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Understanding how the innate immune system keeps human cytomegalovirus (HCMV)
in check has recently become a critical issue in light of the global clinical burden of
HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes
the first line of host defense against HCMV as it involves a complex array of cooperating
effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells,
professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting
HCMV replication. These factors are known to trigger a highly efficient adaptive
immune response, where cellular restriction factors (RFs) play a major gatekeeping
role. Unlike other innate immunity components, RFs are constitutively expressed in
many cell types, ready to act before pathogen exposure. Nonetheless, the existence
of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an
intimate cooperation between intrinsic and innate immunity. In the course of virus-
host coevolution, HCMV has, however, learned how to manipulate the functions of
multiple cellular players of the host innate immune response to achieve latency and
persistence. Thus, HCMV acts like an orchestra conductor able to piece together
and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live
performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic
solutions able to prevent HCMV immune evasion in congenitally infected infants and
immunocompromised individuals are urgently needed. Here, we provide an up-to-date
review of the mechanisms regulating the interplay between HCMV and innate immunity,
focusing on the various strategies of immune escape evolved by this virus to gain a
fitness advantage.

Keywords: human cytomegalovirus, innate immunity, interferon system, apoptosis, restriction factors, NK cells,
antigen presenting cell (APC)

INTRODUCTION

The innate immune response is a fundamental defense mechanism, shielding the host from
constant attacks of invading pathogens of different origin, whether they are bacterial, fungal,
transposon or viral (Akira et al., 2006; Yan and Chen, 2012). Thus, for a virus, successful invasion
and efficient subversion of the host immediate immune response are critical steps to achieve
productive infection.
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Some viruses, such as herpesviruses, have succeeded in
establishing lifelong persistence in humans by evading immune
surveillance (Stempel et al., 2019). For example, human
cytomegalovirus (HCMV), a notorious opportunistic pantropic
betaherpesvirus with a worldwide seroprevalence of 50 to > 90%
in adults (Cannon et al., 2010), has the remarkable ability to
manipulate and evade immune detection, literally transforming
the host cellular environment into an ideal niche in which
to thrive (Griffiths et al., 2015). This is achieved through
sophisticated manipulations of cellular gene expression or elegant
evasion strategies evolved by the virus during its long lasting
co-evolution with the host (Wang et al., 2007; Loewendorf and
Benedict, 2010; Rossini et al., 2012).

Even though HCMV infection is asymptomatic in
immunocompetent individuals, it may lead to several life-
threatening conditions in immunosuppressed subjects,
such as organ and stem cell transplant recipients or AIDS
patients. Furthermore, it can cause severe morbidity in
congenitally infected children and elderly people (Cannon et al.,
2010; Manicklal et al., 2013; Tu and Rao, 2016; Britt, 2018).
Additionally, spontaneous reactivation of latent endogenous
virus and/or superinfection with multiple viral strains can
contribute to the overall burden and individual disease severity,
as neither a vaccine nor an effective cure is currently available
(Schleiss et al., 2017).

Although several viral polymerase inhibitors acting upon
lytic replication (e.g., ganciclovir, cidofovir, and foscarnet) are
widely used to treat HCMV infections, they are characterized
by high hematopoietic toxicity and poor bioavailability, which
prevents their use in pregnant women and congenitally infected
newborns (Britt and Prichard, 2018). In addition, targeting
latent HCMV remains an unsolved issue in patient clinical
management. To make matters worse, the number of drug-
resistant HCMV mutants has increased dramatically over the last
decade (Piret and Boivin, 2019).

The outcome and severity of HCMV infection depends
predominantly on initial virus-host interactions, occurring early
upon infection, when intrinsic innate immunity comes into play
to fight off the virus. As a frontline defense and earliest reaction
measure, innate immunity avail itself of a complex array of
effector cells and soluble factors, including pro-inflammatory
cytokines and type I interferon (IFN-I), natural killer (NK) cells,
professional antigen-presenting cells (APCs) and phagocytes, all
operating in a fine-tuned and balanced manner (Luecke and
Paludan, 2015; Patel et al., 2018).

Intrinsic cellular restriction factors (RFs) are constitutively
expressed and play physiological roles in uninfected cells by
cooperating with innate immune effectors, as some of them
appear to be IFN-inducible, thus contributing to early host
defense (Bieniasz, 2004; Duggal and Emerman, 2012).

