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More and more clinical observations have implied that microbes have great effects
on human diseases. Understanding the relations between microbes and diseases
are of profound significance for disease prevention and therapy. In this paper, we
propose a predictive model based on the known microbe-disease associations to
discover potential microbe-disease associations through integrating Learning Graph
Representations and a modified Scoring mechanism on the Heterogeneous network
(called LGRSH). Firstly, the similarity networks for microbe and disease are obtained
based on the similarity of Gaussian interaction profile kernel. Then, we construct a
heterogeneous network including these two similarity networks and microbe-disease
associations’ network. After that, the embedding algorithm Node2vec is implemented
to learn representations of nodes in the heterogeneous network. Finally, according
to these low-dimensional vector representations, we calculate the relevance between
each microbe and disease by utilizing a modified rule-based inference method.
By comparison with three other methods including LRLSHMDA, KATZHMDA and
BiRWHMDA, LGRSH performs better than others. Moreover, in case studies of
asthma, Chronic Obstructive Pulmonary Disease and Inflammatory Bowel Disease,
there are 8, 8, and 10 out of the top-10 discovered disease-related microbes were
validated respectively, demonstrating that LGRSH performs well in predicting potential
microbe-disease associations.

Keywords: microbe-disease association, heterogeneous network, network embedding algorithm, Node2vec,
skip-gram

INTRODUCTION

Varieties of microbial communities are dominant throughout the human different body niches
including skin, mouth, respiratory tract, throat, stomach, gut and colon, which mainly compose
of bacteria, protozoa, archaeon, viruses, and fungi (Methe et al., 2012; Althani et al., 2016). It
is generally that a wide range of them play fundamental roles in human health and diseases
such as maintaining homeostasis (Bouskra et al., 2008), developing the immune system (Round
and Mazmanian, 2010; Gollwitzer et al., 2014) and resisting pathogens (Methe et al., 2012).
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For example, the majority of microbes reside in the gut, regulating
human physiology and nutrition by modulating host metabolism
and immunity. They can digest and convert dietary constituents
into active forms (Qin et al., 2010; Ahn et al., 2013).

Microbial communities are considered as an essential “organ”
governing health and disease, which can be influenced by host
genetics and host environment such as feeding habits, life styles,
seasons and antibiotics (Huttenhower et al., 2012; Althani et al.,
2016). If the microbial communities become imbalanced, there
may interfere with the symbiotic relationships and cause diseases.
For instance, researchers found that the number of phylum
Actinobacteria among diabetics was significantly lower than the
healthy person (Long et al., 2017). In addition, some studies
found a decrease in the relative percentage of Bacteroidetes
in obese people compared to the general population (Ley
et al., 2006). Moreover, low microbial diversity can lead to
inflammatory bowel disease (IBD) (Qin et al., 2010). Thus,
understanding the microbe-disease associations can help us know
disease pathogenesis to boost disease diagnosis and therapy.

With the advances in sequencing technologies and
bioinformatics, more and more microbes living in oceans,
soil, human bodies and elsewhere began to be investigated by
the scientific community (Gilbert and Dupont, 2011; Methe
et al., 2012; Cenit et al., 2014). The Human Microbiome Project
Consortium (HMP) was funded to explore the relationships
between microbes and human diseases. It generates a wide range
of quality-controlled resources and data to develop metagenomic
protocols, which is available for scientific research (Methe et al.,
2012). Ma et al. (2016) constructed The Human Microbe-
Disease Association Database (HMDAD) through collecting
correlations between microbes and diseases from 61 published
literatures. These achievements provided the foundation for
further research on using computational methods to predict
potential associations.

