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Intracellular iron concentration is tightly regulated to maintain cell viability. Iron plays
important roles in electron transport, nucleic acid synthesis, and oxidative stress.
A Mycobacterium avium subsp. paratuberculosis (MAP)-specific genomic island carries
a putative metal transport operon that includes MAP3773c, which encodes a Fur-
like protein. Although well characterized as a global regulator of iron homeostasis in
multiple bacteria, the function of Fur (ferric uptake regulator) in MAP is unknown as
this organism also carries IdeR (iron dependent regulator), a native iron regulatory
protein specific to mycobacteria. Computational analysis using PRODORIC identified
23 different pathways involved in respiration, metabolism, and virulence that were
likely regulated by MAP3773c. Thus, chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) was performed to confirm the putative regulon of
MAPR3773c (Fur-like protein) in MAP. ChIP-Seq revealed enriched binding to 58 regions
by Fur under iron-replete and -deplete conditions, located mostly within open reading
frames (ORFs). Three ChIP peaks were identified in genes that are directly related
to iron regulation: MAP3638c (hemophore-like protein), MAP3736¢ (Fur box), and
MAP3776c (ABC transporter). Fur box consensus sequence was identified, and binding
specificity and dependence on Mn2* availability was confirmed by a chemiluminescent
electrophoresis mobility shift assay (EMSA). The results confirmed that MAP3773c is a
Fur ortholog that recognizes a 19 bp DNA sequence motif (Fur box) and it is involved in
metal homeostasis. This work provides a regulatory network of MAP Fur binding sites
during iron-replete and -deplete conditions, highlighting unique properties of Fur regulon
in MAP,

Keywords: Mycobacterium avium subsp. paratuberculosis, Fur, iron, regulon, ChIP-seq

INTRODUCTION

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease (JD)
in ruminants, a chronic and incurable chronic enteritis characterized by persistent diarrhea that
leads to malnutrition and muscular wasting (Rathnaiah et al., 2017). JD is present worldwide and
imposes significant economic losses to the dairy industry (Garcia and Shalloo, 2015). Unfortunately,
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to date, reliable JD diagnostics are still lacking. Culture of MAP
from feces has been the most reliable method for diagnosis
of JD; however, MAP requires 8 to 16 weeks to produce
colonies in culture, presenting a major hurdle to diagnosis
(Bannantine et al., 2002).

Unlike other mycobacteria, MAP has special iron
requirements. For optimal growth in vitro, it requires
supplementation of the siderophore mycobactin J. Whole-
genome sequencing of MAP K-10 provided a potential
explanation for this dependency, revealing a truncation of the
mbtA gene, with MAP making a protein that is 151-156 amino
acids shorter than M. tuberculosis or M. avium (Li et al., 2005). It
has been suggested that this truncation impairs the production
of mycobactin from the mbtA-J operon (Li et al., 2005; Wang
et al., 2014). Despite this truncation, Zhu et al. (2008) showed
that MAP is still able to transcribe mycobactin synthesis genes
inside macrophages. To corroborate these findings, Janagama
et al. described the upregulation of several genes responsible for
iron acquisition in infected tissues, including genes responsible
for mycobactin biosynthesis (Janagama et al., 2010).

Iron is vital to fundamental biological processes, however,
high intracellular concentrations of free iron are toxic to
bacteria. As such, cells have developed tightly regulated
processes for intracellular metal homeostasis (Eckelt et al.,
2014). Bacteria control metal homeostasis by activating a set of
genes regulated by metal-sensing transcription factors known
as metalloregulatory proteins (Chandrangsu et al,, 2017). In
prokaryotes, there are two major families of metalloregulators:
diphtheria toxin (DtxR) and ferric uptake regulator (Fur)
(Hantke, 2001). In 2009, Janagama and others identified and
characterized MAP2827, an iron-dependent regulator (IdeR) in
MAP. A member of the DtxR protein family, IdeR is involved
in regulatory mechanisms to acquire, store, or prevent excess
accumulation of iron. The authors were able to confirm that
MAP2827 was in fact IdeR and regulates genes involved in iron
acquisition (mbtB) and iron storage (bfrA) (Janagama et al.,
2009). However, in vitro iron stress showed that IdeR regulation
is strain dependent, while IdeR from MAP cattle strain K-10
regulates mycobactin synthesis and storage genes similar to IdeR
from M. tuberculosis. IdeR from MAP sheep strain S397 shows
deficiency in iron storage function, resulting in a strain more
sensitive to iron fluctuations (Janagama et al., 2010).

In addition to IdeR, MAP genome contains a putative
metal transport MAP-specific operon and large genomic
polymorphisms (LSPs), 15, that include a Fur-like transcriptional
regulator, MAP3773c (Alexander et al., 2009). First identified
in Escherichia coli, Fur has been shown to respond to iron-
replete conditions to repress gene expression and allow sufficient
concentration of intracellular iron for essential iron-related
activities (Hantke, 1981; Bagg and Neilands, 1987; Lee and
Helmann, 2007). Similar to several representatives of Fur family
member, Fur protein requires binding of a divalent metal ion,
either Fe?* or Mn?", for DNA-binding activation (Mills and
Marletta, 2005; Lee and Helmann, 2007; Chandrangsu et al,
2017). Fur protein generally binds to a 19-bp inverted repeat
sequence known as a “Fur box” (GATAATGATwATCATTATGC;
w = A or T), within the promoter of the regulated genes

(Escolar et al., 1999). In MAP, functional genomics suggested
three Fur boxes located in a 38-kb MAP-specific genomic island
(LSP14) (Stratmann et al., 2004; Alexander et al., 2009). MAP
genome includes a total of six specific genomic insertions: LSP4,
LSP11, LSP12, LSP14, LSP15, and LSP16 (Alexander et al., 2009).
As these islands are not presented in any other mycobacteria, it
has been proposed and confirmed that they were acquired via
horizontal gene transfer (Alexander et al,, 2009; Wang et al,
2016). Furthermore, LSP14 and LSP15 encode several predicted
genes involved in metal uptake systems.

