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It has been proposed that zooplankton-associated microbes provide numerous
beneficial services to their “host”. However, there is still a lack of understanding
concerning the effect of temperature on the zooplankton microbiome. Furthermore, it is
unclear to what extent the zooplankton microbiome differs from free-living and particle-
associated (PA) microbes. Here, we explicitly addressed these issues by investigating
(1) the differences in free-living, PA, and zooplankton associated microbes and (2) the
impact of temperature on these microbes in the water column of a series of lakes
artificially warmed by two power plants. High-throughput amplicon sequencing of the
16S rRNA gene showed that diversity and composition of the bacterial community
associated to zooplankton, PA, and bacterioplankton varied significantly from one
another, grouping in different clusters indicating niche differentiation of pelagic microbes.
From the abiotic parameters measured, temperature significantly affected the diversity
and composition of all analyzed microbiomes. Two phyla (e.g., Proteobacteria and
Bacteroidetes) dominated in zooplankton microbiomes whereas Actinobacteria was the
dominant phylum in the bacterioplankton. The microbial species richness and diversity
was lower in zooplankton compared to bacterioplankton and PA. Surprisingly, genera of
methane-oxidizing bacteria, methylotrophs and nitrifiers (e.g., Nitrobacter) significantly
associated with the microbiome of zooplankton and PA. Our study clearly demonstrates
niche differentiation of pelagic microbes and their potential link to biogeochemical
cycling in freshwater systems.

Keywords: microbiome, niche differentiation, zooplankton, bacterioplankton, phytoplankton

INTRODUCTION

In the pelagic environment, zooplankton is widely distributed and represents an important
component of aquatic food webs. They consume phytoplankton and keep the water column
clear (suppress blooming) (Pogozhev and Gerasimova, 2001; Gerasimova et al., 2018) and are
an important link to higher trophic levels of the food web. For example, zooplankton is one
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of the main food sources for fish. Like plants and higher
animals, zooplankton harbor a rich bacterial community, as
zooplankton bodies are nutrient-rich micro-environments that
provide nutrients for rapid growth of bacteria (Newton
et al., 2011). Bacterial colonization of zooplankton has
been proposed to provide numerous benefits including
nutrient acquisition, stress protection, detoxification, and
habitat provision (Tang et al., 2010). Colonization by
bacterial species can be observed throughout the body of
zooplankton, especially around the oral region, the anus, body
appendages, intersegment parts, and the intestine (Huq et al.,
1983; Carman and Dobbs, 1997). Hence, the whole body
of zooplankton constitutes “hotspots” for many known and
unknown microorganism that provide numerous ecosystem
services. However, warming can be a potential threat for
zooplankton’s fitness (Kessler and Lampert, 2004; Pajk et al.,
2012). In addition, it is still not known how this warming
affects the host-associated microbiome (e.g., zooplankton and
phytoplankton) in relation to the free-living bacterioplankton.
To explore this, we investigated a set of natural, artificially
warmed-lakes.

Copepods (e.g., Cyclopoid and Calanoid), cladocerans
(e.g., Bosmina and Daphnia), and rotifers are composed of
the meso- and microscopic groups of zooplankton. They are
highly abundant in the pelagic environment of nearly all
freshwater as well as marine habitats where they consume a
wide range of food (e.g., phytoplankton and bacterioplankton)
for their growth. Parameters that influence their growth
include various abiotic factors, such as temperature (Huntley
and Lopez, 1992; Ikeda et al., 2001; Ziarek et al., 2011).
The ectothermic life-history trait enables zooplankton
to survive in a wide range of water temperatures and
even in harsh environments, like deep-sea hydrothermal-
vents (Hourdez et al., 2000). In addition, temperature can
affect the physiology and behavior of zooplankton, for
example, the swimming behavior of cladocerans (Daphnia)
(Ziarek et al., 2011).

