing histone H1 fused to mCherry red
fluorescent protein (H1-mCherry) was previously described
(Ruiz-Roldan et al., 2010). To obtain a F. oxysporum strain
simultaneously expressing both H1-mCherry and the Lifeact-
sGFP fluorescent reporter for F-actin visualization (Fernández-
Ábalos et al., 1998; Riedl et al., 2008), protoplasts of the
previously obtained H1-mCherry strain were co-transformed
with a hygromycin resistance cassette plus a PgpdA::LifeAct-
sGFP linear fragment (for details see Supplementary Text S1
and Supplementary Table S1), as previously described (Di
Pietro et al., 2001; López-Berges et al., 2012). For microconidia
production, cultures were grown in potato dextrose broth (PDB;
Sigma P6685) at 28◦C and 120 rpm for 4–7 days. Microconidia
were filtered through a custom-made cotton filter system,
harvested by centrifugation and washed twice with pure water.

The U. maydis strains expressing opsin1 fused to enhanced
green fluorescent protein (eGFP) were described in detail
before (Panzer et al., 2019) and derived from the wild type
isolate FB1 (Banuett and Herskowitz, 1989). Either the strain
FB1 1UmOps1 Pcrg ::UmOps1-eGFP K1 or FB1 Pcrg ::UmOps1-
eGFP KA was used for ExM experiments. U. maydis sporidia
were grown as described before (Panzer et al., 2019). Sporidia
were grown in PDB for 15–24 h at 28◦C and 100 rpm,
harvested by centrifugation (4000 × g, 3 min), washed once
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in ddH2O and resuspended in ddH2O to a final density of
6.5 x 105 sporidia/mL. If required, expression of UmOps1-eGFP
was induced by treatment with arabinose-containing induction
medium (Panzer et al., 2019).

The non-homologous end joining-deficient A. fumigatus
strain AfS35 (Krappmann et al., 2006; Wagener et al., 2008)
was transformed with plasmids pYZ011 and pYZ012. pYZ012
harbors a phleomycine resistance cassette and encodes a
mitochondria-targeted red fluorescent protein (RFP) fusion
protein that consists of the N-terminal part (52 amino acids)
of Aspergillus niger citrate synthase followed by mRFP1
under control of the Aspergillus nidulans gpdA promoter.
pYZ011 harbors a pyrithiamine resistance cassette and
encodes A. fumigatus AFUA_1G10040 including 230 bp of
its promoter region, followed without stop codon by the coding
sequence of a GFP (S65T) (Heim et al., 1995), FPbase ID:
B6J33 derivative with the following modifications: M1_S2insV,
E235_K238delinsSCTSKISRPRETW. The strain was cultivated
on solid Aspergillus minimal medium (AMM) (Hill and Kafer,
2001) in T75 tissue culture flasks (Sarstedt) in order to avoid
uncontrolled spreading of the hydrophobic fungal spores. Spores
were harvested by submerging them with PBS and resuspending
them by means of glass beads.

Enzymatic Digestion of the Cell Wall and
Staining
Fungal spores and sporidia were seeded onto poly-D-lysine
(PDL)-coated coverslips in 4-well tissue culture plates
(800 µL/well). While sporidia were investigated after 30 min
of sedimentation, conidia were allowed to germinate in the
respective culture medium for 18 h (A. fumigatus) or 14–19 h
(F. oxysporum). If indicated, fungal cells were incubated for
5–10 min in 0.5 µM mCling-Atto643 fluorescent dye dissolved
in nutrient media to stain the membrane. After three washing
steps with PBS the samples were either directly fixed in 4%
formaldehyde and 0.25% glutaraldehyde for 15 min (standard
procedure) or, as in case of microtubule detection in U. maydis
sporidia, treated according to the protocol of Michie et al.
(2017). Briefly, sporidia were prefixed and permeabilized for
1 min in prewarmed cytoskeleton buffer (10 mM MES buffer
pH 6.1, 150 mM NaCl, 5 mM EGTA, 5 mM glucose and 5 mM
MgCl2) containing additionally 0.25% Triton X-100 and 0.3%
glutaraldehyde and finally fixed for 10 min in cytoskeleton
buffer supplied with 2% glutaraldehyde. For quenching of
autofluorescence, fixation was followed by a 7 min incubation
in 0.1% NaBH4. After consecutive washing, cell walls were
digested for 1 h at RT with a cell wall lytic enzyme solution,
based on an enzymatic mix (0.1 g lysing enzyme of T. harzianum,
0.25 g driselase, and 0.5 mg chitinase dissolved in 10 ml 0.7 M
NaCl) that was used for the generation of Fusarium fujikuroi
protoplasts before (García-Martínez et al., 2015). The enzymatic
solution was either directly used in the experiments or stored
at −80◦C for later use. For treatment of young germlings and
U. maydis sporidia the enzyme solution was diluted in a ratio
of 1:5 with 0.7 M NaCl. In case additional antibody-staining
was required, the samples were blocked for 30 min in 5% BSA