To date, there have been characterization of the other Fur
family members in MAP, FurA, and FurB, also known as Per
(peroxidase stress response) and Zur (zinc uptake repressor),
respectively, however, no information about the potential roles
of Fur-like element has been described (Eckelt et al., 2014, Eckelt
etal., 2015).

As a key virulence determinant, iron regulation in MAP and
its role in pathogen survival and infection are important areas
of research that may lead to advances in ability to improve
culturing methods. To further elucidate the mechanisms of iron
homeostasis in MAP, we investigated the putative function of
the Fur-like gene (MAP3773c) in iron homeostasis in vitro.
We applied in vivo ChIP-seq to confirm binding of MAP Fur
as a transcription factor and to identify the regulon of genes
under its control.

MATERIALS AND METHODS

Bacterial Strains

MAP K-10 strain was grown at 37°C without shaking in
Middlebrook 7H9 supplemented with 10% OADC (oleic
acid, dextrose, catalase) enrichment medium (Thermo Fisher
Scientific, Waltham, MA, United States), 0.05% Tween 80, and
2 mg of ferric mycobactin J (Allied Monitor Inc., Fayette, MO,
United States) per liter. Antibiotics (jg/ml: kanamycin, 20;
hygromycin, 100; streptomycin, 20) were added when necessary.
Competent E. coli BL21(DE3) (EMD Biosciences, Madison WI,
United States) and E. coli TOP10F cells (Invitrogen, Carlsbad,
CA, United States) were grown in LB medium 37°C with
shaking at 200 RPM.

Protein Expression

To express MAP Fur protein, competent E. coli BL21(DE3)
(EMD Biosciences, Madison WI) carrying MAP3773c on pET-
24b(+) were growing in LB medium with 30 pg/ml kanamycin.
Cultures were kept at 37°C with shaking at 200 RPM for 4 h
aerobic growth, until ODggg of 0.4 was obtained. Then, protein
expression was induced with addition of 0.1 M IPTG and shaking
at 37°C for an additional 2 h. The expressed MAP3773c was
extracted using B-PER (Bacterial Protein Extraction Reagent;
Pierce Biotechnology, Rockford, IL, United States), followed
by purification using HisPur Ni-NTA resin columns per the
manufacturer’s protocol (Pierce Biotechnology, Rockford, IL,
United States). Purified protein was analyzed by SDS-PAGE
and Western Blot using standard methods described previously
(Bannantine and Paustian, 2006). The target band identified from
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the SDS-PAGE was excised for LC-MS/MS at Michigan State
University Proteomics Facilities. Raw data were analyzed using
Scaffold (Proteome Software, Portland, OR, United States).

Western Blotting

MAP K-10 were cultured as previously described until reaching
an ODgyy of ~0.5. For iron starvation, cultures were treated
with 2,2-bipyridyl (DIP, 200 wM final) for 2 h shacking at
200 rpm at 37°C. Cells from iron-replete and -deplete conditions
were washed with 1 x PBS and resuspended in freshly made
buffer lysis buffer (20 mM HEPES; 50 mM KCl; 0.5 mM DTT;
10% glycerol; mini protease inhibitor), followed by cell lysing
with MagNA Lyser (Roche Diagnostics, Sandhofer, Germany).
For enrichment of Fur protein, samples were subjected to
immunoprecipitation. Samples were incubated overnight with
antibody for Fur detection at 4°C on a rotating platform followed
by 2 h incubation [0.5 h at 4°C and 1.5 h at room temperature
(RT)] on a rotating platform. Samples were washed two times
with IPP150 buffer (10 mM Tris-HCI; 150 mM NaCl, 0.1%
NP40) and two times with 1 x TE (0.05 M Tris-HCI; 10 mM
EDTA) buffer. Beads were resuspended in elution buffer and
incubated at 65°C for 15 min. The samples were subjected to
SDS-PAGE and transferred to Nitrocellulose Membrane, 0.2 um
(Bio-Rad Laboratories, Hercules, CA, United States). Custom-
made antibody that binds the MAP Fur protein (Genscript,
Piscataway, NJ, United States) was used as primary antibody.
Anti-rabbit IgG (whole molecule)-peroxidase antibody produced
in goat (Sigma-Aldrich, St. Louis, MO, United States) was
used as secondary antibody. The membrane was visualized with
ChemiDoc MP Imaging System (Bio-Rad Laboratories, Hercules,
CA, United States).