While many of the abiotic factors that influence zooplankton
life-history are well established, much less is known about the
biotic factors. Zooplankton is known to harbor many ecto-
and endo-symbionts, including bacteria, protozoa, or viruses.
It is hypothesized that these host-associated microbes may
have symbiotic relationships (e.g., commensal, mutualistic,
or parasitic characteristics) with their host (Qi et al., 2009).
Despite its potential importance, the microbiome of freshwater
zooplankton (e.g., copepods and cladocerans) is not widely
explored. The importance of the microbiome was tested with
a model organism (Daphnia) under laboratory conditions
where the growth, survival, and reproduction of colonized
daphnids performed significantly better than axenic ones
(Sison-Mangus et al., 2015). It was also reported that specific
bacterial taxa were consistently found in affiliation with
Daphnia, even in geographically separated populations with
different genetic backgrounds (Qi et al., 2009). Particularly,
the genus Limnohabitans (β-proteobacteria) was a dominant
constituent of the Daphnia microbiomes (Freese and Schink,
2011; Eckert and Pernthaler, 2014; Peerakietkhajorn et al., 2015;

Callens et al., 2016). Other taxa also reported in microbiome
studies with Daphnia were Flavobacterium, Rhodobacter,
Chromobacterium, Methylibium, Bordetella, Burkholderia, and
Cupriavidus (Qi et al., 2009). In freshwater copepods, it has been
shown that both β-proteobacteria and Bacteroidetes were the
most represented groups (Grossart et al., 2009).

The importance of epibionthic microbiomes in aquatic
ecosystems and their link to biogeochemical cycling is still poorly
understood. There are reports demonstrating that microbes
attached to daphnids are more active than free-living ones (Eckert
and Pernthaler, 2014). Moreover, there is a wealth of literature
available showing higher activity and diversity by particle-
associated microbes compared to free-living ones (LaMontagne
and Holden, 2003; Mohit et al., 2014; Rieck et al., 2015).
Nevertheless, it is still unknown whether microbiomes associated
with zooplankton (i.e., copepods and cladocerans) differ from
microbes associated with particles (PA) and free-living ones
(i.e., bacterioplankton), and whether microbes exhibit similar or
distinct lifestyles, metabolisms, or responses to environmental
factors. To obtain more insight into these microbiomes in
aquatic food webs and possible influencing factors, we used high-
throughput 16S rRNA amplicon sequencing to assess diversity
and composition of microbiomes associated with copepods,
cladocerans, PA, as well as free-living bacterioplankton and how
these are affected by warming and other environmental
parameters. We investigated these by comparing the
zooplankton associated and PA microbiomes as well as the
free-living bacterioplankton in the water column of artificially
warmed-lakes.

MATERIALS AND METHODS

Description of Lakes
The Konin lakes mimic the thermal conditions of temperate lakes
expected in the next 100 years (according to forecasts of IPCC –
Intergovernmental Panel on Climate Change, 2013). The system
of five lakes near the city of Konin in Poland (called here Konin
lakes) are heated by two power plants, thereby offering a unique
opportunity to study the effects of warming at whole ecosystem
scale, mimicking future predictions of increased temperature.
These lakes have been heated for over 60 years, which allows
us to expect that populations inhabiting these ecosystems had
enough time to acclimate, adapt or even evolve. The first power
plant started to operate in 1958, the next one in 1967 (Socha
and Hutorowicz, 2009; Tunowski, 2009). Both power plants
take in water from the Konin lakes, use it in their cooling
system, and discharge it back into the lake. All heated Konin
Lakes are connected with channels creating two cooling circuits
(Supplementary Figure S1). Warm water from the Konin power
plant is discharged (channel depth: ∼2.3–2.5 m) (Ciemiński
and Zdanowski, 2010) into lakes Licheńskie, Pątnowskie, and
Mikorzyńskie. Heated water from the Pątnów power plant is
released into Lake Gosławskie, and some of it is included in
Konin power plant cooling phase (Tunowski, 2009). During
summer (from May to September) water cools down in the large
cycle, comprising lakes Licheńskie, Ślesińskie, Mikorzyńskie,
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Pątnowskie, and Gosławskie. The small winter cycle includes
only lakes Licheńskie, Pątnowskie, Gosławskie, and southern
part of Lake Mikorzyńskie. Due to heated water discharge,
the temperature of Konin lakes is approx. 4–5◦C higher in
surface layer of deep stratified lakes (Ślesińskie, Mikorzyńskie,
and part of Licheńskie) and in the whole water column of
shallow lakes (Pątnowskie and Gosławskie) (Pyka et al., 2013;
Stawecki et al., 2013).