Finally, triggered cell suicide processes (i.e., apoptosis and
pyroptosis), resulting in death and removal of HCMV-infected
cells, can also have a major impact on viral infection progression
(Brune and Andoniou, 2017).

Ultimately, the orchestra formed by these innate immune
components fine-tunes a highly efficient adaptive immune
response that keeps HCMV infection at bay. However, HCMV

often becomes the conductor of this orchestra, and as such it can
manipulate to its liking all the various components of the immune
response to make the cellular environment more permissible
to viral replication and survival, thereby achieving persistence,
latency and ultimately seroprevalence.

HCMV has an extremely large genome, and its enhanced
encoding capacity allows for generating multiple viral proteins,
involved in modulation and subversion of multiple signaling
pathways (Stern-Ginossar et al., 2012; Brune and Andoniou,
2017). The exact mechanisms of action and role of this
large number of viral proteins have not been yet completely
elucidated, although many of them are probably involved
in immune evasion.

In this regard, the fact that HCMV has developed a number
of ingenious strategies directed against NK cells and APCs
underscores the overall importance of these cells in innate
immunity. For example, NK cells can release cytotoxic granules
triggered by natural or antibody-dependent cytotoxicity (ADCC)
or produce cytokines upon engagement of activating and
inhibitory NK cell receptors. Even though NK cells are the
major cytotoxic arm of innate immunity, their contribution
in shaping T cell-mediated immune responses and generating
memory cells is now well established (Netea et al., 2016; Nikzad
et al., 2019). Since NK cells are efficient eliminators of HCMV-
infected cells, it is not surprising that HCMV has devised multiple
strategies to evade recognition by these cells (Babić et al., 2011;
Goodier et al., 2018; Zingoni et al., 2018). Likewise, APCs
from the myeloid and epithelial compartments [i.e., monocytes,
macrophages, and dendritic cells (DCs)], are well-known targets
of HCMV, serving as vehicles upon infection to facilitate viral
dissemination (Jackson and Sparer, 2018). In particular, HCMV
is able to interfere with MHC class I (MHC-I) and II (MHC-
II) antigen presentation, thereby subverting the immunological
functions of APCs.

This review provides an in-depth description of the complex
interplay between the host innate immune responses and HCMV,
highlighting multiple viral feedback mechanisms that modulate
and counteract the various arms of innate immunity.

THE IFN SYSTEM AND HCMV: A
STORMY RELATIONSHIP

Upon HCMV sensing, intracellular pattern recognition receptors
(PRRs) trigger downstream signaling events leading to the
production of type I IFN and release of inflammatory cytokines.
Type I IFNs (IFN-I) are a group of cytokines comprising
IFN-α, IFN-β, IFN-ε, IFN-κ, IFN-ω, IFN-δ, IFN-ζ, and IFN-τ
(Mesev et al., 2019).

IFN-I signaling pathways have long been considered key
limiting factors of HCMV infection and replication. Despite their
complexity, these defense mechanisms occur early after pathogen
entry into the host and, in most cases, they can eradicate the
pathogen before it can overwhelm the host immune defenses
(Goodwin et al., 2018).

Cellular sensors capable of detecting HCMV include toll-like
receptor 2 (TLR2) and CD14 receptors, both able to interact
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with HCMV envelope glycoproteins (Compton et al., 2003),
most of DNA sensors and the newly described group of PRRs,
able to stimulate transcription of IFN-I via the key adaptor
protein stimulator of interferon genes (STING). In particular, the
DNA sensor cyclic guanosine monophosphate (GMP)–adenosine
monophosphate (AMP) synthase (cGAS)/STING axis is crucial
for activating the IFN-I signaling (Diner et al., 2016; Paijo et al.,
2016; Jønsson et al., 2017; Biolatti et al., 2018b). On the other
hand, HCMV has evolved a wide range of proteins with which
to manipulate and counteract the host IFN response (Biolatti
et al., 2018c; Goodwin et al., 2018; Marques et al., 2018; Stempel
et al., 2019). This complex and intertwined relationship between
HCMV and IFN has been addressed by a number of studies
discussed below and schematically represented in Figure 1.