Computational Prediction of

Fur-Regulated Genes

Virtual Footprint, part of The Prokaryotic Database of Gene
Regulation (PRODORIC) (Miinch et al., 2005), was used for
prediction of Fur binding site. MAP K-10 genome was used as
input DNA sequence, Fur box motif from E. coli was used as
Position Weight Matrix, and searches were limited to -300 to
+100 bases of each predicted ORF.

Chromatin Immunoprecipitation

Followed by Sequencing (ChiP-Seq)

ChIP-enriched DNA samples were harvested following the
protocol developed by Jaini et al. (2014) using a custom-made
antibody that binds the MAP Fur protein (Genscript, Piscataway,
NJ, United States). MAP K-10 culture with an ODgyy of ~0.5
was used to generate ChIP-DNA. In order to avoid false positive,
input DNA was used as control, and this sample did not have
ChIP enrichment. For iron starvation, cultures were treated with
DIP (200 pM final) for 2 h shacking at 200 rpm at 37°C.
Cells from iron-replete and -deplete conditions were washed
with 1 x PBS. Formaldehyde was added at a final concentration
of 1% and incubated at RT for 20 min in a platform rocker.
Cross-linking was quenched by adding 250 mM of glycine and

incubating for 15 min. Cells were washed two times with ice-
cold 1 x PBS and resuspended in freshly made buffer lysis buffer
(20 mM HEPES; 50 mM KCI; 0.5 mM DTT; 10% glycerol; mini
protease inhibitor), followed by cell lysing with MagNA Lyser
(Roche Diagnostics, Sandhofer, Germany). Cell suspensions were
sonicated using Covaris M220 Focused-ultrasonicator (Covaris,
Inc., Woburn, MA) for 18 min; 75.0 peak power; 20.0 duty
factor, and 200 cycles/burst. Samples were incubated overnight
with antibody for Fur detection at 4°C on a rotating platform
followed by 2 h incubation (0.5 h at 4°C and 1.5 h at RT)
on a rotating platform. Samples were washed two times with
IPP150 bufter (10 mM Tris—-HCIl; 150 mM NaCl, 0.1% NP40)
and two times with 1 x TE (0.05 M Tris-HCl; 10 mM EDTA)
buffer. Beads were resuspended in elution buffer and incubated
at 65°C for 15 min. 1 mg/ml of Proteinase K was added to
each sample and incubated at 37°C for 2 h and transferred for
65°C for overnight incubation. DNA purification was performed
using AmPure*? beads per the manufacturer’s protocol (Beckman
Coulter, Indianapolis, IN, United States). Sample quality was
analyzed by an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, United States).

ChIP-Seq Library Construction and

Sequencing

DNA fragments ~300 bp were selected for library preparation
and sequencing libraries were prepared using NEXTflex"™ ChIP-
seq kit (PerkinElmer, Austin, TX, United States) as per the
manufacturer’s protocol. Pre- and post-library construction,
chromatin immunoprecipitation products were quantified using
a Qubit fluorometer (Invitrogen, Carlsbad, CA, United States)
and an Agilent 2100 Bioanalyzer (Agilent technologies, Santa
Clara, CA, United States). ChIP DNA replicates were pooled
and sequenced. Approximately 20M reads per sample were
generated, providing 150-1,000 depth of coverage. Sequencing
was performed by ACGT, Inc. (Chicago, IL, United States).

ChIP-Seq Data Analysis

All analysis was done using CLC Genomics Workbench software
12.0 (QIAGEN, Aarhus, Denmark). Raw data generated from
ChIP-seq were trimmed and mapped to the reference MAP K-
10 genome (NCBI accession number NC_002944). Using CLC
shape-based peak caller, ChIP-enriched DNA were aligned onto
Input DNA (no ChIP enrichment); when the sequence coverage
of a genomic region in the enriched DNA exceeded the Input
DNA, a ChIP peak score was called. A list of all ChIP peaks
with their respective P value was generated. The threshold for
signal-to-noise ratio (ChIP-enriched DNA vs. no enriched) was
set based on false discovery rate (FDR) value equal to or smaller
than 10~°°, FDR was calculated using Bonferroni correction on
R software based on the P value generated by CLC.

Motif Detection

A Fur binding motif was generated using Find Individual Motif
Occurrences (FIMO), part of the MEME suit (Grant et al., 2011),
for all in vivo binding sites identified in ChIP-seq analyses.
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A P value of < 0.001 was defined as statistical threshold for
Fur binding motifs.

Electrophoretic Mobility Shift Assay
(EMSA)

Physical binding of MAP3773c to the promoter sequences
of MAP Fur box 1 (MAP3736¢c) was carried out by EMSA.
Promoter sequences containing Fur box motifs were amplified
using 5 biotin-labeled primer via PCR. Purification of PCR
products was done using the QIAquick PCR Purification kit
(Qiagen, Germantown, MD, United States). Recombinant MAP
Fur protein was expressed as stated above. Binding reaction:
1 x Binding Buffer (50 mM Tris-HCL; 25% glycerol; 10
pg/ml Salmon tests DNA; 250 nM NaCl; 5 mM DTT; 250
png/ml BSA; nuclease free water), 10 mM MnCl,, 0-10 nM
MAP Fur protein, 0-4 pmol Unlabeled DNA, and 20 fmol
labeled DNA. The reactions were incubated for 30 min at
RT followed by electrophoresis in a 5% native polyacrylamide
gel [40% 19:1 Acrylamide; 50% Tris-Acetate (TA) buffer; 50%
glycerol; 10% Ammonium persulfate (APS); 6% TEMED] using
1 x TA Buffer (1 M Tris acetate, 0.5 M Glacial acetic acid)
as running buffer. After electrophoresis, gels were transferred
onto a Biodyne B Nylon membrane (Pierce, Biotechnology,
Rockford, IL, United States) and reactions were detected using

chemiluminescence-based nucleic acid detection kit (Pierce,
Biotechnology, Rockford, IL, United States).