Sampling and Experimental Design
Zooplankton (copepods and cladocerans), PA, and
bacterioplankton samples were collected from five heated lakes,
Ślesińskie (SLE; 52◦22′53.8′′N 18◦18′50.9′′E), Mikorzyńskie
(MIK; 52◦19′58.6′′N 18◦18′32.5′′E), Pątnowskie (PAT;
52◦18′23.2′′N, 18◦16′20.2′′E), Licheńskie (LICH; 52◦18′24.1′′N,
18◦19′56.7′′E), and Gosławskie (GOS; 52◦17′27.1′′N,
18◦14′49.7′′E), forming the cooling system of the power plants
Konin and Pątnów (located in West Poland) at 25 (SLE, MIK,
and PAT) and 27 (LICH, GOS) April, 2017 (Supplementary
Figure S1). To avoid depth differences, 10 L water was sampled
using a Uwitec water sampler (5 L) from the upper (1 m), middle
(variable) and lower (variable) layers of each sampling station
and mixed to have a composite sample (Supplementary Table
S1). Zooplankton samples were collected from this composite
sample using a 30-µm zooplankton net and stored in urine
cups while the filtrates from the zooplankton net were stored
in 50 mL falcon tubes for PA and bacterioplankton samples as
well as chemical analysis. All samples were collected from 15
sampling stations across five lakes (selection of sampling stations
were considered based on criteria like similar depth profile and
avoidance of being directly in front of an inlet of cooling water
to avoid mixing effects) and kept at 4◦C until transfer to the
lab. Using a stereo microscope, the animals were classified into
four groups, Cyclopoid and Calanoid copepods, Bosmina and
Daphnia, and sorted with sterile tweezers and washed twice
with sterile WC media (Guillard and Lorenzen, 1972) known as
standard medium for freshwater diatoms. The Cyclopoid and
Calanoid copepods were sorted as copepods, and Bosmina and
Daphnia were collected as cladocerans. Twenty live animals of
each copepods and cladocerans groups were placed in a 2-mL
tube. Distribution of copepods and cladocerans were described
in Supplementary Table S2. Bacterioplankton samples were
collected from 90-mL water subsamples onto 0.1-µm-pore-size
filters (25-mm diameter) after pre-filtration through a 1.2-µm
filter (GF/C, Whatman, United Kingdom). The 1.2-µm filters
and the filtrates (90-mL) from 0.1-µm-pore-size filter were used
for PA and chemical analysis, respectively. All animals, filters,
and waters were stored at−80◦C until further analysis.

Water Physico-Chemistry
Depth, temperature, pH, electrical conductivity (EC), dissolved
oxygen (DO) and oxidation-reduction potential (ORP), and
Secchi disc visibility (SDV) were measured using multiparameter
field probe (YSI 556 MPS) every 1-m depth from respective
sampling station at the same time with the sampling
(Supplementary Figure S2 and Supplementary Table S3).

Nucleic Acid Extraction
Genomic DNA was extracted from 20 animals, 0.1-µm-pore-size
filters and 1.2- µm filters using DNeasy PowerSoil Kit (Qiagen).
Each 20 animals and small pieces of the filter, which was cut
using sterile scissors, were placed into the PowerBead Tube
of DNeasy PowerSoil Kit and further processed based on the
manufacturer’s instructions.

16S rRNA Gene Amplicon Sequencing
and Sequence Analysis
After DNA extraction of all samples, amplification of 16S rRNA
gene was performed using universal bacterial primers 341F/799R
targeting the V3 region of the 16S rRNA gene with a two-step
barcoding approach according to a standard protocol (Herbold
et al., 2015). Library preparation and sequencing were conducted
by LGC Genomics GmbH1 according to the standard protocol,
and libraries were paired-end sequenced (300 bp) using the
Illumina MiSeq platform. Preliminary processing was carried out
in Qiime (version 1.9.1) using default parameters (Caporaso et al.,
2010). Sequences were clustered into Operational Taxonomic
Units (OTUs) at 97% sequence similarity using the SILVA
reference database (version 128) (Quast et al., 2012) and UCLUST
(Edgar, 2010). For, assigning taxonomic classification BLAST
analysis was done against the SILVA database (Altschul et al.,
1990) in Qiime (version 1.9.1) using default parameters. Samples
were then rarefied and randomly subsampled 10 times (using
the Qiime command “multiple_rarefactions_even_depth.py”) to
equal read-depths (3,000). All 10 OTU tables per sample were
subsequently merged and exported for processing in R. In
addition, UCLUST generated OTU-table was also compared with
UPARSE method using “cluster_otus” command in USEARCH
(version11) (Edgar, 2013) to compare both clustering approaches
to estimate the alpha and beta diversity in all samples
(Supplementary Figures S3, S4). All downstream analysis were
performed in R (R Development Core Team, 2008) and described
in detail in Supplementary Material.