/ 0.25% Triton X-100 and subsequently incubated with the
primary anti-α-tubulin antibody (abcam, ab18251) for 1 h.
After washing, the samples were incubated for another hour
in the corresponding secondary antibody (Alexa 488-label,
Thermo-fisher, A11008 or ATTO647N-label, Sigma, 40839)
resolved in blocking solution and washed with PBS. All samples
were instantly processed for ExM.

Expansion
Immediately before gelation, as previously published (Chozinski
et al., 2016; Kunz et al., 2019), the samples were incubated
for 10 min with 0.25% glutaraldehyde and washed with PBS.
Thereafter, a droplet of the monomer solution [8.625% sodium
acrylate (Sigma, 408220), 2.5% acrylamide (Sigma, A9926), 0.15%
N,N′-methylenbisacrylamide (Sigma, A9926), 2 M NaCl (Sigma,
S5886), 1 × PBS and 0.2% freshly added ammonium persulfate
(APS, Sigma, A3678) and tetramethylethylenediamine (TEMED,
Sigma, T7024)] was prepared on parafilm in a humid Petri dish.
Using tweezers, the coverslip with the attached fungi was then
transferred upside-down on the gelation droplet. The sample was
allowed to gelate for at least 1 h at RT in the closed dish. To ensure
isotropic expansion, samples were homogenized (Gao et al., 2017)
in digestion buffer [50 mM Tris pH 8.0, 1 mM EDTA (Sigma,
ED2P), 0.5% Triton X-100 (Thermo Fisher, 28314), and 0.8 M
guanidine HCl (Sigma, 50933)] supplied with 8 U/ml proteinase
K (Thermo Fisher, AM2548) for 1 h to overnight. This step is
required to reduce the cohesion of the fixed proteins while most
cellular compounds are washed out the gel. At the same time
the majority of the fluorophores remain attached to the polymer
(Tillberg et al., 2016). Digested samples were expanded in ddH2O
for 3–4 h. The water was changed every hour until the size of
the gel did not increase any more. Expanded gels were stored
at 4◦C until use. The expansion factor was determined by both
the diameter of the fungi as well as by the gel size before and
after expansion. Imaging was performed in PDL-coated chambers
(Merck, 734-2055) to immobilize the gels.

Fluorescence Microscopy
Imaging was performed on a confocal inverted system (Zeiss
LSM700) or on SIM system (Zeiss ELYRA S.1 SR-SIM) equipped
with an 63x oil (used for unexpanded samples) and a 63x water-
immersion objective (used for ExM samples; C-Apochromat,
63 x 1.2 NA, Zeiss, 441777-9970). The water objective was
necessary to provide sufficient working distance to be able to
image the expanded samples. Unexpanded CLSM images were
captured using the ideal pixel sizes provided by the software
(between 740 x 740 and 856 x 856 pixels) and a pixel dwell time
between 1.58 µs and 4.24 µs using laser powers ranging between
1.5 and 10%. The expanded samples were then imaged again with
the optimum pixel size and pixel dwell time ranging from 6.30 µs
to 8.43 µs, using laser powers between 10 and 26% with lasers of
488 nm, 555 nm and 639 nm. The pinhole was adjusted to 1 airy
unit and the photomultiplier was set to 700. SIM images were
reconstructed with the ZEN image processing platform of the
SIM module, with a fixed pixel size of 31 nm. Laser power ranged
between 8 and 25% using laser of 488 nm, 561 nm, and 642 nm
with integration times between 100 ms and 300 ms. For final
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image processing, Imaris 8.4.1 and FIJI 1.51 (Schindelin et al.,
2012) were used.