RESULTS

Genome-Wide Analysis of Fur Regulon

Using computational prediction, PRODORIC (Miinch et al.,
2005), 26 different pathways involved in respiration, metabolism,
and virulence were identified as likely regulated by MAP3773c
(Figure 1). To confirm the findings from the in silico analysis and
determine which genes are regulated by Fur in MAP, chromatin
immunoprecipitation followed by deep sequencing (ChIP-seq)
was performed. A custom-synthesized anti-Fur antibody capable
of detecting the MAP Fur protein in its native form in
MAP K-10 (Figure 2C) was used to generate ChIP binding
profiles for MAP K-10 cultured under iron-replete and -deplete
conditions (Figure 3).

ChIP peaks were called when the sequence coverage
of genomic regions in the different treatments is enriched
when compared to ChIP-seq control sample where the
immunoprecipitation step was omitted (Strino and Lappe,
2016). Input DNA (no ChIP enrichment) had 34,907,295
(79.02% coverage against the MAP K-10 genome) uniquely
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FIGURE 1 | In silico analysis of Fur regulon. Using PRODORIC for MAP K-10 genome analysis to detect putative Fur binding and predict pathways regulated by
MAP3773c. Solid lines represent pathways directly regulated by MAP3773c. Dashed lines indicated interrelated pathways.
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addition of IPTG; Lane 5, Purified recombinant MAP3773c protein. (B) Scaffold analysis of LC-MS/MS data from excised band from lane 5 showing peptide hits
(yellow highlights) to 35% of complete MAP Fur sequence. (C) Western blot showing immunoprecipitation of Fur protein by anti-Fur antibody from MAP K-10
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mapped reads while ChIP-enriched DNA from iron-replete and
iron-deplete conditions had 22,566,602 (55.66%) and 4,299,792
(14.73%) mapped reads, respectively.

Applying a P-value at < 0.001, the ChIP-seq assay identified
nine Fur binding sites out of 14 previously predicted by
PRODORIC. ChIP-seq analysis revealed a total of 5,381 and 4,960
binding sites of Fur protein in the MAP K-10 genome (signal-
to-noise ratio) under iron-replete and iron-deplete conditions,
respectively (Figure 3).

Applying a FDR at < 107>, under iron-replete conditions,
a total of 43 significantly enriched regions were identified on

the K-10 genome (Table 1). Peaks were either localized between
open reading frames (ORFs) (27%; intergenic regions) and
within annotated genes (73%). In contrast, under chelation
treatment (iron depletion), 11 enriched regions were identified
(Table 2), all showing binding sites within ORFs. Four ChIP
peaks were present under both iron-replete and -deplete
conditions simultaneously (Table 3). Diverse functions are
encoded by genes where Fur bound on the MAP K-10
genome: cell wall synthesis, energy metabolism, respiration,
and transcriptional/translation regulation. Out of 58 genes
(FDR < 107°%) from both conditions (Tables 1-3), 11
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TABLE 1 | List of genes regulated by Fur under iron-replete conditions, FDR < 1050,

