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The bacterial chromosome must be efficiently compacted to fit inside the small
and crowded cell while remaining accessible for the protein complexes involved in
replication, transcription, and DNA repair. The dynamic organization of the nucleoid
is a consequence of both intracellular factors (i.e., simultaneously occurring cell
processes) and extracellular factors (e.g., environmental conditions, stress agents).
Recent studies have revealed that the bacterial chromosome undergoes profound
topological changes under stress. Among the many DNA-binding proteins that shape
the bacterial chromosome structure in response to various signals, NAPs (nucleoid
associated proteins) are the most abundant. These small, basic proteins bind DNA
with low specificity and can influence chromosome organization under changing
environmental conditions (i.e., by coating the chromosome in response to stress) or
regulate the transcription of specific genes (e.g., those involved in virulence).

Keywords: stress response, nucleoid associated proteins, bacterial chromosome dynamics, bacterial
chromosome compaction, host survival

INTRODUCTION

Bacteria have developed a plethora of strategies to inhabit nearly every environment on Earth
(Boor, 2006). To survive, bacteria must quickly adapt to changing environmental conditions. To
date, dozens of group- or species-specific and universal adaptive mechanisms have been uncovered
(Anderson and Kendall, 2017; Singh, 2017; Bussi and Gutierrez, 2019). Among them, changes in
the architecture of the entire chromosome or particular chromosome regions (e.g., gene promoters)
appear to be the most rapid and effective adaptation strategies, particularly in response to sudden
stress (Boor, 2006; Morikawa et al., 2006; Trojanowski et al., 2019). Such a response is apparently
universal, as it has been observed in many of the bacterial species investigated to date.

To fit the bacterial chromosome along with all associated proteins and RNA inside a tiny
cell, the DNA has to be compacted more than 1000-fold (Murphy and Zimmerman, 1995). The
nucleoid exhibits a multi-level hierarchical structural organization similar to that of eukaryotic
chromatin (Macvanin and Adhya, 2012; Badrinarayanan et al., 2015; Verma et al., 2019; Dame
et al., 2020). In the model organism, Escherichia coli, the 4.6-Mb chromosome is organized into four
structural macrodomains (Ori, Ter, Left, and Right chromosomal arms) and the two unstructured
regions, each of which consists of small (average ∼10 kb) topologically independent microdomains
(Postow et al., 2004; Valens et al., 2004; Espeli et al., 2008). This hierarchical structure maintains
the global nucleoid organization and ensures the accessibility of particular chromosomal regions
for DNA-dependent processes, such as replication, transcription, DNA repair, and recombination.
The organization of the highly compacted yet dynamic nucleoid structure reflects the input of
many different factors, including molecular crowding, depletion forces, DNA supercoiling, and
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nucleoid-associated proteins (NAPs) (Luijsterburg et al., 2006; de
Vries, 2010; Dillon and Dorman, 2010; Jeon et al., 2017; Joyeux,
2019). The NAPs are small basic proteins that help compact
the DNA into microdomains and also act as global regulators
of transcription (Shahul Hameed et al., 2019). A great deal of
studies indicated that NAPs play crucial roles in the ability of a
bacterium to adapt to unfavorable conditions, particularly stress
(Atlung and Ingmer, 1997; Nguyen et al., 2009; Kahramanoglou
et al., 2011; Mangan et al., 2011; Datta et al., 2019). Under stress
conditions, some NAPs can function as “rapid reaction forces” by
introducing DNA topology changes that protect DNA or alter the
transcriptional profile, particularly with respect to genes that are
crucial for bacterial survival.

Here, we provide a mini review of the NAP-mediated
rapid adaptation strategies that bacteria use to endure
unfavorable conditions.