RESULTS

Degradation of the Cell Wall With Lytic
Enzymes Enables Expansion of
Filamentous Fungi and Sporidia
Expansion microscopy relies on isotropic expansion of all cellular
structures during gel swelling. Therefore, it is crucial that the
fungal cell wall is completely digested to enable the uniform
movement of labeled proteins and/or fluorophores during the
swelling process.

The fungal cell wall contains rigid polymers to maintain
turgor pressure and to avoid undesired cell swelling in fungi,
and thus needs to be removed to enable uniform expansion of
the fungal cell in the polyelectrolyte hydrogel. We successfully

degraded the cell wall in F. oxysporum andA. fumigatus germlings
and U. maydis sporidia using a mixture of glucanex, driselase
and chitinase. Complete removal of cell wall material was
confirmed by labeling with the chitin-specific dye calcofluor
white (Supplementary Figure S1). The used expansion protocol
was based on previously established protocols (Chozinski et al.,
2016; Kunz et al., 2019). We noted that the time point of cell
wall digestion within the protocol workflow significantly affected
the morphology obtained after the expansion process. Cell wall
lysis before fixation resulted in the generation of protoplasts
with spherical shape, leading to impaired distribution of the
subcellular structures as compared to untreated cells (Figure 1).
Protoplasts might still be useful for imaging depending on the
scientific question addressed. On the other hand, when cell wall
digestion was performed after fixation, the original shape of the
hyphae and sporidia was preserved (Figure 1).

In the three fungal species tested, cell wall removal
was successfully accomplished after fixation with either 4%
formaldehyde or 4% formaldehyde + 0.25% glutaraldehyde. As

FIGURE 1 | Expansion microscopy of fungi. (A) Schematic overview showing the steps involved in the expansion protocol for fungi. Inset: Representative
ExM-CLSM images of an Ustilago maydis protoplast (left) and sporidium (right) stained with anti-α-tubulin antibody (ATTO647N). Cell wall digestion was always
performed after initial fixation to ensure preservation of the structural information of sporidia and hyphae. (B) Typical U. maydis sporidium before (top) and after
(bottom) expansion at the same scale. Scale bars, 10 µm (A) and 5 µm (B).
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reported previously (Li et al., 2017; Wu and Chou, 2019), the
germination time of F. oxysporum conidia had a significant
impact on the outcome of cell wall digestion, with longer
germination times resulting in incomplete cell wall digestion that
impaired the expansion process (Supplementary Figure S2).

After digestion of the cell wall, fungal cells were expanded
by a factor of 4.53 ± 0.08 (n = 9) as determined from the gel
dimensions before and after expansion. In expanded samples,
details of subcellular structures were visualized by CLSM and SIM
as described in detail in the following sections.

Expansion of Ustilago maydis Enhances
Resolution of the Cytoskeleton and
Membrane Protein Distribution
Ustilago maydis is a dimorphic fungus, which undergoes a
morphological transition from the yeast form to the filamentous
form (Kahmann and Kämper, 2004; Vollmeister et al., 2012). The
haploid sporidia represent the yeast form, which proliferates by
budding. Untreated sporidia have a diameter of 2.4 ± 0.35 µm
(n = 26) and exhibit subcellular structures that are below the
diffraction limit of resolution and thus cannot be resolved by
conventional microscopy (Figure 2A). Here we found that the
cell wall of sporidia was easily removed by treatment with the
lytic enzyme cocktail, which allowed expansion by a factor of 4.6
resulting in a diameter of 11± 1.08 µm (n = 9). Confocal images
of expanded cells accurately visualized the cytoskeleton and

plasma membrane (Figure 2B). Most importantly, membrane
vesicles were clearly visible in the expanded samples (Figure 2B).
These results demonstrate that ExM can isotropically expand
intracellular structures of fungi.