Gene Peak score FDR.bonf Function P-value
MAP3776¢ 32.51 4.18E-228 ABC transporter ATP-binding protein 4.04E-232
MAP1134 23.71 1.61E-120 16S rRNA m5C967 methyltransferase 1.55E-124
MAP4122 22.29 2.41E-106 Hypothetical protein 2.33E-110
MAP2627¢ 22.09 2.16E-104 Hypothetical protein 2.09E-108
MAP1398 21.41 5.37E-98 Hypothetical protein 5.19E-102
MAP1129 20.53 5.64E-90 Lysoplasmalogenase 5.46E-94
MAP3230c 20.5 1.04E-89 AraC family transcriptional regulator 1.00E-93
rpmG 19.86 4.49E-84 508 ribosomal protein L33 4.34E-88
MAP2419 19.61 7.04E-82 Membrane protein 6.81E-86
MAP2389¢c 19.59 1.03E-81 Amidohydrolase 9.96E-86
aroA 19.51 4.62E-81 3-Phosphoshikimate 1-carboxyvinyltransferase 4.47E-85
MAP2370c 19.25 7.14E-79 Short-chain dehydrogenase 6.90E-83
MAP2011 19.23 1.12E-78 Hypothetical protein 1.08E-82
MAPO130 19.2 1.93E-78 ATP-binding protein 1.87E-82
MAP2640c 18.84 1.86E-75 CPBP family intramembrane metalloprotease 1.80E-79
MAP2620c 18.73 1.56E-74 Nitrate reductase subunit alpha 1.51E-78
MAP1360 18.7 2.47E-74 Phenylalanine—tRNA ligase subunit beta 2.39E-78
MAP2969¢ 18.65 6.83E-74 Hypothetical protein 6.61E-78
MAPO0351 18.64 7.32E-74 Transcriptional regulator 7.07E-78
MAP3430 18.53 6.66E-73 Phosphomannomutase 6.44E-77
MAP2173c 18.46 2.42E-72 Pseudo 2.34E-76
MAP2465¢c 18.36 1.50E-71 Hypothetical protein 1.45E-75
MAPO636 18.19 3.12E-70 CPBP family intramembrane metalloprotease 3.02E-74
MAP2744¢c 17.74 1.03E-66 Catalase-related peroxidase 9.97E-71
MAPO867¢c 17.61 9.82E-66 LLM class F420-dependent oxidoreductase 9.50E-70
rsmD 17.59 1.40E-65 16S rRNA (guanine(966)-N(2))-methyltransferase RsmD 1.35E-69
MAP_RS19330 17.47 1.27E-64 ANTAR domain-containing protein 1.22E-68
MAP2411 17.36 8.04E-64 Pyridoxamine 5’-phosphate oxidase 7.77E-68
MAPO357 17.28 3.43E-63 Membrane protein 3.32E-67
MAP2395¢ 17.13 4.66E-62 Enoyl-CoA hydratase/isomerase family protein 4.51E-66
MAP2479 171 7.40E-62 Potassium transporter TrkA 7.16E-66
rsgA 171 8.08E-62 Ribosome small subunit-dependent GTPase A 7.81E-66
MAP3477 16.78 1.83E-59 Pseudo 1.77E-63
MAP2747 16.72 4.92E-59 Long-chain-fatty-acid-CoA ligase 4.76E-63
MAP3486 16.49 2.23E-57 Lactate 2-monooxygenase 2.15E-61
MAP1560 16.49 2.40E-57 Esterase 2.32E-61
MAP3063 16.45 4.56E-57 1,4-Alpha-glucan-branching protein 4.41E-61
MAP3015 16.33 3.20E-56 Short-chain dehydrogenase/reductase 3.10E-60
MAP1161 16.09 1.54E-54 Hypothetical protein 1.49E-58
DkgA 15.88 4.35E-53 2,5-Diketo-D-gluconic acid reductase 4.21E-57
MAP0988 15.82 1.18E-52 Nucleoside triphosphate pyrophosphohydrolase 1.14E-56
MAP1227 15.56 6.84E-51 Methylmalonyl Co-A mutase-associated GTPase MeaB 6.61E-55
MAP3488¢c 15.53 1.08E-50 Hypothetical protein 1.04E-54

are annotated as hypothetical proteins, 2 are described as
pseudogenes (Table 4), and three ChIP peaks are associated
with iron regulation: MAP3638c, MAP3736¢, and MAP3776c.
Interestingly, Fur bound upstream of MAP3776¢, an ABC
transporter, only under iron-replete condition and binding to
MAP3638c (hemophore-like protein) was identified only under
iron-deplete conditions (Figures 4A,B).

Fur Binds to Fur Box Motif Under

Iron-Replete or -Deplete Condition

Fur box consensus sequence was identified in ChIP-seq data
using MEME-ChIP (Figure 5A). FIMO (Find Individual Motif
Occurrences) analysis identified 15 occurrences of Fur box motif
(P <0.001), 12 of them presented under iron-replete conditions
and 3 under iron-deplete condition (Table 5).

Frontiers in Microbiology | www.frontiersin.org

April 2020 | Volume 11 | Article 598


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Shoyama et al.

Fur Regulon in MAP

TABLE 2 | List of genes regulated by Fur under iron-deplete conditions, FDR < 10~%0,

Gene Peak score FDR.bonf Function P-value

MAP_RS12480 19.48 7.85E-81 23S ribosomal RNA 7.59E-85
MAP3664 18.75 1.04E-74 Glycosyl transferase 1.01E-78
Rrf 18.04 4.50E-69 58 ribosomal RNA 4.35E-73
MAP3638 17.74 1.03E-66 Hemophore 9.92E-71
MAPO182¢c 16.39 1.25E-56 Hypothetical protein 1.20E-60
MAP2957 16.15 6.05E-55 Peptidase M23 5.85E-59
MAP_RS12480 16.11 1.17E-54 23S ribosomal RNA 1.13E-58
MAP3471c 156.79 1.76E-52 Hypothetical protein 1.70E-56
MAP_RS14585 15.51 1.61E-50 Hypothetical protein 1.56E-54
MAP2961¢c 15.5 1.68E-50 DNA-protecting protein DprA 1.63E-54
MAP1420 15.44 4.45E-50 Non-ribosomal peptide synthetase 4.30E-54

TABLE 3 | List of genes regulated by Fur under iron-replete and -deplete conditions, FDR < 100,

Peak score FDR. Bonferroni
Replete Deplete Replete Deplete

Gene function MAP3736¢ ABC transporter ATP-binding protein 38.74 33.46 0.00 9.02E-242