Statistical Analyses
All statistical analyses were performed in R version 3.6.0 (R
Development Core Team, 2008) using the phyloseq (version
1.28.0) (McMurdie and Holmes, 2013), pvclust (version 2.0)
(Suzuki and Shimodaira, 2006), vegan (version 2.5–5) (Oksanen
et al., 2019), indicspecies (version 1.7.6) and edgeR (Robinson
et al., 2010) packages. We used “envfit” function that fits
environmental variables onto an ordination plot and provides
an indication which environmental variables were significantly
associated with ordination (Bray–Curtis distance measured
from microbiome composition data). The significance of fitted
environmental variables is determined using the permutation of
environmental variables. In the plots, these results are displayed
as correlations (r2) to microbiome compositions. Moreover, we
have performed a “Mantel test” to determine the significant
association between temperature and Bray–Curtis distances. To
perform the above analyses, we considered the mean value

1www.lgcgroup.com
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of each environmental parameter (except lake depth where
we considered the maximum lake depth) as metadata for
microbial community analysis. Differential abundance analysis
was performed in R using edgeR (Robinson et al., 2010) to
elucidate which OTUs are significantly changed in abundance
(log fold changes) from each microbiome in response to high
and low temperatures. To perform this analysis, we have
categorized all samples into two different groups, e.g., low
temperature group (mean temperature of each lake <8◦C)
and high temperature group (mean temperature of each lake
>8◦C). Detailed descriptions for above analyses can be found in
Supplementary Material.

RESULTS

Bacterial Community Structure of
Zooplankton, PA, and Bacterioplankton
Proteobacteria and Bacteroidetes were the most dominant phyla
in microbiome of zooplankton and PA (particle-associated
fraction), representing ∼65 and ∼32% of total bacterial
population at phylum level in copepods microbiome; ∼56 and
∼40% for cladocerans microbiome; and ∼48 and ∼34% for
PA microbiome, respectively (Figure 1). In bacterioplankton,
Actinobacteria (∼70% of total phyla) was the most dominant
phylum followed by Proteobacteria (∼20%) and Bacteroidetes
(∼10%). Relative abundance of Firmicutes was higher in
zooplankton microbiome [cladocerans (∼1.3%) and copepods
(∼0.5%)] as compared to bacterioplankton (∼0.02%) and PA
(∼0.05%). At species or OTU level, relative species abundance
differed among microbiomes (e.g., bacterioplankton, PA,
copepods, and cladocerans) (Figure 2 and Supplementary
Figure S5). The most abundant bacterial genera associated
with zooplankton were Flavobacterium, Leeia, Rickettsia,
Escherichia, Limnohabitans, and Chryseobacterium, whereas in
bacterioplankton and PA, OTU’s of lineages without cultivated
representatives CL500-29 marine group and hgcI-clade, as well as
Mycobacterium and Polynucleobacter were most dominant. The
difference in bacterial community structure among microbiomes
(e.g., bacterioplankton, PA, copepods, and cladocerans) occurred
in all sampled lakes (Adonis test, F = 20.7, R2 = 0.53, p < 0.001).
A pvclust analysis (hierarchical clustering with p-values
calculated via multiscale bootstrap resampling) confirmed two
major clusters [100% AU (Approximately Unbiased) and 100%
BP (Bootstrap Probability)] formed by different microbiomes of
bacterioplankton and PA, and several small clusters formed by
both copepods and cladocerans (Supplementary Figure S6).

Bacterial Richness and Diversity of
Zooplankton, Bacterioplankton, and PA
Both richness and Shannon diversity were higher in
bacterioplankton (1.4-fold for richness and 1.3-fold for Shannon
diversity) and PA (1.6-fold for richness and 1.4-fold for
Shannon diversity) as compared to copepods (Figure 3). Similar
results were observed for cladocerans (i.e., bacterioplankton:
1.9-fold for richness and 1.4-fold for Shannon diversity; PA:

2.2-fold for richness and 1.5-fold for Shannon diversity). Paired
t-test showed that both richness and Shannon diversity were
significantly different across all biomes except between copepods
and cladocerans, which had similar Shannon diversity index but
different microbial richness (Supplementary Table S4).