NUCLEOID DYNAMICS ARE
ORCHESTRATED BY NAPs

The proper balance between chromosome compaction and
the availability of chromosomal regions for the protein
complexes involved in different cellular processes depends
mainly on the DNA binding activity of NAPs (Krogh
et al., 2018; Flores-Ríos et al., 2019). These small basic
proteins can condense chromosomal DNA by bending,
wrapping, and/or bridging relatively distant DNA strands
(Luijsterburg et al., 2006; Dillon and Dorman, 2010). They all
possess dimerization/oligomerization domains that facilitate
chromosome coating and binding within the chromosomal
regions to create inflexible filaments. Most NAPs show rather
low sequence specificity for binding; however, their binding
sites are often AT-rich, which is a characteristic feature of gene
promoters (Kahramanoglou et al., 2011; Prieto et al., 2012;
Odermatt et al., 2018). All bacterial species possess NAPs, some
of which are unique for a given genus and/or species (Datta
et al., 2019; Gehrke et al., 2019; Liu et al., 2019). The NAPs
of E. coli are the best studied examples (Wold et al., 1996; Ali
Azam et al., 1999; Ryan et al., 2002; Dillon and Dorman, 2010;
Verma et al., 2019). The main NAPs include HU (heat-unstable
protein), IHF (integration host factor), H-NS (histone-like
nucleoid structuring protein), Lrp (leucine-responsive regulatory
protein), Fis (factor for inversion stimulation), and Dps (DNA-
binding protein from starved cells) (Luijsterburg et al., 2006;
Wang et al., 2011). These NAPs can be divided based on their
DNA-binding modes (Figure 1): HU, IHF, Fis, and Dps organize
the chromosome by inducing bends into the DNA; H-NS can
bridge two DNA strands; and in the case of Lrp, DNA is wrapped
around the protein complex, enabling the joining of distant
DNA strands. These DNA-binding activities of NAPs induce
both topological and structural changes in the chromosomal
DNA to ensure its proper compaction inside the cell. In addition
to their architectural roles, NAPs are also involved in cellular
processes, such as transcription (H-NS), DNA replication (HU,
IHF, Fis), and DNA recombination, repair, and SOS response
(HU) (Wold et al., 1996; Atlung and Ingmer, 1997; Kamashev

and Rouviere-Yaniv, 2000; Ryan et al., 2002; Shahul Hameed
et al., 2019). Given the variety of the functions overseen by
NAPs, it is unsurprising that their expression pattern differs
during growth (see Figure 1; Ali Azam et al., 1999; Dillon and
Dorman, 2010; Verma et al., 2019). During the exponential
phase of growth, the most abundant NAPs in E. coli include
HU and Fis (Wold et al., 1996; Ryan et al., 2002; Kivisaar,
2020). Cells in the stationary phase produce NAPs that can most
effectively condense the chromosome (e.g., Dps) (Calhoun and
Kwon, 2011; Sato et al., 2013). Some NAPs (e.g., H-NS) are
consistently expressed at a relatively low level, rendering them
available to alter the expression of certain genes under a given
stimulus (Shahul Hameed et al., 2019). NAPs have been shown to
change the transcriptional profile of the cell (Atlung and Ingmer,
1997; Kahramanoglou et al., 2011), and this reportedly reflects
their DNA-binding preferences. Recent studies have shown
that, in addition to their growth-phase-dependent expression,
some NAPs undergo posttranslational modifications (e.g.,
phosphorylation, acetylation, pupylation, succinylation) (Gupta
et al., 2014; Ghosh et al., 2016; Okanishi et al., 2017; Dilweg
and Dame, 2018). Acetylation and phosphorylation of basic
residues (particularly those within the DNA-binding domain)
will tend to neutralize or negatively shift the overall protein
charge, respectively, which in turn decreases the DNA-binding
activity of the modified NAP. Such additional control could
be essential in the case of stress conditions, when the binding
patterns of certain NAPs must be changed (Dilweg and Dame,
2018). The variety of NAPs and their balanced expression
and activity regulation ensure the availability of chromosomal
regions involved in cellular processes and enable the cell to
adapt to various environmental and stress conditions. A rapid
reaction to stress, which is crucial for the cell’s ability to survive,
mostly relies on NAPs DNA binding activity. By influencing gene
expression and/or coating the chromosomal DNA, NAPs help
the cell quickly react to changing conditions and thereby protect
the DNA from damage.