MAP2381 acetoin dehydrogenase 26.50 26.02 5.07E-151 1.70E-145

MAP2071c cyclohexanecarboxylate-CoA ligase 17.59 21.33 1.49E-65 3.10E-97

MAP2840c¢ diaminopimelate epimerase 19.99 16.79 3.42E-85 1.39E-59
TABLE 4 | List of genes regulated by Fur under iron-replete (yellow) and iron-deplete (gray) conditions with no function assigned, FDR < 10~%°.
Gene Peak score FDR.bonf Binding location Function P-value
MAP4122 22.29 2.41E-106 Intragenic Hypothetical protein 2.33E-110
MAP2627¢c 22.09 2.16E-104 Intergenic Hypothetical protein 2.09E-108
MAP1398 21.41 5.37E-98 Intergenic Hypothetical protein 5.19E-102
MAP2011 19.23 1.12E-78 Intragenic Hypothetical protein 1.08E-82
MAP2969¢c 18.65 6.83E-74 Intragenic Hypothetical protein 6.61E-78
MAP2173c 18.46 2.42E-72 Intragenic Pseudo 2.34E-76
MAP2465¢ 18.36 1.50E-71 Intragenic Hypothetical protein 1.45E-75
MAP3477 16.78 1.83E-59 Intragenic Pseudo 1.77E-63
MAP1161 16.09 1.54E-54 Intragenic Hypothetical protein 1.49E-58
MAP3488¢c 15.563 1.08E-50 Intergenic Hypothetical protein 1.04E-54
MAPO182¢c 16.39 1.25E-56 Intragenic Hypothetical protein 1.20E-60
MAP3471¢c 156.79 1.76E-52 Intragenic Hypothetical protein 1.70E-56
MAP_RS14585 15.51 1.61E-50 Intragenic Hypothetical protein 1.56E-54

From previous studies, it is known that the MAP K-10 genome
contains three Fur box motifs (Stratmann et al., 2004). However,
data from ChIP-seq showed that the Fur protein does not show
significant binding (FDR > 107°%) to the region of Fur box 3
(MAP3739c) (Figure 5B). The highest peak score from all ChIP-
seq data was observed within and just upstream of MAP3736c,
located on LSP14, MAP-specific genomic island (Alexander
et al., 2009). Within MAP3736¢ (located between nucleotides
4158368 and 4159327), there are two putative Fur Boxes: Fur
box 1 (located between nt 4158681 and 4158966 of the genome)
and Fur box 2 (located between nt 4159132 and 4159456)
(Stratmann et al., 2004). ChIP-seq analysis showed high binding
in both regions, confirming the exact location (Figure 5C). When

intracellular Fe?>* was depleted by the addition of 2,2-dipyridyl,
MAP Fur bound with higher affinity to Fur box 1 region (peak
score = 38.57) in contrast to a lower binding score for Fur
box 2 (peak score = 12.54), while under replete conditions,
where MAP was grown in complete media, the opposite was
observed, a lower MAP Fur binding in the Fur box 1 region
(peak score = 19.63) and a higher peak in Fur box 2 region
(peak score = 33.46).

Validation of MAP Fur Binding

To confirm binding to the Fur promoter region, biotinylated
or unlabeled PCR fragment including Fur box 1q identified
by ChIP-seq was amplified and subjected to an electrophoretic
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FIGURE 4 | Applying FDR < 1020, there are three ChIP peaks associated with iron regulation. (A) MAP Fur protein binds to the region of MAP3638c; however, only
under iron-deplete condition is binding statically significant with a peak score of 17.4 (MAP3638c). (B) Under iron-replete conditions, there is a strong binding of

MAP Fur to the region of MAP3776¢ represented by a peak score of 32.51.
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FIGURE 5 | MAP Fur box analysis. (A) The most significant motif derived from ChIP-seq binding sequence using MEME. Height of each letter represents the relative
frequency of each base at a different position in the consensus sequence. (B,C) A zoom-in of the MAP Fur boxes generated by CLC genomics. (B) Under both iron
conditions, there is no binding of MAP Fur to the region of Fur box 3 (MAP3739c). ChiIP peak (9.46) outside the ORF has FDR higher than the threshold of

FDR < 10750 (C) The enriched region of MAP Fur binding onto Fur Box 1 and 2 identified by ChIP-seq. ChIP peak showed higher occupancy under iron-deplete
condition in the Fur Box 1 region. S/N denotes the signal-to-noise ratio for peak calling generated by CLC software.

A 2 C
1]CAIAA AAAA C A I Genomic position - ‘-“?-°°° ‘-157-000 ‘-15?-000
e o o noog s azseenseaea

MAP3736¢
Annotated genes MAP3735c SN MAP3737¢c R—]
j— I e— ] o

Iron replete
(S/N ratio)
Iron deplete
(S/N ratio)

Furbox1  Furbox2

mobility shift assay (EMSA) using purified MAP Fur protein concentration was increased, there was an increase of binding

(Figures 2A,B).
Titration of Fur protein in the presence of Mn?* and

activity (Figure 6A). However, in the absence of Mn2t, Fur
20 binding to DNA was not as efficient as in the presence of

fmol of DNA showed that binding is dose-dependent, as the Fur ~ Mn?* (Figure 6B).

Furthermore, DNA-protein complex was specific to Fur
binding site, as shown in the competition assay (Figure 6C), and

TABLE 5 | FIMO output. Most significant Fur box motif (SRYAATGAAAAT
SRTTWTC) derived from ChIP-seq binding in iron-replete (yellow) and -deplete
(gray) conditions.

adding a different concentration of excess unlabeled Fur box 1
probe competed with and abrogated labeled Fur box 1 probe
binding to Fur protein.