Indicator Species of Microbiomes
Indicator species analysis was performed to investigate which
bacterial OTUs were significantly (p < 0.05) linked to a specific
biome (Figure 4 and Supplementary Table S5). A total of 266
OTUs were identified as significant indicator species across all
microbiomes. Compared to zooplankton, a larger number of
OTUs (94) were linked to both bacterioplankton and PA, with
32 and 56 unique OTUs were linked to bacterioplankton and
PA, respectively. With zooplankton, 23 unique OTUs linked to
copepods and 22 unique OTUs linked to cladocerans while 11
OTUs were shared by both groups (Supplementary Table S5 and
Supplementary Figure S7).

Niche Differentiation of Biogeochemical
Relevant Microbial Groups
The indicator species analysis showed that at least two known
OTUs were identified as belonging to the nitrogen (N) cycling
genus, Nitrobacter which was found in bacterioplankton,
copepods, and cladocerans. A large number of OTUs
(16) representing methane-oxidizing bacteria (MOB)
and methylotrophs were detected across all microbiomes
(Figure 5). For example, several methylotrophic genera,
including Methylobacterium and members of the OM43 clade
were significantly associated with zooplankton while the
methanotrophic genera Methylobacter and Methylocystis were
significantly associated with PA (Figure 5).

Relationships Between Environmental
Parameters and Microbiome
Compositions of Zooplankton,
Bacterioplankton, and PA
Our study lakes were interconnected and were artificially
heated by power plants which generated a gradient of different
temperatures across the studied lakes (see Supplementary Table
S3 for all water chemistry data). To test which environmental
parameters explained the variability observed in the microbiomes
analyzed, the environment parameters (variables) were fitted
onto an ordination plot using the “envfit” function (Non-metric
multidimensional scaling (NMDS) with Bray–Curtis distance
matrix generated from the OTUs) (Figure 6). The results
showed that among the parameters measured, water temperature
significantly correlated to the bacterial community composition
of all microbiomes and of the free-living bacterioplankton
(r2 = 0.61, p < 0.001 for copepods; r2 = 0.50 p < 0.05
for cladocerans; r2 = 0.6, p < 0.01 for bacterioplankton;
r2 = 0.73, p < 0.01 for PA). In addition, the bacterial
community composition of PA and bacterioplankton correlated
to total nitrogen (TN), electrical conductivity (EC), and depth.
Moreover, a Mantel test also supported our hypothesis that water
temperature was significantly correlated to community structure
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FIGURE 1 | Relative abundance of top 10 phyla (>99% sequence reads) of microbial communities associated with zooplankton, particle-associated (PA), and
free-living bacteria in five Polish heated lakes. Lakes’ names are shown as SLE, MIK, PAT, LICH, and GOS. The last letter and the digit of the sample names indicate
microbiomes (B: bacterioplankton, P: PA, C: copepods, and D: cladocerans) and sampling stations of each lake (1, 2, and 3).

FIGURE 2 | Heat map showing the top 30 most abundant OTUs (per 3000 sequence reads) across all microbiomes in five Polish heated lakes. Samples are ordered
according to Bray–Curtis distance matrix within the same microbiome. Lakes’ names are shown as SLE, MIK, PAT, LICH, and GOS. The last letter and the digit of
the sample names indicate microbiomes (B: bacterioplankton, P: PA, C: copepods, and D: cladocerans) and sampling stations of each lake (1, 2, and 3).

of copepods (r = 0.35, p < 0.01), cladocerans (r = 0.24, p < 0.05),
bacterioplankton (r = 0.24, p< 0.05), and PA (r = 0.44, p< 0.001).

Differential Abundance of Species
Between High and Low Temperature
To assess which species differed in abundance between
high and low temperature conditions, we used differential
abundance analysis between each microbiome group of

low and high temperature lakes. This analysis shows that
some genera significantly increased or decreased their
abundance (log-fold changes) across bacterioplankton and
PA microbiomes. For example, 10 OTUs (8 genera) and
17 OTUs (10 genera) significantly increased or decreased
in bacterioplankton and PA microbiomes, respectively
(Figure 7). However, in zooplankton microbiomes, several
genera significantly increased their abundance (log-
fold changes). For example, in copepods microbiome, it
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FIGURE 3 | Microbial species richness (upper panel) and Shannon diversity index (lower panel) of microbial communities in five Polish heated lakes (SLE, MIK, PAT,
LICH, and GOS).

shows 9 OTUs representing 4 genera (Flavobacterium,
Shewanella, Chryseobacterium, and Candidatus gortzia) and
in cladocerans microbiome, it shows 13 OTUs representing
7 genera (Chryseobacterium, Sphingopyxis, Porphyrrobacter,
Sediminibacterium, Achromobacter, Blastomonas, and
uncultured Bacteroidetes bacterium) significantly increased
their abundance (log-fold changes) (Figure 7).