NAPs EXHIBIT NUCLEOID-PROTECTING
ACTIVITY UNDER STRESS CONDITIONS

Bacteria have developed numerous mechanisms to mount stress
responses that enable the cell to adjust to changing conditions
in various habitats (Boor, 2006; Bleuven and Landry, 2016).
Saprophytic species living in soil or water are constantly
subjected to potentially stressful environmental conditions, such
as UV radiation, cold shock, heat shock, drying, and nutrient
limitation. Some species survive by forming spores or endospores
that can start a new population in a different niche and/or
under more favorable conditions. Pathogens, meanwhile, have
developed many sophisticated mechanisms that enable them to
live inside the host cells (e.g., Mycobacterium tuberculosis, an
etiological agent of tuberculosis, can survive within host alveolar
macrophages for decades) (Bussi and Gutierrez, 2019). Most
pathogenic species must face stress factors that reflect the host
defenses mechanisms, such as low pH, oxidative stress, hypoxia,
and limited nutrient availability (Anderson and Kendall, 2017;
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FIGURE 1 | Chromosome organization during the growth of Escherichia coli. The expression patterns of E. coli NAPs reflect the chromosome compaction level
(higher in the stationary than in the exponential phase) and cellular processes that involve certain NAPs (Ali Azam et al., 1999; Luijsterburg et al., 2006; Dillon and
Dorman, 2010). See text for a detailed description.

Singh, 2017; Bussi and Gutierrez, 2019; Datta et al., 2019). Beyond
the systems that specifically cope with stress (e.g., the general
stress response involving alternative sigma factors, the stringent
response), the immediate protection comes from the NAPs (see
Figure 2; Boor, 2006; Boutte and Crosson, 2013).

The cellular response will vary depending on the level, type,
and duration of the perceived stress; such a response might range
from the activation of precise mechanisms to the initiation of
a global protective reaction that involves the whole nucleoid
(Figure 2A; Atlung and Ingmer, 1997; Morikawa et al., 2006;
Sato et al., 2013; Gehrke et al., 2019). The M. smegmatis nucleoid
shrinks upon antibiotic treatment; this preserves the structure
and integrity of the nucleoid and allows the cell to revive after
the inhibitor removal (Trojanowski et al., 2019). Such tight
chromosome compaction is also observed in the transition to
the stationary phase, when the cells are shorter and there is
much less room for the nucleoid (Meyer and Grainger, 2013).
Some NAP family proteins can coat the whole chromosome; for
example, HU can bind along the whole chromosome, although
it prefers AT-rich regions and certain DNA structures (e.g.,
Holliday junctions, replication forks) rather than specific motifs
(Kamashev and Rouviere-Yaniv, 2000; Bahloul et al., 2001).
Deinococcus radiodurans is an extremophilic organism that is
highly resistant to radiation of any type (e.g., ionizing radiation,
UV light) (Makarova et al., 2001). Its genome encodes three HU
protein homologs that contribute to the survival of this bacterium
in unfavorable conditions (Nguyen et al., 2009). The homolog
of E. coli HU protein encoded in the genome of pathogenic
Helicobacter pylori also shows protective activity toward the
chromosomal DNA, and a mutant strain lacking this HU-like
protein exhibits increased sensitivity to oxidative and acid stress
and decreased survival inside macrophages (Wang et al., 2012).
The E. coli IHF protein shows a DNA-binding profile similar

to that of HU (Azam et al., 2000; Wang et al., 2011). Both
proteins exhibit a preference for AT-rich regions, but unlike HU,
the IHF protein specifically recognizes 13-bp sequences with the
consensus 5’-WATCAANNNNTTR-3’ (Hales et al., 1994; Prieto
et al., 2012). M. tuberculosis possesses homologs of both HU
and IHF (HupB and mIHF, respectively), and these proteins are
essential during the infection of macrophages (Pandey et al., 2014;
Odermatt et al., 2018). Moreover, it was shown that expression of
hupB gene increases during the infection (Kumar et al., 2011).
When faced with nutrient exhaustion in their habitat, some
bacteria, such as Streptomyces, form spores that enable them to
survive. Many agents are involved in the proper switching of
the life cycle; among them, HU and IHF play vital roles. In
S. coelicolor, sIHF (IHF homolog) and HupS (HU-like protein)
are required to enable the DNA to fit inside the tiny spores (spores
deprived of sIHF or HupS are temperature sensitive) (Salerno
et al., 2009; Swiercz et al., 2013). An HU-like protein found
in the human pathogen, Francisella tularensis (the causative
agent of tularemia), protects the DNA against free hydroxyl
radicals (Stojkova et al., 2018). A similar mechanism of action
is exhibited by the Staphylococcus aureus MgrA protein; this
homolog of E. coli Dps coats the DNA, protecting it against
oxidative stress and ensuring prolonged survival of the cell inside
phagosomes (Crosby et al., 2016; Ushijima et al., 2017). It has
been reported that the M. tuberculosis genome encodes a novel
NAP, called NapM, that is also required for the pathogen to
survive inside the host macrophages (Liu et al., 2019). The
NapM sequence homolog from M. smegmatis was shown to
colocalize with the E. coli nucleoid (Liu et al., 2016), potentially
suggesting that this protein exhibits similar binding modes in
pathogenic mycobacteria.