Next, we investigated whether or not membrane proteins in
U. maydis can be visualized in expanded samples. To test this,
we used a U. maydis strain heterologously expressing UmOps1-
eGFP, a microbial rhodopsin that was recently shown to act as a
green-light driven proton pump (Panzer et al., 2019). Localization
of UmOps1 in the plasma membrane could be observed before
(Figure 2C) and after expansion (Figure 2D). In the latter case,
the fluorescent membrane protein was isotropically expanded
4.5-fold, visualizing the shape of the expanded sporidium, and the
fluorophore density decreased 91-fold. As a consequence, in some
areas the fluorescence appeared weak or non-homogeneously
labeled in the expanded images (Figure 2D).

ExM of the Ascomycete Fusarium
oxysporum Reveals Structural
Information
The soil-inhabiting ascomycete F. oxysporum causes vascular
wilt disease in more than a 100 different crop species and has
been reported as an opportunistic human pathogen. Similar to
U. maydis, the plasma membrane of F. oxysporum can be stained
with mCling dye, which stably remains in membranes after
fixation (Revelo and Rizzoli, 2016).

FIGURE 2 | Expansion microscopy of Ustilago maydis sporidia. Sporidia were imaged after fixation, either before (A,C) or after 4.6-fold expansion (B,D). (A,B)
Sporidia were stained for 5 min with the (i) membrane stain mCling and then (ii) immunostained with a primary antibody against α-tubulin. Maximum intensity
projection of the secondary antibody’s Alexa488-signal. For better visualization the mCling signal is only shown from a middle level. (C,D) Expression of the fungal
rhodopsin UmOps1 fused to eGFP in the plasma membrane of the sporidia. Scale bars, 2 µm (A,C) and 10 µm (B,D).
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We used a F. oxysporum strain expressing histone H1
labeled with mCherry (Ruiz-Roldan et al., 2010). With a hyphal
diameter of 2.89 ± 0.49 µm (n = 17), the standard SIM image
provides only limited information on the intracellular structure
(Figure 3A). In contrast, imaging of the expanded fungal
hypha with an average diameter of 12.73 ± 0.71 µm (n = 4),
clearly revealed different membrane embedded organelles and
vesicles in addition to the histone-H1-labeled nuclei (Figure 3B).
Depending on the time of staining, mCling tends to stain
also the intracellular membranes as seen in the expanded
F. oxysporum hypha that was incubated with mCling for
10 min (Figure 3B).

By using the F. oxysporum histone H1-mCherry strain as
genetic background, we generated a strain expressing both
histone H1-mCherry and the F-actin reporter Lifeact-sGFP
(Riedl et al., 2008). Figures 3C,D show the distribution of
filamentous actin together with the nuclei. The formation of actin
filaments at the hyphal tip was visible both in the expanded
and non-expanded sample, but the distinct actin cables (bundles

of actin filaments) could not be resolved well in the non-
expanded sample due to the small diameter of F. oxysporum
hyphae, a situation similar to that reported in A. nidulans (Bergs
et al., 2016). The superior resolution provided by ExM allowed
observation of the actin cables, similar to N. crassa hyphae
which naturally exhibit a much larger hyphal diameter (Berepiki
et al., 2010). Within the nucleus, regions with higher and others
with lower fluorescence intensity were visible, possibly reflecting
differences in histone density as described in living cells of
mammals (Nozaki et al., 2017) and plants (Rutowicz et al., 2018)
PREPRINT. Such differences may appear more pronounced due
to the diluted fluorescence intensity after expansion.

ExM Reveals the Distribution of
Mitochondria in Hyphae of the Mold
Aspergillus fumigatus
Aspergillus fumigatus, a mold with worldwide distribution,
produces masses of highly hydrophobic conidia that are