DISCUSSION

Composition of Microbiomes of
Zooplankton, PA, and Bacterioplankton
Microbes contribute significantly to the functioning of aquatic
ecosystems, serving not only as food source for higher

organisms but also act as catalysts for many biogeochemical
reactions involved in nutrient-cycling, eutrophication,
and greenhouse gas emissions. However, differences in
microbial community structure, diversity, and functioning
in various niches of the water column (e.g., microbiome
of zooplankton and PA or bacterioplankton), especially
under warmed conditions, are poorly investigated. Our
results showed that host-associated (i.e., zooplankton) and
free-living microbial communities are different, suggesting
niche differentiation of microbes in various links of the
aquatic food web. This differentiation was also obvious at
higher taxonomic-level (e.g., phylum) where Proteobacteria
and Bacteroidetes were dominant in zooplankton and PA,
and Actinobacteria were dominant in bacterioplankton
(i.e., free-living). A recent study showed a similar result in
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FIGURE 4 | Taxonomic summary of OTUs responsive to microbiomes (Bacterioplankton, particle-associated (PA), Copepods, and Cladocerans) identified through
Indicator species analysis (p < 0.05). The four outer rings represent the significant OTUs in response to microbiomes, with blank gaps indicating OTUs not
significantly linked to microbiomes. Nodes on the tree (moving outward from center) correspond to taxonomic level (Domain, Phylum, Class, Order, Family, Genus,
and Species/OTU). The star symbols (green, red and blue) indicate three major phyla (Proteobacteria, Bacteroidetes and Actinobacteria). Shaded areas of branches
delineate defined taxonomic groups. See Supplementary Table S5 for full classification.

zooplankton-associated and bacterioplankton communities
in marine environments (De Corte et al., 2018). Other
microbiome studies of cladocerans (e.g., Daphnia) showed
the presence of these two dominant phyla (Qi et al., 2009;
Freese and Schink, 2011). In contrast, it has been shown that
Firmicutes, Bacteroidetes and Actinobacteria are the most
dominant members of the bacterial community associated
with copepods in the North Atlantic Ocean (De Corte et al.,

2014; Shoemaker and Moisander, 2017). This variation of the
bacterial community associated with copepods may be caused
by different trophic status (eutrophic lakes vs. oligotrophic
marine environments) and seasonal differences (Shoemaker
and Moisander, 2017). The phylum Bacteroidetes, especially
the members of Flavobacteria, is highly abundant in the
zooplankton-associated community which may play a crucial
role in the degradation of high molecular weight organic
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FIGURE 5 | Phylogenetic tree based on 16S rRNA genes showing the OTU abundance (per 3000 reads) (A) and bar graph showing the relative abundance (B) of
methane-oxidizing bacteria (MOB) and methylotrophs of four microbiomes in Polish lakes.

matter (e.g., cellulose and chitin), proteins, and diatom debris
(Qi et al., 2009; Buchan et al., 2014; Yang et al., 2015). The
members of Flavobacteria are widely distributed in different
host-associated samples, e.g., human gut (Bäckhed et al.,
2005), fish gut (Banerjee and Ray, 2017; Egerton et al., 2018),
and sponges (Parfenova et al., 2008; Hardoim and Costa,
2014). Another important role of Flavobacteria is that they
can degrade cyanotoxins which eventually contribute to
release of nutrients in freshwater ecosystems (Macke et al.,
2017). Their presence in a large number of zooplankton

groups probably suggest a symbiotic nature with a high
diversification of metabolic traits (Cottrell and Kirchman, 2000;
Beier and Bertilsson, 2013; De Corte et al., 2018), providing
access to otherwise inaccessible nutrients (Macke et al., 2017).