The NAPs involved in the protective DNA-coating mechanism
share a few similarities, including a relatively low DNA-binding
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FIGURE 2 | Involvement of NAPs in stress responses. (A) General mechanisms through which NAPs act in response to a stress factor (Dillon and Dorman, 2010;
Meyer and Grainger, 2013; Kriel et al., 2018; Trojanowski et al., 2019). (B) Examples of the homologs of the canonical E. coli NAPs involved in the cellular response
triggered upon detection of stress conditions.

specificity and a high copy number (Ali Azam et al., 1999;
Dillon and Dorman, 2010; Verma et al., 2019). Homologs of
the canonical “whole-chromosome binders” (i.e., HU, IHF, Dps)
often possess unique structural features that ensure their effective
binding along the entire chromosome. HU-like proteins in
Actinobacteria (e.g., mycobacterial HupB, S. coelicolor HupS)
have additional positively charged C-terminal domains that have
been shown to stabilize the DNA-protein complexes (Salerno
et al., 2009; Hołówka et al., 2017). D. radiodurans HU homologs
have also repetitive basic residues, but within the N-terminal
domain (Ghosh and Grove, 2006). The DNA-coating mechanism
is activated immediately when unfavorable conditions are sensed,
and helps maintain chromosomal integrity by creating a physical
barrier against stress factors, such as radiation, antibiotic
treatment, oxidative and acidic stress.

NAPs ALTER BASIC CELLULAR
PROCESSES IN RESPONSE TO STRESS

The abilities to mount a rapid and effective response to changing
environmental conditions and/or adjust the cell’s metabolic
activity to prolonged stress are key factors in the survival of