FIGURE 3 | Expansion microscopy of F. oxysporum. Images were taken before (A,C) and after expansion (B,D). (A,B) SIM images showing hyphae of a strain
expressing histone H1-mCherry (i) stained 5 min (A) or 10 min (B) with mCling. (ii) Membrane-bound vesicles are highlighted by white arrows. (C,D) CLSM maximum
intensity profile images of a strain expressing lifeact-sGFP and histone H1-mCherry. Scale bars, 5 µm (A,C) and 10 µm (B,D).
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FIGURE 4 | Expansion microscopy of A. fumigatus with mRFP1-labeled mitochondria. CLSM images before (A) and after (B) expansion are shown. Samples were
stained with mCling to label the plasma membrane (i, cyan). Mitochondria were visualized by the fluorescence of mRFP1 (magenta, ii). In the overlay (iii) after
expansion the shape of the mitochondria and the plasma membrane becomes clearly resolved using standard CLSM. Scale bars, 5 µm (A) and 10 µm (B).

ubiquitous in the air and can cause life-threatening invasive
aspergillosis when inhaled by immunocompromised patients.
We used ExM to visualize an A. fumigatus strain expressing
mRFP fused to the N-terminus of citrate synthase, thus
conferring localization in the mitochondria. Cell wall digestion
of A. fumigatus hyphae was obtained within the first 18 h
of germination (Figure 4). The membrane dye mCling was
successfully used to visualize the shape of hyphae. Typically,
A. fumigatus hyphae exhibited mean diameters of 2.43± 0.27 µm
(n = 9), which increased 4.4-fold to 10.72± 0.69 µm (n = 17) after
digestion and expansion.

While the shape of single mitochondria could not be
distinguished well before expansion (Figure 4A), it was clearly
resolved in the expanded hyphae (Figure 4B). However,
fluorescence intensity of mRFP1 was low, possibly due to
the proteinase treatment. The use of different proteinases or
antibodies as an alternative to fluorescent proteins could further
enhance the fluorescence signal.

DISCUSSION

In recent years, fluorescence microscopy has seen a boost
in technical advances, with a number of new technologies
mainly directed at circumventing the diffraction limit of optical
resolution (Coltharp and Xiao, 2012; Schermelleh et al., 2019).

Major drawbacks of these technologies are the high financial
investment and the technical expertise required for running such
setups. Therefore, super-resolution microscopy installations are
often limited to core units of research institutes.

The recent introduction of ExM provides an attractive
alternative that can be implemented in almost every laboratory
with access to conventional fluorescence microscopy. Instead of
using sophisticated optical or computational upgrades, in ExM
the sample itself is physically enlarged to enhance the resolution
of the specimen that can be obtained with a standard fluorescence
microscope. Assuming a spatial resolution limit of 250 nm, ExM
increases the effective resolution to about 60 nm (Chen et al.,
2015). Using SIM on expanded samples, one can expect further
increase of the spatial resolution to∼30 nm.

The aim of this work was to transfer the concept of ExM to
fungi, since many fungal research groups lack the infrastructure
required for super-resolution microscopy. Our results show
that ExM is generally suitable for studying fungal cell biology.
Structures from all three fungal species used here, including
sporidia of the basidiomycete U. maydis and hyphae of the
ascomycetes A. fumigatus and F. oxysporum, could be expanded
using similar protocols with only minor modifications in culture
times and enzymatic cell wall treatment. Preparation of samples
for ExM requires complete removal of the cell wall, since in
the rare cases of incomplete cell wall digestion the expansion
proceeded non-isotropically (Supplementary Figures S1, S2).
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Therefore, not all of the available protocols for protoplast
generation in fungal species can be directly transferred to meet
the specific requirements of ExM. While partial digestion of
the hyphal cell wall can be sufficient to release protoplasts
to the environment, ExM requires complete removal of the
cell wall to avoid artifacts. Here we used a combination of
lysing enzyme of T. harzianum, driselase, and chitinase, a
cocktail conferring β-glucanase, cellulase, protease, chitinase,
laminarinase, and xylanase activities, that was successfully
used for protoplast generation in F. fujikuroi (García-Martínez
et al., 2015). Our protocol allowed efficient expansion of
young germlings of less than 12 or 18 h in F. oxysporum
and A. fumigatus, respectively. After longer growth periods
the composition of the cell wall appeared to change, making
it more resistant to the deconstruction by lytic enzymes.
By contrast, in U. maydis sporidia cell wall digestion was
successful at any culture age due to its yeast-like growth. The
importance of the culture conditions in cell wall digestion
for protoplast generation has been reported previously in
filamentous fungi (Reilly and Doering, 2010; Li et al., 2017) and
yeasts (Terpitz et al., 2012).