In recent years, some computational methods have been
conceived for predicting microbe-disease associations based
on the assumption that similarly functioning microorganisms
incline to share similar associations or non-associations with
diseases. By using the Gaussian interaction profile (GIP) kernel
similarity, Chen et al. (2017) developed a prediction method
called KATZHMDA that infers potential associations based
on the number and length of walks in a heterogeneous
network. Li et al. (2019) constructed a bidirectional weighted
network by combining a normalized Gaussian interaction
scheme with a bidirectional recommendation model. Zou
et al. (2017) used a bi-random walk and logistic function
transformation on a heterogeneous network constructed based
on the GIP kernel similarity. Through a combination of the
GIP kernel similarity and LapRLS classification, Wang et al.
(2017) designed a computing model LRLSHMDA, which is semi-
supervised . Meanwhile, through integrating the GIP kernel
similarity with disease symptom similarity, Qu et al. (2019)
implemented the matrix decomposition and label propagation
algorithm on the similarity network for associations’ prediction
. Huang et al. (2017) predicted potential associations based
on known microbe-disease bipartite graph and neighbor
collaborative filtering. Moreover, Fan et al. (2019) proposed

a method called MDPH_HMDA for prediction by executing
standardized HeteSim measurements to weight the relations in a
heterogeneous network combined by the GIP kernel similarity,
the microbe–microbe functional similarity and the symptom-
based human disease similarity. Niu et al. (2019) identified the
potential associations by introducing the concept of hypergraph,
which put all disease-related microbes on a single hyperedge.
In order to take the unequal contributions of microbe and
disease information into consider, Zhang et al. (2018) developed
a bidirectional similarity integral label propagation method with
calculating the microbe functional similarity and the disease
semantic similarity.

At the same time, many network embedded methods have
been proposed, such as DeepWalk (Perozzi et al., 2014),
SDNE (Wang et al., 2016), Node2vec (Grover and Leskovec,
2016), etc. In this study, inspired by the performance of
graph representations for many real-world problems such as
protein network research, text and visual processing (Cao
et al., 2016). We utilize Node2vec (Grover and Leskovec, 2016)
to predict potentially unknown associations (LGRSH) on a
heterogeneous network. First, similarity networks for microbes
and diseases are calculated by the GIP kernel similarity. Then,
we construct a heterogeneous network integrating the two
similarity networks and known microbe-disease associations’
network. After that, the embedding algorithm Node2vec has
been utilized to assign a low-dimensional vector representation
to nodes in the heterogeneous network. Finally, according
to the vector representation of each node, we calculate the
degrees of correlation between microbes and diseases to
discover potential associations with a modified rule-based
inference method. In order to assess the prediction performance
of LGRSH, we implemented Leave-one-out cross validation
(LOOCV) and fivefold cross validation. The area under the
receiver operating characteristic curve (AUC) obtained by
LGRSH are 0.9260 and 0.9254, which is better than the
compared methods. Moreover, case studies of asthma, Chronic
Obstructive Pulmonary Disease (COPD) and IBD demonstrate
that LGRSH can be considered as an effective method for
association prediction.

MATERIALS AND METHODS

Material
We download microbe-disease associations from HMDAD (Ma
et al., 2016), which contains 483 verified associations’ records
between 292 microbes and 39 diseases. After removing the
repetitive relationships, 450 distinct associations’ records are
obtained. Then we construct a 39 × 292 dimensional adjacency
matrix MD of the associations’ network. MD (i, j) is 1 indicating
that there is a known association between disease d(i) and
microbe m(j), otherwise, MD (i, j) is 0.

Methods
As illustrated in Figure 1, firstly, the similarity networks
for microbe and disease have been constructed. And then, a
heterogeneous network integrating two similarity networks and
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FIGURE 1 | The flowchart of LGRSH.

microbe-disease associations’ network can be obtained. After
that, the embedding algorithm Node2vec is utilized to learn the
representation for every node. Finally, according to the topology
information based on Node2vec method, we calculate the relation
score between every microbe vector and disease vector.

Calculation of Microbe Similarities Based on the GIP
Kernel Similarity
Based on the assumption that two microbes are more likely to
share functional similarities potentially if they are related to more
common diseases. We calculate the GIP kernel similarity for
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microbes based on known microbe-disease associations’ network.
For microbes m(i) and m(j), the similarity score is obtained
according to Eq. (1) (Wang et al., 2017):

SM(m(i, j)) = exp(−γm||MD(m(i)) − MD(m(j))||2) (1)

where m(i, j) represents two arbitrary microbes in matrix MD.
Parameter γm is used to control the bandwidth and is affected by
a new bandwidth parameter γm’(Wang et al., 2017), which can be
obtained as Eq. (2):

γm = γ′m/
1

Nm

Nm∑
i=1

||MD (m (i)) ||2 (2)

here, Nm is equal to 292, which indicates the total number
of microbes. The parameter γm’ is set to 1 for simplicity
(Wang et al., 2017).