Microbial Alpha-Diversity of
Zooplankton, PA, and Bacterioplankton
Microbial alpha-diversity (e.g., richness and Shannon index) was
significantly lower in zooplankton (e.g., copepods, cladocerans)
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FIGURE 6 | Relationship between bacterial community structure of microbiome and environmental parameters. NMDS ordination plots based on Bray–Curtis
distance and fitted environmental parameters projected by “envfit” function showing relationships among samples based on OTU (97% sequence similarity) level
changes in community composition. The significant (p < 0.05) environmental parameters are shown as red color. Gray-lines display the temperature gradient across
lakes. T, temperature (◦C); TN, total nitrogen; EC, electrical conductivity; TOC, total organic carbon; TIC, total inorganic carbon; O2; dissolved oxygen; NO3

−, nitrate;
NO2

−, nitrite; NH4
+, ammonium; PO4

2−, Phosphate.

as compared to free-living bacterioplankton. This potentially
indicates host-specialization of bacterial communities (Tang
et al., 2010; De Corte et al., 2014, 2018) as the physico-
chemical conditions of zooplankton differs from those in
the ambient water (Tang et al., 2010). However, microbial
abundance may differ on a per volume basis as a result
abundance of zooplankton-associated bacteria can be higher
than free-living bacteria (Tang et al., 2006, 2010). Apparently,
being attached to particles is a suitable niche, taking the
higher microbial richness and diversity of their associated
microbiome into account. This may simply be caused by
the fact that our size fractionation (1.2-µm) might not be
entirely exclusive to phytoplankton but also can include other
organisms and even larger particles can be included (i.e.,
protozoa, diatoms, sediments particles, and debris; and these

containing their own microbial communities) contributing to
higher microbial diversity.

Indicator Species and Their Potential
Link to Nutrient Cycling
The indicator species analysis identified numerous taxa that are
present in one or more analyzed fractions. This finding gives
rise to many open ecological research questions. For example,
methanotrophic (utilizing methane) and methylotrophic bacteria
(utilizing mainly methanol) were predominantly found in
the PA and zooplankton fractions, respectively, indicating a
disproportionate role of these fractions in C1 cycling in lakes.
It is generally assumed that the bacterioplankton is the main
driver for nutrient-cycling (e.g., C-cycling, N-cycling), however,
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FIGURE 7 | Differential abundance of OTUs of each microbiome (Copepods, Cladocerans, Bacterioplankton, and PA) in response to high and low temperatures. The
X-axis shows the genus level classification and the Y-axis shows the log-fold changes (OTU abundance) due to temperature differences. Within each microbiome,
the OTUs are visualized as colored-circles indicating different Phylum.

recently zooplankton associated microbes have been shown to be
more active in carbon cycling than their free-living counterparts
(Eckert and Pernthaler, 2014) indicating modulation of pelagic
biogeochemical activity by zooplankton associated bacteria.
Methanotrophs and methylotrophs are groups of specialized
microbes capable of using methane and methanol, respectively,
(C1 cycling) as a sole carbon and energy source (Knief, 2015;
Kallistova et al., 2017; Samad and Bertilsson, 2017). In this study,
we observed that methanotrophic genera (e.g., Methylobacter,
Methylocystis) predominantly occurred in the PA fraction.
Recently, similar results were found in periphytic algae, explained
by the authors as elevated methane abundance close to benthic
methane sources in the littoral zone of Lake Mendota (Braus
et al., 2017). In our lakes, pelagic phytoplankton associated
methanotrophic presence maybe explained by methane
production by algal associated methanogens as suggested
by for Lake Stechlin (Grossart et al., 2011) which may attract and
support methanotrophs. Although specific associations between

methylotrophs and zooplankton have not been demonstrated
till now, our observations may be explained by C1 compounds
released by or produced in the guts of zooplankton (de Angelis
and Lee, 1994) or by attraction to other compounds released by
the zooplankton (e.g., nitrate, ammonium, or P) (Dennis et al.,
2013). The bacterioplankton and the PA fractions, harbored
another methylotrophic clade (e.g., OM43 clade). This OM43
clade (closely affiliated with the freshwater lineage of LD28) is
widely distributed in both marine and freshwater environments
and is responsible for the oxidation of C1 compounds (Newton
et al., 2011; Jimenez-Infante et al., 2016). We also observed a
large number of Actinobacterial clades (e.g., hgcI and CL500-29)
that belonged to the microbiome of PA and bacterioplankton.
The hgcI clade has ability to utilize carbohydrate as well as
N-rich organic compounds from freshwater habitats (Warnecke
et al., 2004; Liu et al., 2015). Surprisingly, CL500-29 clade
is usually dominant in marine habitat but can also be
observed in freshwater (Hugoni et al., 2017). There is no
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cultured representative of this CL500-29 clade, but enrichment
experiments with seawater suggest that this group can utilize
different carbon sources aerobically (McIlroy et al., 2017).
Limnohabitans (β-proteobacteria) is responsible for dissolved
organic carbon (DOC) flux (Eckert and Pernthaler, 2014) and
these bacteria are widely observed in zooplankton indicating
their potential symbiotic lifestyle although they also occur
free-living (Peerakietkhajorn et al., 2015). Release of ammonium
by zooplankton may also explain occurrence of N-cycling taxa,
several taxa related to alpha-, beta-, and gamma-proteobacteria
contribute to nitrification as well as denitrification (Peura
et al., 2015). We identified two OTUs that belonged to the
genera of Nitrobacter (class: alphaproteobacteria) which linked
to N-cycling. Nitrobacter is responsible for the conversion
of nitrite to nitrate which is an important pathway for
nitrification (Mellbye et al., 2015; Daims et al., 2016; Jacob
et al., 2017). A recent metagenomic study on zooplankton-
associated bacterial communities in marine environment
detected several genes (e.g., nar, nor, nos) which could be
responsible for N-cycling, especially, nitrification, denitrification
and dissimilatory nitrate, and nitrite reduction to ammonium
(DNRA) (De Corte et al., 2018).