The HCMV tegument protein pp65 –also identified as
pUL83, encoded by UL83 – best exemplifies the multifaceted
interplay between viral and host proteins (Biolatti et al., 2018a).
Specifically, pp65 has been shown to modulate nuclear factor-
κB (NF-κB) and interferon regulatory factors 3 (IRF3) activities,
which cooperate to induce transcription of several cytokines
such as IFN-β, which then counteracts HCMV infection
(Iwanaszko and Kimmel, 2015).

The recent finding that IκB kinases, the main regulators of
NF-κB pathway, exerts antiviral activity (Goodwin and Munger,
2019) adds a level of complexity to this scenario. In this
regard, pp65 is able to inhibit NF-κB but not IRF3 nuclear
translocation (Browne and Shenk, 2003). This is in disagreement
with findings by Abate et al. (2004) showing that pp65 reduces
IRF3 phosphorylation preventing its nuclear translocation.

Recent results obtained by our group have demonstrated
that the pyrin association domain (PAD) of pp65 binds cGAS,
thereby inhibiting its enzymatic activity upon HCMV infection.
This phenomenon leads to impairment of the cGAS/STING axis
and downregulation of IFN-β production (Biolatti et al., 2018b).
In good agreement with these findings, the HCMV tegument
protein pUL31 (encoded by UL31), similar to pp65, can interact
with nuclear and cytoplasmic cGAS in HCMV-infected HFFs and
HEK293T cells. Results from Huang et al. (2018) have shown
how pUL31 can interact directly with cGAS in HEK293T cells,
which is followed by disassociation of DNA from cGAS leading to
decreased cGAMP production and consequent downregulation
of IFN-I gene expression.

The HCMV tegument protein pp71 (i.e., pUL82, encoded by
UL82) also contributes to evade the IFN response. According
to Fu et al. (2017), pp71 interacts with the inactive rhomboid
protein 2 (iRhom2) and STING to disrupt STING trafficking.
Particularly, pp71 prevents STING translocation from the ER
to the perinuclear microsomes, an essential step of STING-
mediated signaling.

The HCMV glycoprotein US9, encoded by US9, inhibits
IFN-I by targeting mitochondrial antiviral-signaling
protein (MAVS) and STING pathways (Choi et al., 2018).
In this regard, Choi et al. (2018) have proposed that
US9 inhibits IRF3 nuclear accumulation by preventing
STING dimerization. Moreover, the overexpression of
US9 disrupts the mitochondrial membrane integrity and its
membrane potential.

Moreover, the HCMV immediate early (IE) 86 kDa protein
(IE86), negatively affects IFN-β mRNA transcription by
preventing NF-κB binding to the IFN-β promoter (Taylor and
Bresnahan, 2006). Intriguingly, a recent study by Kim et al.
(2017) has shown that IE86 downregulates STING protein,
suggesting that IE86 may also target STING for proteasomal
degradation. Interestingly, STING levels were restored upon
treatment with the peptide aldehyde MG132, which prevents
the proteolytic activity of the proteasome complex. However, no
interaction between STING and IE86 during HCMV infection
could be detected.

Finally, HCMV tegument proteins have also been proposed
to affect the modulation of type II IFN (also known as IFN-γ)
signaling, which is an aspect not well studied. In this regard,
Feng et al. (2018) have reported that the human N-myc interactor
(Nmi) protein, which is important for the activation of IFN-
γ, specifically interacts with the viral tegument protein UL23,
encoded by UL23, leading to a decrease in IFN-γ expression, thus
facilitating viral immune evasion.

To summarize, HCMV has evolved sophisticated mechanisms
to modulate the host IFN response, especially that through IFN-
I. This new evidence contributes to our understanding of the
molecular mechanisms employed by HCMV to evade the innate
immune response (Table 1).

RESTRICTION FACTORS VS. HCMV: A
NEVER ENDING FIGHT

During the last few years, RFs have emerged as main players of
the host antiviral response against HCMV (Paludan et al., 2011).
RFs are intrinsic antiviral factors, which are sometimes regarded
as integral part of the innate immune response or some other
times an autonomous third branch of the immune system (Yan
and Chen, 2012). Unlike other classical components of innate
immunity, they are constitutively expressed within the host cells
and are generally IFN inducible, thus allowing an immediate
response against viral infection through specific targeting of
viral/cellular components (Bieniasz, 2003; Hotter and Kirchhoff,
2018). Interestingly, during HCMV infection a subset of classical
IFN-stimulated genes (ISGs) may be also induced or upregulated
independently of IFN (Ashley et al., 2019).