Calculation of Disease Similarities Based on the GIP
Kernel Similarity
In the similar way, we construct a disease similarity network
by using the GIP kernel similarity for each disease pair. The
similarity between disease d(i) and d(j) is obtained according to
Eq. (3) (Wang et al., 2017):

SD(d(i, j)) = exp(−γd||MD(d(i))−MD(d(j))||2) (3)

where d(i, j) represents two arbitrary diseases in matrix MD. The
parameter γd can be obtained as Eq. (4):

γd = γ′d/
1

Nd

Nd∑
i=1

||MD
(
d (i)

)
||

2 (4)

here, Nd is equal to 39, which indicates the total number
of diseases. The parameter γd’ is set to 1 for simplicity
(Wang et al., 2017).

Constructing a Heterogeneous Network for Microbes
and Diseases
According to the Eqs (1) and (3), we have constructed
two similarity matrices SM and SD. Then we construct a
heterogeneous network including the edges of microbe–microbe,
microbe-disease and disease–disease associations, and it can be
expressed as Eq. (5):

P =
[

SD MD
MDT SM

]
(5)

where P represents the matrix of heterogeneous network. MDT is
the transpose of MD.

Using Node2vec to Learning Representations
Node2vec is a flexible neighborhood sampling strategy which can
explore neighborhoods in the form of Breadth-First Sampling
(BFS) and Depth-First Sampling (DFS) fashion by introducing
two parameters (Grover and Leskovec, 2016). It maximizes the
network neighborhood of nodes by mapping nodes to vector
feature spaces. Therefore, we apply Node2vec to learn vector
representations for nodes in the heterogeneous network.

Firstly, we utilize a bias random walk strategy to calculate
the transition probabilities for every node. For a current node u,
the probability of accessing the next node x can be calculated as
follows:

P(ci = x|ci−1 = u) =

{ πux
Z if (u, x) ∈ E

0 otherwise
(6)

here, Z is a regularization constant. πux is denormalized
transition probabilities on edges (u, x) leading from u, which is
influenced by a weight adjustment parameter α. We suppose the
walk just went from t to u and setπux = αpq (t, x) ·wux, where

apq(t, x) =


1
/

p if dtx = 0
1 if dtx = 1
1
/

q if dtx = 2
(7)

here, dtx is in the range of {0, 1, 2}, representing the shortest
distance from nodes t to x. Parameters p and q are used to strike a
balance between DFS and BFS. As shown in Figure 2, parameter
p is a return parameter that affects the possibility of re-traversing
a node immediately during a walk. If p is set to be larger, it is
less likely to revisit the node that was just accessed. This strategy
can lead to moderate exploration and avoid repetitive sampling. If
the value is set to be smaller, the walk is more likely to backtrack,
and tends to reach nodes near the node. There is more concerned
for the local information. Parameter q is an in-out parameter,
which allows searches to distinguish “inward” and “outward”
nodes (Zeng et al., 2019). If q > 1, the walk tends to be closer
to node u. In contrast, if q < 1, it tends to traverse nodes far from
node u (Zeng et al., 2019).

We first select one node u and mark it as the current node,
and then select one node v from all the neighbors of the current
node u based on the transition probabilities calculated above.
Following, we mark this newly selected node v as the current node
and repetitive such as a node sampling process. The algorithm
terminates when the number of nodes in a sequence reaches a
preset walking length l. By referring to the previous paper, we set
l as10 (Munui et al., 2018).

FIGURE 2 | Description of walking strategy in Node2vec when the traversal
has just gone from t to u.
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Node2vec uses Skip-gram model to generate eigenvectors of
nodes (Jang et al., 2019). Skip-gram model is a word embedding
algorithms for learning distributed vector representations from
a large number of textual corpora which tries to categorize
a word according to other words in the same sentence as
much as possible (Mikolov et al., 2013). In fact, the sequence
of nodes obtained by bias random walk algorithm, each node
actually corresponds to a word. The input of this model
is the sequence encoding of a node, and the output is the
nodes before and after the sequence. In this paper, we set the
context size to 10 and the dimension of these eigenvectors to
128 according to the original parameter selection for the best
performance (Grover and Leskovec, 2016). The algorithm is
detailed in Figure 3.