Relationships Between Environmental
Parameters and Microbiome
Composition
We identified important environmental parameters that
significantly correlated to microbiome composition of the lower-
trophic levels of food webs (Figure 6). The bacterial community
composition was significantly correlated to temperature and
this was observed in host-associated microbiomes as well as
free-living bacterioplankton. This supports our hypothesis
that temperature has an important influence on shaping the
microbiome structure of the lower-trophic levels of food webs.
Changes in microbial community composition in response
to warming was previously observed in bacterioplankton
communities (Schindlbacher et al., 2011; Lara et al., 2013; Tang
et al., 2015). However, no studies showed this response on
host-associated microbes, especially, microbiome of zooplankton
and PA. Additionally, our study also identified specific taxa
that significantly increased or decreased in abundance (log fold
changes) due to temperature differences (low vs. high). The
increase or decrease of microbial abundance due to temperature
varies across all microbiomes. Interestingly, the abundance
of Flavobacterium (Phylum: Bacteroidetes) increased (>3-
fold) in microbiome of copepods while declined (∼2-fold) in
both bacterioplankton and PA microbiomes (except for two
OTUs). Similarly, the abundance of Chryseobacterium (Phylum:
Bacteroidetes) only increased (∼3-fold) in both copepods and
cladocerans microbiomes. These results indicate that the increase
of water temperature selects for only a few taxa likely based
on their specific traits. At this stage, however, it is too early
to speculate on the consequences of this shift in community
composition for functioning of the hosts or of the ecosystem as
a whole. Next to this, for the zooplankton related microbiome
temperature induced changes in the host may also have led

to selection for specific microbial taxa. A previous mesocosm
study addressed this issue and observed that warming did
not show any effects on zooplankton and other planktonic
groups (Özen et al., 2012), yet, the microbiome of these groups
was not assessed. Next to temperature, electrical conductivity
also significantly correlated with the microbial community
composition in the lower-trophic levels of food webs. This may
be the result of enhanced ion concentrations (e.g., salts and
inorganic materials) in these lakes, ultimately correlating to the
microbial community composition. These lakes are located in an
industrial and urbanized area, and the lakes used to be polluted
by power plants (dust and ashes) that were sources of calcium
and magnesium oxides, sulfur trioxides, iron, and aluminum
oxides (Hillbricht-Ilkowska and Zdanowski, 1989). Presently,
the lakes are surrounded by busy roads and towns where salt
is used for defrosting pavements and roads. This could be a
major NaCl source in these lakes. Apart from temperature and
EC, lake depth and TN significantly correlated to microbial
community composition of bacterioplankton and PA, but not
with the microbiome of zooplankton. This may be caused by the
trophic position of zooplankton, actively foraging on low C/N
food of which a part will be released, alleviating the N-limitation
of the zooplankton associated microbes (Wang et al., 2009;
Abdel-Raouf et al., 2012; Delgadillo-Mirquez et al., 2016).

CONCLUSION

We demonstrate that there are consistent differences in
microbiomes composition of free-living bacterioplankton,
zooplankton, and PA microbial communities. The microbes
occupying these niches in the water column and their community
structures are significantly correlated to temperature, a fact that
may have implications for aquatic food webs in light of global
warming. We also showed that niche differentiation between
zooplankton and PA by biogeochemically relevant microbial
groups may modulate lake biogeochemistry, an observation
which has to be supported by extended experimentation and
geochemical rate measurements.
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