both pathogens and saprophytes. The most “specific” stress
response mechanism involving NAPs relies on their ability to
influence the expression level of the certain gene(s) and/or gene
cluster(s) (Kahramanoglou et al., 2011; Kriel et al., 2018; Flores-
Ríos et al., 2019; Dorman et al., 2020). These small nucleoid
organizers can affect transcription by inducing topological and/or
structural changes in the chromosomal DNA (Figure 2A) that
can alter the binding of RNA polymerase or transcription factors.
Moreover, as mentioned earlier, NAPs often bind to AT-rich
regions within promoter sequences and thereby repress gene
expression. Depending on a given NAP’s DNA-binding specificity
and number of target DNA sequences, it can simultaneously
affect the transcription of many genes/gene clusters or act as a
specific switch that alters the expression levels of certain genes
(Gordon et al., 2010; Prieto et al., 2012; Gehrke et al., 2019;
Shahul Hameed et al., 2019). H-NS, which exhibits DNA-bridging
activity (Figure 1), was shown to be a global transcription
repressor in human pathogens, including Salmonella enterica
serovar Typhimurium, Vibrio cholerae, and toxigenic strains of
E. coli (Ayala et al., 2015; Helgesen et al., 2016; Shahul Hameed
et al., 2019). Additionally, it was shown that a H-NS paralog,
StpA protein cooperate with H-NS to alter virulence genes
expression in uropathogenic E. coli strains (Müller et al., 2006).
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The E. coli H-NS binding sites are reportedly clustered near
the ter region, where genes connected with motility and biofilm
formation are localized. Interestingly, H-NS from Salmonella acts
as a repressor for horizontally acquired pathogenicity islands
(Lucchini et al., 2006; Brunet et al., 2015). Similarly, a structural
homolog of H-NS in M. tuberculosis (called Lsr2) is involved
in the regulation of many genes, including those connected
with virulence (Gordon et al., 2010). Deletion of the lsr2
gene results in decreased growth and survival under hypoxia
(Bartek et al., 2014), suggesting that Lsr2 could be a crucial
agent that “switches” mycobacteria to the dormant state and
enables them to endure inside host cells. The recently described
NapA protein is another mycobacterial NAP that serves as a
global transcription factor (Datta et al., 2019). It exhibits a
preference for AT-rich regions and coats the DNA to create
inflexible rods that interrupt DNA supercoiling. M. tuberculosis
NapA regulates the expression of genes that encode virulence
regulators. An Lsr2-like protein produced by another member
of Actinobacteria, the saprophytic S. venezuelae, was shown to
control genes whose products are involved in signaling and
producing specialized secondary metabolites (Gehrke et al.,
2019). Homologs of the E. coli H-NS and Fis proteins produced
in the plant pathogen, Dickeya dadantii, influence the expression
levels of the pal genes, which act as major virulence factors (Ouafa
et al., 2012). Intriguingly, HU-like proteins found in Salmonella
and F. tularensis not only create the physical protective barrier
against stress factors, they also regulate genes involved in general
physiology, metabolism, and virulence (Figure 2B; Mangan et al.,
2011; Stojkova et al., 2018). The mycobacterial HupB protein
regulates the expression of the katG gene (acting as a repressor),
whose product activates the anti-tuberculosis drug, isoniazid
(Niki et al., 2012; Enany et al., 2017); a M. smegmatis strain
deprived of HupB showed increased susceptibility to this drug
(Hołówka et al., 2017). Additionally, recent studies showed
that the M. tuberculosis mIHF protein represses the expression
of many genes, including those connected with pathogenesis
(Odermatt et al., 2018).

In addition to their conventional architectural role and
involvement in regulating gene expression, NAPs may also
contribute to other cellular processes. For example, studies
have shown that NAPs influence chromosome replication
by binding and inducing some structural changes within
the origin of chromosomal replication (oriC). In E. coli, the
IHF and HU proteins facilitate the formation of the pre-
replication complex, and the Fis protein prevents replication
initiation (Wold et al., 1996; Ryan et al., 2002). Interestingly,
expression of the M. tuberculosis napM gene increases upon
stress; the NapM protein binds DnaA (a replication initiation
protein) to inhibit chromosome replication, which in turn
ensures that mycobacteria transition to the dormant state to
survive inside host macrophages (Liu et al., 2019). Almost all
processes involving spatial transitions of DNA strands, such
as DNA repair and recombination and the topoisomerase-
mediated maintenance of topological homeostasis, are based
on cooperation with NAPs (e.g., HU interacts directly
with topoisomerase A to alter its DNA-relaxing activity)
(Shanado et al., 1998; Kamashev and Rouviere-Yaniv, 2000;

Ghosh et al., 2014; Kivisaar, 2020). Overall, the low DNA-
binding specificity and relatively high copy number of NAPs
make them readily available and able to assist with complex
cellular processes. Proper synchronization of the processes
occurring inside the cell with constantly changing environmental
conditions is a key element to survival under stress.

CONCLUSION

During the course of their evolution, bacteria developed the
ability to rapidly adapt to constantly changing environmental
conditions. Rapid reactions to many different signals, including
stress factors, are crucial for the survival of both saprophytes and
pathogens. As reviewed herein, NAPs ensure the very efficient
and immediate response to various stimuli. These small basic
proteins shape chromosomal DNA, adjusting its architecture
in response to intra- and extracellular conditions. When the
bacterial cell detects strong stress, NAPs (e.g., HU, Dps) generally
coat and/or condense the nucleoid, creating a physical protective
barrier for the DNA (Nguyen et al., 2009; Salerno et al., 2009;
Pandey et al., 2014; Crosby et al., 2016; Odermatt et al., 2018).
More specific NAP-related stress response mechanisms involve
the ability of NAPs to regulate transcription. Upon binding,
NAPs (e.g., H-NS, Fis) induce structural and/or topological
DNA changes that lead to alteration of the expression levels
of certain genes (Kahramanoglou et al., 2011; Brunet et al.,
2015). Many genes involved in the adaptation to a new living
condition, such as by formation of biofilm or alteration of
motility, synthesis of secondary metabolites, and/or virulence, are
regulated by NAPs. Additionally, NAPs can regulate basic cellular
processes (e.g., replication initiation) in order to synchronize
such processes with changing environmental conditions (Ryan
et al., 2002; Datta et al., 2019). Hence, most NAPs act as
the “rapid reaction forces” that enable the bacterial cell to
endure under stress.