Association Discovering
According to the popular rule-based inference method for
predicting novel drug-target associations based on indirect
relationships in 2017 (Zong et al., 2017), we utilize a modified
Scoring mechanism to grade microbe-disease relations based
on the low-dimensional vector representation. Considering that
indirect relationships do not fully predict the relationship if there

are few known relations between some microbes and diseases,
especially if there is only single relationship, we have used both
direct and indirect connections to calculate correlations between
microbes and diseases.

We use Score(mi, dj) to represent the correlation score between
the ith microbe and jth disease in the heterogeneous network. It
can be calculated according to Eq. (8):

Score(mi, dj) =∑m
k=1 Sim(mi, mk)MD(j, k)+

∑d
k=1 Sim(dj, dk)MD(k, i)∑m

k=1 Sim(mi, mk)+
∑m

k=1 Sim(dj, dk)
(8)

In this Equation, m and d indicate the numbers of microbe and
disease, MD(i, j) is the association between disease i and microbe
j. The Sim(u, v) is calculated as Eq. (9):

Sim(u, v) =
∑d

k=1 ukvk√∑d
k=1 u2

k

√∑d
k=1 v2

k

(9)

here, d represents the dimension for each vector, uk, vk represent
the components of vectors u and v.

FIGURE 3 | Description of algorithm Node2vec.

TABLE 1 | Effect of parameters p and q in fivefold cross validation.

q = 0.25 q = 0.5 q = 1 q = 2 q = 4 q = 8 q = 16

p = 0.25 0.9251 0.9165 0.9178 0.9246 0.9229 0.9236 0.9244

p = 0.5 0.9253 0.9236 0.9251 0.9246 0.9254 0.9235 0.9229

p = 1 0.9240 0.9250 0.9190 0.9213 0.9234 0.9234 0.9242

p = 2 0.9214 0.9204 0.9239 0.9230 0.9251 0.9181 0.9208

p = 4 0.9215 0.9222 0.9206 0.9229 0.9241 0.9239 0.9235

Bold values: LGRSH achieves the best performance while p = 0.5, q = 4.
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RESULTS

We implement LOOCV and fivefold cross validation on
HMDAD to assess the prediction performance of LGRSH. In
the LOOCV, we regard each known association as a test sample,
with other known associations as training samples (Quan et al.,
2014). All unverified microbe-disease associations are regarded as
candidate samples. In the fivefold cross validation, we randomly
divide all known microbe-disease associations into 5 average
groups. Each of these five groups is regarded as testing sample,
while other four groups are training samples. This process is
conducted five times to mitigate the bias due to random sample
partitioning (Niu et al., 2019). Based on the prediction score, we
evaluate the predictive performance by ranking the test samples.
The AUC can be calculated according to the receiver operating
characteristic (ROC) curve. If there is a random prediction
performance, the AUC value is 0.5.

Effect of Parameters
There are two important parameters in Node2vec. One is a return
parameter p and another is an in-out parameter q. We set various
values under the framework of fivefold cross validation in order
to evaluate the impact of these parameters. According to the

FIGURE 4 | Effect of parameters p and q in fivefold cross validation.

comparison results in Table 1 and Figure 4, we can find that the
performance of LGRSH is best with 0.9254 while p = 0.5, q = 4.
Hence, we set p = 0.5, q = 4 in the subsequent experiments.

Comparison With Other Methods
We compare LGRSH with three methods including LRLSHMDA
(Wang et al., 2017), KATZHMDA (Chen et al., 2017) and
BiRWHMDA (Zou et al., 2017). These four methods are
measured by Precision-recall curve. As illustrated in Figures 5,
6, we can draw a conclusion that LGRSH performs better than
other three methods.

Furthermore, we measure the top-level results of LGRSH
and three other methods in LOOCV. As shown in Figure 7,
LGRSH can find more known associations among the top 500
predicted microbes.

CASE STUDIES

To evaluate the ability of LGRSH for discovering unknown
associations in HMDAD, we implement case studies in asthma,
COPD and IBD. We conduct experiments for 10 times on each
diseases to make the results more stable. After calculating the
similarity of every microbe and disease, the scores are sorted
in descending order to obtain the top-10 candidate microbes
for every disease. The scores of top-10 disease-related microbes
are provided in Supplementary Tables S1–S3, respectively.