Start End Strand  Binding sequence Gene

4158881 4158899 aF GATAATGAAAATCGTTATC MAP3736¢

4216788 4216806 — GTTAATGAAAATGATTATC MAP3772¢ D ISC U SS I O N

4213755 4213773 F CTTATTGAAAATGATTTTC MAP3770

3880225 3880243 + GATAACGATAATCATTTTC MAP3490 In this study, a full characterization of the Fur in MAP was
3880225 3880243 _ GAAAATGATTATCGTTATC mapssgge  performed. Fur and its involvement in iron homeostasis are
4213810 4213828 4s CGAGATGAAAATGATTCCC MAP3770 well known in bacteria such as E. COli, Bacillus subtilis, and
4219972 4219990 - AGATATGAAAACGGTTATC MAP3776c  Salmonella Typhimurium. This protein has been shown to work
1029910 1029928 + GACGCTGAAAGTGCTTTGC ~ MAPO9s8  as a repressor, by blocking RNA polymerase binding to the
3341431 3341449 = GGTGACGAAAGTGGTTCTG ~ MAP3004c  promoter region of genes involved in iron homeostasis by
2676939 2676957 + GGTGATGACCAACGTTCCC ~ MAP23g2  repressing transcription (Escolar et al., 1997), but can also work as
2718950 2718968 - CACAGGGAAATTGGTCCTG  MAP2420c  an activator by positively regulating gene expression in response
3880219 3880237 + GCTGCTGATAACGATAATC MAP3490  to iron through indirect mechanism involving repression of small
4071822 4071840 + CACCGCGAAAAGCGTTGTG  MAP3eesc  regulatory RNA (Delany et al., 2001; Masse et al., 2005). The
2752597 2752615 + CACACCGCAAAAGCTTTCC  MAP2451c  current study confirmed, by Western blot (Figure 2A) and mass
4158881 4158899 + GATAATGAAAATCGTTATC MAP3736c  spectrometry (Figure 2B), that MAP3773c¢ encodes a Fur-like
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FIGURE 6 | EMSA analysis of MAP Fur binding to Fur box consensus DNA. Binding activity is represented by band intensity. Twenty femtomoles of MAP DNA
including the Fur Box 1 consensus biotin labeled was run in a 5% native polyacrylamide gel with different concentrations of MAP Fur protein and Mn2+.

(A) Protein-DNA binding is dose-dependent: titration of purified MAP Fur protein shows an increase of binding activity as more protein is added to the system.

(B) Binding activity is more efficient in the presence of Mn2*: No addition of Mn?+ (Lane 5) binding occurs with a lower band intensity when compared to the sample
with Mn2* (Lanes 1-4). (C) Competitive EMSA. Fur protein was incubated with either biotin-labeled DNA probe or unlabeled DNA probe or with both. Biotin-labeled
probe was detected using chemiluminescence-based nucleic acid detection kit. Addition of unlabeled DNA affects binding activity, showing binding specificity.
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protein in MAP. A regulatory network of MAP Fur binding sites
was identified using three independent approaches: (1) in silico
(PRODORIC), (2) in vivo (ChIP-seq), and (3) in vitro (EMSA).
In vivo and in vitro analyses established that Fur binding was
responsive to iron availability.

ChIP-seq analysis expanded the number of MAP Fur
binding sites, from 14 genes predicted by PRODORIC to 58
enriched binding regions (FDR < 107°°). Binding locations
were distributed almost evenly between intragenic and intergenic
regions. While binding of Fur in intragenic regions refute the
definition of a transcriptional factor (Browning and Busby, 2004),
recent ChIP-seq studies with M. tuberculosis, E. coli, Salmonella,
and Corynebacterium reported intragenic TF binding that play
critical roles in transcription and significantly affect regulation
of gene expression (Dillon et al., 2012; Fitzgerald et al., 2014;
Knapp et al., 2015). Additionally, during characterization of the
Fur regulon in Pseudomonas syringae, Butcher et al. (2011) did
not observe general differences between Fur binding to intergenic

and intragenic sites. Both showed comparable binding affinity in
P. syringae, suggesting that, although 100% of MAP Fur binding
under iron-deplete conditions are located in intragenic regions,
MAP Fur can be biologically active and able to bind specific DNA
sequences to control gene expression.

Iron regulation by Fur in MAP appears to be more
complex than the classic model, where Fur acts as a repressor
when sensing high intracellular Fe?T. Tt then forms the Fur-
Fe’* complex and binds to the Fur box sequence, which
enables Fur transition from its inactive (apo-) to its activated
(holo-) form (Hantke, 2001; Helmann, 2014). Additionally,
data from the present study showed that MAP uses Fur in
the absence of intracellular Fe?*, a process known as apo-
regulation. In low-iron conditions, apo-Fur protein binds to
the promoters of its target genes and regulates transcription
(Miles et al., 2010).