AUTHOR CONTRIBUTIONS

JH wrote the main body of the manuscript, conclusion and
prepared figures. JZ-C wrote the introduction and revise the
entire manuscript.

FUNDING

This work was financed by grants (OPUS 2017/25/B/NZ1/00657
and SONATINA 2018/28/C/NZ1/00128) from the National
Science Center (Poland).

ACKNOWLEDGMENTS

We are very grateful to members of our laboratory for their
comments on the manuscript.

Frontiers in Microbiology | www.frontiersin.org 5 April 2020 | Volume 11 | Article 590

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00590 April 15, 2020 Time: 13:9 # 6
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D., et al. (2017). HupB is a bacterial nucleoid-associated protein with
an indispensable eukaryotic-like tail. mBio 8:e01272-17. doi: 10.1128/mBio.
01272-17

Jeon, C., Jung, Y., and Ha, B.-Y. (2017). A ring-polymer model shows
how macromolecular crowding controls chromosome-arm organization in
Escherichia coli. Sci. Rep. 7:11896. doi: 10.1038/s41598-017-10421-y

Joyeux, M. (2019). Preferential localization of the bacterial nucleoid.
Microorganisms 7:204. doi: 10.3390/microorganisms7070204

Kahramanoglou, C., Seshasayee, A. S. N., Prieto, A. I., Ibberson, D., Schmidt, S.,
Zimmermann, J., et al. (2011). Direct and indirect effects of H-NS and Fis
on global gene expression control in Escherichia coli. Nucleic Acids Res. 39,
2073–2091. doi: 10.1093/nar/gkq934

Kamashev, D., and Rouviere-Yaniv, J. (2000). The histone-like protein HU binds
specifically to DNA recombination and repair intermediates. EMBO J. 19,
6527–6535. doi: 10.1093/emboj/19.23.6527

Kivisaar, M. (2020). Mutation and recombination rates vary across bacterial
chromosome. Microorganisms 8:25. doi: 10.3390/microorganisms8010025

Kriel, N. L., Gallant, J., van Wyk, N., van Helden, P., Sampson, S. L., Warren, R. M.,
et al. (2018). Mycobacterial nucleoid associated proteins: an added dimension
in gene regulation. Tuberculosis 108, 169–177. doi: 10.1016/j.tube.2017.
12.004

Krogh, T. J., Møller-Jensen, J., and Kaleta, C. (2018). Impact of chromosomal
architecture on the function and evolution of bacterial genomes. Front.
Microbiol. 9:2019. doi: 10.3389/fmicb.2018.02019

Kumar, M., Khan, F. G., Sharma, S., Kumar, R., Faujdar, J., Sharma, R., et al. (2011).
Identification of Mycobacterium tuberculosis genes preferentially expressed

Frontiers in Microbiology | www.frontiersin.org 6 April 2020 | Volume 11 | Article 590