Recent investigations of the cell wall composition of
A. fumigatus suggest an important contribution of α-1,3-
glucan to the rigid inner domain (Kang et al., 2018). Since
α-1,3-glucanase is not commercially available, it was not
part of our lytic enzyme cocktail. Further optimization
of the lytic enzyme mixture could in the long-term
allow ExM of older hyphae, or hyphae growing under
challenging conditions. This may be of particular interest
for the visualization fungal hyphae attacked by immune
cells (Park and Mehrad, 2009), where the fungus is pre-
germinated and maintained in co-cultures for up to 12 h
(Ziegler et al., 2017).

After embedding the digested hyphae in the gel, our protocol
followed the classical expansion procedure successfully used for
mammalian cells, tissue sections, and bacteria (Chozinski et al.,
2016; Kunz et al., 2019). These protocols provided isotropic
expansion of hyphae and sporidia by a factor of 4.6 (U. maydis)
or 4.4 (F. oxysporum and A. fumigatus), calculated from the cell
size measured before and after expansion. In agreement with this,
the macroscopic analysis of gel expansion revealed an expansion
factor of 4.53± 0.08 (n = 9).

Importantly, our finding that intracellular vesicles maintain
the circular shape after expansion (Figure 3), provides clear
evidence that this protocol produces isotropic expansion of
fungal cell. This was further confirmed by the conserved shape
of the plasma membrane before and after expansion, as visualized
with mCling (Figures 2–4). In the three fungal systems used here,
ExM strongly improved visualization of the shape of organelles.
For example, differences in the histone H1 distribution were
observed in expanded nuclei of F. oxysporum hyphae, that are
similar as reported previously for nuclei in mammalian cells
(Nozaki et al., 2017) while such information was not resolved
in unexpanded hyphae with the same microscopical settings
(Figure 3). Similarly, membrane-surrounded vesicles were visible
as hollow spheres after ExM, but not in the unexpanded sample.
Finally, the morphology of mitochondria was detectable in

expanded A. fumigatus hyphae, but not in the unexpanded
samples (Figure 4).

The additional subdiffractional information gained by ExM
also has some costs. Expansion results in a decrease of
fluorophore density, leading to a reduced fluorescence signal.
For example, eGFP-labeled rhodopsin occasionally appeared
devastated or non-homogeneously distributed in the ExM image,
due to a strong reduction of fluorophore density after expansion
by almost two orders of magnitude with an expansion factor of
4.5. Nevertheless, the spotty distribution may reflect the natural
situation, since a similar pattern was observed in correlative
fluorescence and electron microscopy images of 250 nm-
sections of F. fujikuroi expressing the rhodopsin CarO-eYFP
(unpublished data).

Expansion microscopy imposes a limitation in the
type of fluorophores that can be used, because common
carbocyanines such as Cy5 or Alexa Fluor 647 become
deteriorated during the gelation (Tillberg et al., 2016). In
addition, the treatment of the hyphae embedded in the gel
with proteinase K may result in partial degradation of the
fluorescent proteins, leading to further reduction of fluorescence
intensity. Both drawbacks can be addressed by using more
efficient fluorophores or immunohistochemistry to enhance
the fluorescence signal. On the positive side, the removal
of cell wall content leads to a reduction of the associated
autofluorescence, which can be intense in fungi such as
A. fumigatus (Ziegler et al., 2017). Since autofluorescence
often interferes with the visualization of fluorescent dyes
or proteins, loss of autofluorescence concomitant with
preservation of the fluorescence signal can lead to an
increased signal to noise ratio and thus improve visualization of
fluorescent structures.

In conclusion, our results demonstrate that ExM is readily
applicable to fungi after successful treatment with cell wall
degrading enzymes. In our experiments, ExM allowed the
visualization of ultrastructural information that is below the
resolution of a conventional fluorescence microscope. Since
ExM can be used advantageously in all labs with access to
conventional fluorescence microscopes, the optimized ExM
protocol will be of general interest to the broad field of
fungal research.
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