The complexity of Fur regulation can be exemplified in the
ChIP peak of MAP3736¢c, where apo-Fur binds to Fur box
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FIGURE 7 | Model for the regulation of the iron stimulon in M. paratuberculosis. Under low-iron conditions, the iron sensor MAP3737 (yellow teardrop) initiates a
signal transduction cascade activating a hypothetical master regulator (MR) of the stimulon (orange rectangle) leading to the transcription of apo-Fur and apo-ldeR.
Under low iron, apo-Fur activates transcription of the iron uptake protein or system (blue oval) that is transported to the cell membrane and carries ferric iron bound
to carboxymycobactin (cMyco) (blue cloud) into the bacterium. The cMyco + Fe3+ complex possesses FAD-binding activity, allowing interaction with an iron flavin
reductase that converts Fe* to Fe?* and disassociates the complex, liberating Fe?*. Apo-ldeR is inactive but, bound to iron (IdeR Fe?), represses transcription of
iron import/export protein or system and iron transport is shut down (red X). In addition, bound to ferrous iron, either regulator can exert a positive (pointed blue
arrows) or negative regulation (flat-headed arrows) on the transcription of genes in their corresponding regulons. Apo-Fur also exerts a regulatory effect on the Fur
regulon. Some genes may be controlled by both Fur and IdeR in opposite ways (broken blue arrows). More speculative effects are depicted by arrows with question
marks. Thus, in this model, both Fur and IdeR act in a coordinate fashion to regulate the iron stimulon composed of the Fur and IdeR regulons. Black pointed arrows
are used for processes unrelated to transcription such as binding or signal transduction effects.

X

1 under iron-deplete conditions and holo-Fur binds to Fur
box 1 and 2 under iron-replete condition. The physiological
significance of apo-Fur binding in MAP is unclear, however,
previous studies with Helicobacter pylori showed that when iron
levels are low, genes responsible for iron storage are repressed
by apo-Fur (Bereswill et al, 2000). Furthermore, additional
studies in Campylobacter jejuni showed that expression genes
controlled by Fur was decreased in the wild-type strain
under iron-deplete condition and, in a Fur knockout strain,
expression was increased (Holmes et al, 2005), indicating
that apo-Fur plays an important role in iron metabolism.
Corroborating this result, ChIP-seq analysis identified apo-Fur
binding to MAP3638c, only under iron starvation. MAP3638¢c
is a hemophore-like protein, suggesting that MAP likely uses
heme as an additional iron source as previously described in
M. tuberculosis (Tullius et al., 2011).

Finally, to confirm and validate Fur-Fur boxl binding, an
EMSA using PCR amplification of ChIP-seq-identified Fur box
1 and purified Fur-like protein (MAP3773c) was performed.

The binding was dependent on the availability of Mn?*, a
common surrogate metal that, unlike Fe?T, is stable in the
presence of oxygen but promotes DNA binding and adopts
the same coordination geometry as Fe?* (Butcher et al,
2011). Additionally, a competitive gel shift assay confirmed
specificity of MAP Fur binding to the Fur box 1 region.
Taken together, the identification of consensus Fur box by
ChIP-seq peaks combined with data from EMSA confirms
that iron regulation in MAP is also mediated by a Fur
homolog that recognizes the 19-bp DNA sequence, known as
Fur box.

In this current study, we were not able to confirm Fur box 3
(MAP3739c¢) region as binding site for Fur protein as described by
Stratmann et al. (2004). Computational methods as used by the
group predicted binding sites relying on data available 15 years
ago, which was likely incomplete. Further, most computational
predictions of TF binding are prone to false discovery and
need to be validated (Karimzadeh and Hoffman, 2018). By
using directly and quantitatively sequencing in combination
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with specific antibody, as used in this currently study, ChIP-
seq method provides a powerful strategy for identifying in vivo
binding sites across entire genome (Collas, 2019).

CONCLUDING REMARK AND FUTURE
DIRECTIONS

In this work, we characterized MAP3773c, the Fur in MAP, using
ChIP-seq. A genomic view of the MAP Fur regulatory network
was identified, and several putative binding sites involved during
iron-replete and -deplete conditions were discovered. Although
this study is not a full description of the Fur regulon, our findings
indicate that MAP Fur is a global regulator that recognizes many
target sites in the genome, either by apo- or holo-Fur. Based on
the proposed model by Lamont et al. (2013) where, in response to
nitric oxide stress, MAP3737 (PPE family protein) acts as the iron
sensor protein and promotes expression of MAP3734c-3736c,
leading to activation of the iron uptake system, we hypothesize
a stimulon regulatory pathway with two regulatory proteins (Fur
and IdeR). In M. tuberculosis, genes from the PPE family are
upregulated during iron limitation and are repressed by IdeR,
suggesting possible involvement of MAP3737 in iron metabolism
(Rodriguez et al,, 2002). Thus, we proposed (Figure 7) that,
during low-iron conditions, the iron sensor protein (MAP3737)
activates a hypothetical master regulator (MR). The activation
signal, which may or may not involve a phosphorylation cascade,
leads to the transcription of apo-Fur that subsequently activates
transcription of the iron uptake system. This leads to transport
of carboxymycobactin (cMyco) into MAP. The cMyco + Fe’™
complex possesses FAD-binding activity, allowing it to interact
with and activate the flavin iron reductase reducing Fe** to
Fe?*. This is followed by disassociation of iron from the
cMyco + Fe’T complex and subsequent binding of liberated
Fe?" by Fur and IdeR. Fur-Fe?" and Ide-Fe?* can exert positive
or negative regulation on the transcription of genes in their
corresponding regulons. Further analysis of the complete MAP
Fur regulon is underway; combining ChIP-seq data analysis from
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