https://doi.org/10.3389/fmicb.2017.01983
https://doi.org/10.3389/fmicb.2017.01983
https://doi.org/10.1046/j.1365-2958.1997.3151679.x
https://doi.org/10.1046/j.1365-2958.1997.3151679.x
https://doi.org/10.1016/j.gdata.2015.05.039
https://doi.org/10.1016/j.gdata.2015.05.039
https://doi.org/10.1046/j.1365-2443.2000.00350.x
https://doi.org/10.1146/annurev-cellbio-100814-125211
https://doi.org/10.1146/annurev-cellbio-100814-125211
https://doi.org/10.1016/s0300-9084(01)01246-9
https://doi.org/10.1016/s0300-9084(01)01246-9
https://doi.org/10.1128/mBio.01106-14
https://doi.org/10.1098/rspb.2016.1458
https://doi.org/10.1371/journal.pbio.0040023
https://doi.org/10.1016/j.tim.2013.01.002
https://doi.org/10.1016/j.tim.2013.01.002
https://doi.org/10.1128/IAI.00198-15
https://doi.org/10.1093/femsre/fuz006
https://doi.org/10.1093/femsre/fuz006
https://doi.org/10.1111/j.1365-2672.2010.04890.x
https://doi.org/10.1111/j.1365-2672.2010.04890.x
https://doi.org/10.1371/journal.ppat.1005604
https://doi.org/10.1038/s41576-019-0185-4
https://doi.org/10.1016/j.jmb.2019.02.029
https://doi.org/10.1016/j.biochi.2010.06.024
https://doi.org/10.1038/nrmicro2261
https://doi.org/10.1038/nrmicro2261
https://doi.org/10.1042/BST20180488
https://doi.org/10.1016/j.mib.2020.01.019
https://doi.org/10.1038/s41598-017-06480-w
https://doi.org/10.1111/j.1365-2958.2008.06239.x
https://doi.org/10.1016/j.csbj.2019.06.010
https://doi.org/10.7554/eLife.47691
https://doi.org/10.1021/bi0514010
https://doi.org/10.1021/bi0514010
https://doi.org/10.1093/nar/gku804
https://doi.org/10.1111/mmi.13339
https://doi.org/10.1073/pnas.0913551107
https://doi.org/10.1128/JB.01625-14
https://doi.org/10.1128/JB.01625-14
https://doi.org/10.1128/JB.00919-15
https://doi.org/10.1128/mBio.01272-17
https://doi.org/10.1128/mBio.01272-17
https://doi.org/10.1038/s41598-017-10421-y
https://doi.org/10.3390/microorganisms7070204
https://doi.org/10.1093/nar/gkq934
https://doi.org/10.1093/emboj/19.23.6527
https://doi.org/10.3390/microorganisms8010025
https://doi.org/10.1016/j.tube.2017.12.004
https://doi.org/10.1016/j.tube.2017.12.004
https://doi.org/10.3389/fmicb.2018.02019
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00590 April 15, 2020 Time: 13:9 # 7
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Czerwińska, J. (2019). Watching DNA replication inhibitors in action:
exploiting time-lapse microfluidic microscopy as a tool for target-drug
interaction studies in Mycobacterium. Antimicrob. Agents Chemother.
63:e00739-19. doi: 10.1128/AAC.00739-19

Ushijima, Y., Ohniwa, R. L., and Morikawa, K. (2017). Identification of nucleoid
associated proteins (NAPs) under oxidative stress in Staphylococcus aureus.
BMC Microbiol. 17:207. doi: 10.1186/s12866-017-1114-3

Valens, M., Penaud, S., Rossignol, M., Cornet, F., and Boccard, F. (2004).
Macrodomain organization of the Escherichia coli chromosome. EMBO J. 23,
4330–4341. doi: 10.1038/sj.emboj.7600434

Verma, S. C., Qian, Z., and Adhya, S. L. (2019). Architecture of the Escherichia coli
nucleoid. PLoS Genet. 15:e1008456. doi: 10.1371/journal.pgen.1008456

Wang, G., Lo, L. F., and Maier, R. J. (2012). A histone-like protein of Helicobacter
pylori protects DNA from stress damage and aids host colonization. DNA Repair
11, 733–740. doi: 10.1016/j.dnarep.2012.06.006

Wang, W., Li, G.-W., Chen, C., Xie, X. S., and Zhuang, X. (2011). Chromosome
organization by a nucleoid-associated protein in live bacteria. Science 333,
1445–1449. doi: 10.1126/science.1204697

Wold, S., Crooke, E., and Skarstad, K. (1996). The Escherichia coli Fis protein
prevents initiation of DNA replication from oriC in vitro. Nucleic Acids Res.
24, 3527–3532. doi: 10.1093/nar/24.18.3527

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Hołówka and Zakrzewska-Czerwińska. This is an open-access
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