Asthma
Asthma is a common inflammatory disease affecting more
than 300 million people all over the world, which is more
common in childhood with recurrent cough, wheezing and
breathing difficulties. In recent years, asthma has been found to
be closely linked with microbes (Caliskan et al., 2013). Hence,
we consider Asthma for case studies. As shown in Table 2, 8
of top-10 discovered microbes were confirmed. For instance,
Clostridium difficile colonization (ranked 1st in the list) in
1 month was associated with asthma between the ages of 6 and

FIGURE 5 | Prediction comparison between LGRSH and other three methods in LOOCV and fivefold cross validation while p = 0.5, q = 4.
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FIGURE 6 | Precision-recall curves for LGRSH and other three methods in
fivefold cross validation.

FIGURE 7 | The number of correctly predicted by LGRSH and other three
methods on HMDAD.

TABLE 2 | Validation results for Top-10 predicted microbes related with asthma.

Rank Microbe Evidence

1 Clostridium difficile PMID:21872915

2 Firmicutes PMID:27078029

3 Clostridium coccoides PMID:21477358

4 Actinobacteria PMID:30286807

5 Enterobacteriaceae PMID:28947029

6 Lactobacillus PMID:30400588

7 Bacteroides PMID:18822123

PMID:29161087

8 Burkholderia Unconfirmed

9 Lachnospiraceae PMID:28912020

10 Enterococcus Unconfirmed

7 (van Nimwegen et al., 2011). Researchers also proved that
colonization with Clostridium coccoides (ranked 3rd in the list)
and Bacteroides (ranked 7th in the list) at 3 weeks were associated
with positive predictors of asthma at age 3 (Carl et al., 2008,
2011). In addition, the abundance of Firmicutes (ranked 2nd
in the list) and Enterobacteriaceae (ranked 5th in the list) were

TABLE 3 | Validation results for Top-10 predicted microbes related with COPD.

Rank Microbe Evidence

1 Proteobacteria PMID:29579057

2 Prevotella PMID:28542929

3 Helicobacter pylori PMID:28558695

4 Actinobacteria PMID:29709671

5 Bacteroidetes PMID:29579057

6 Clostridium difficile PMID:30430993

7 Clostridium coccoides Unconfirmed

8 Lactobacillus PMID:26630356

9 Lachnospiraceae Unconfirmed

10 Staphylococcus aureus PMID:30804927

TABLE 4 | Validation results for Top-10 predicted microbes related with IBD.

Rank Microbe Evidence

1 Prevotella PMID:24013298

2 Bacteroidetes PMID:29492876

3 Clostridium difficile PMID:24838421

4 Helicobacter pylori PMID:22221289

PMID:28124160

5 Firmicutes PMID:25307765

PMID:29492876

6 Clostridium coccoides PMID:19235886

7 Lactobacillus PMID:26340825

8 Enterobacteriaceae PMID:30319571

9 Veillonella PMID:30573380

10 Haemophilus PMID:24013298

higher in severe asthmatics compared with non-asthmatic people,
while Actinobacteria (ranked 4th in the list) and Lachnospiraceae
(ranked 9th in the list) with lower proportion (Marri et al., 2013;
Ciaccio et al., 2015; Zhang et al., 2016; Li et al., 2017). Moreover,
Huang et al. (2018) found that Lactobacillus (ranked 6th in the
list) can reduce asthma severity and improve asthma control,
which is beneficial to children with asthma.

Chronic obstructive pulmonary disease
(COPD)
Chronic obstructive pulmonary disease is a progressive
obstructive pulmonary disease with main symptoms of breathing
difficultly and coughing (Rabe et al., 2007). It is more common
among smokers, and is also influenced by factors like air
pollution and genetics. Although the disease can be slowed down
by treatment, there is still no clear treatment or pathogenesis for
it. Recently, some findings indicate that changes in microbes may
have significant effects in the development of COPD (Malhotra
and Henric, 2015). Thus, we consider COPD for case studies.
As shown in Table 3, 8 of top 10 discovered microbes were
confirmed. For example, the main flora of Proteobacteria (ranked
1st in the list) and Bacteroidetes (ranked 5th in the list) increased
with the deterioration of COPD (Rohde et al., 2004). Researchers
also found that Helicobacter pylori (ranked 3rd in the list)
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infection is associated with reduced lung function and systemic
inflammation in COPD patients (Mammen and Sethi, 2016).
In patients with COPD, the proportion of Prevotella (ranked
2nd in the list) is reduced compared with healthy people, but
phyla Actinobacteria (ranked 4th in the list), Clostridium difficile
(ranked 6th in the list) and Lactobacillus (ranked 8th in the list)
are increased (Yadava et al., 2016; Larsen, 2017; de Miguel-Diez
et al., 2018; Ghebre et al., 2018). For example, the Clostridium
difficile is twice as high in COPD patients as in healthy person.
Moreover, Staphylococcus aureus (ranked 10th in the list) has
been found in the respiratory tract of patients with COPD
(Uddin et al., 2019).

Inflammatory bowel disease (IBD)
Inflammatory bowel disease is a chronic, idiopathic
gastrointestinal inflammatory disease that is thought to be
influenced by environmental and host factors (D’Aoust et al.,
2017). It is characterized by recurrent episodes, diverse
clinical manifestations and severe complications such as
bleeding, abscess formation and perforation (Cosnes et al.,
2002). In this paper, we consider IBD for case studies.
As shown in Table 4, 10 of top-10 discovered microbes
were confirmed. For instance, researchers have found that
IBD is related to gut microbiological disorders including
expansion of Enterobacteriaceae facultative anaerobic bacteria
(ranked 8th in the list) and decrease in some beneficial fecal
bacteria such as Firmicutes (ranked 5th in the list) (Eom
et al., 2018; Zuo and Ng, 2018). In patients with IBD, the
dominant of Prevotella (ranked 1st in the list), Veillonella
(ranked 9th in the list) and Haemophilus (ranked 10th in the
list) were largely contribute to dysbiosis (Said et al., 2014).
Bacteroidetes (ranked second in the list) and Lactobacillus
(ranked 7th in the list) were significantly increased compared
with healthy people, but the Clostridium coccoides (ranked
6th in the list) was less abundant (Sokol et al., 2009; Thomas
et al., 2015; Eom et al., 2018). Researchers also found that
Clostridium difficile (ranked 3rd in the list) infection has
become a significant clinical challenge for patients suffering
from IBD, which can worsen flares of IBD, inducing to
emergent colectomies and mortality (Hashash and Binion,
2014). Moreover, recent experimental results found that
chronic infection with Helicobacter pylori (ranked 4th in
the list) is protective against IBD. And IBD patients are
least likely to be infected with Helicobacter pylori compared
to the normal population (Sonnenberg and Genta, 2012;
Kyburz and Muller, 2017).

CONCLUSION

There are countless microbe communities inhabited in the
human body, having important impacts on human health and
disease by regulating the metabolism and immunity. With
the establishment of relational databases for microbes and
diseases, exploring their associations have become a hot topic for

researchers. In this study, we propose a predictive approach called
LGRSH by utilizing network embedding algorithm Node2vec to
obtain the representation for every node in the heterogeneous
network. According to the vector representation for every node,
we rank the relevance of each microbe vector and disease
vector to discover potential microbe-disease associations. In
LOOCV and 5-fold cross validation, LGRSH performs better
compared with three other methods with AUC reached 0.9260
and 0.9254. The case studies of asthma, COPD and IBD show
that LGRSH can be used as a predictive tool for microbe-
disease associations.

Certainly, there are still some deficiencies in LGRSH. For
example, there are only 450 know micro-disease associations,
which accounts for very small proportion of human microbial
diseases. This may result in less comprehensive for prediction.
We believe that the problem will be solved when more
microbe-disease links are discovered. In addition, the embedding
algorithm itself is a local method. In the future, we will learn
more graph representation algorithms to improve the global
capability. Moreover, we calculate the similarities for microbe
and disease through the GIP kernel, which may biased toward
microbes and diseases with more known associations. Hence,
we will improve the efficiency of LGRSH by integrating some
optimization strategies such as microbe functional similarity,
disease semantic similarity and symptom-based disease similarity
in the future work.
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