Similar to what observed for the IFN system, HCMV has
devised clever strategies to sidestep the antiviral activity of
RFs, among which IFN-γ-inducible protein 16 (IFI16), nuclear
domain 10 (ND10) and virus inhibitory protein ER-associated
IFN-inducible (viperin) are among the best characterized
(Biolatti et al., 2018c). This list has been in the last few years
expanded to include apolipoprotein B editing catalytic subunit-
like 3 (APOBEC3), survival time-associated PHD protein in
ovarian cancer 1 (SPOC1), Galectin-9 (Gal-9) and human
myxovirus resistance 2 (MX2) gene product MxB (Figure 2).

Unexpectedly, BST2/tetherin, considered to be the pioneer
among RFs due to its long established antiviral activity
against human immunodeficiency virus (HIV), does not display
restriction activity against HCMV, but it rather enhances the
susceptibility of hematopoietic cells to HCMV infection, thereby
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FIGURE 1 | Outline of the HCMV strategies to evade from the interferon (IFN)-associated antiviral activity.

TABLE 1 | Summary of studies describing HCMV evasion strategies from IFN antiviral activity.

Viral protein (viral gene) Host target Suggested mechanism Type of IFN References

pp65 (UL83) NF-κB Reduced nuclear relocalization IFN-β Browne and Shenk, 2003

IRF3 Reduced phosphorylation and relocalization IFN-β Abate et al., 2004

cGAS Reduced enzymatic activity IFN-β Biolatti et al., 2018a

pUL31 (UL31) cGAS Dissociation of cGAS from DNA IFN-β Huang et al., 2018

pp71 (UL82) iRhom Distruption of translocation complex IFN-β Fu et al., 2017

STING Distruption of translocation complex IFN-β

US9 (US9) MAVS Attenuation of MAVS signaling IFN-β Choi et al., 2018

STING/TBK1 Prevention of STING oligomerization IFN-β

IRF3 Dysfunctional nuclear relocalization IFN-β

IE86 (UL122) NF-κB Preventing interaction with IFN-β promoter IFN-β Kim et al., 2017

STING Proteasome degradation IFN-β Taylor and Bresnahan, 2006

UL23 (UL23) Nmi Disruption of Nmi/STAT1 interaction IFN-γ Feng et al., 2018

favoring viral hematogenous spread (Viswanathan et al., 2011).
Similarly, IFN-inducible transmembrane proteins (IFITMs) 1,
2, and 3, capable of blocking the entry of a broad variety of
RNA viruses, fail to inhibit the entry of DNA viruses, such
as HCMV, HPV16 and human adenovirus type 5, pointing to
an evolutionarily preserved mechanism shared by some DNA
viruses to circumvent the antiviral function of IFITMs (Warren
et al., 2014). This is however a controversial point, as a more
recent study has shown that HCMV, instead of taking part in the
entry process, exploits IFITMs at later time points of its viral cycle
to facilitate the formation of the virion assembly compartment
(vAC), which enhances virion assembly (Xie et al., 2015). Finally,
a very recent work elegantly described the ability of HCMV to
actively stimulate the cellular RNA-binding protein Roquin in

inhibiting the innate immune response through the suppression
of IRF1 antiviral activity (Song et al., 2019).

IFI16
In the past decade, our group and others have extensively
investigated the antiviral activity of IFI16 against HCMV. In
particular, we have shown that IFI16 inhibits HCMV replication
at early-late phases through blockade of Sp1 binding to the
HCMV DNA polymerase promoter (UL54) (Gariano et al., 2012).
At late stages of infection, we also found that HCMV is able
to promote IFI16 nuclear delocalization through UL97-mediated
IFI16 phosphorylation. Phospho-IFI16 is then redirected from
the nucleus to the vAC where it is incorporated into newly formed
viral particles (Dell’Oste et al., 2014).
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FIGURE 2 | Schematic representation of the restriction activities played by the major RFs to impair HCMV replication.

This unexpected behavior raised the important question of
why HCMV chooses to incorporate an RF (i.e., IFI16) into its
virions. A partial answer to this riddle came from experiments
on pp65 showing that at early stages of HCMV infection
this tegument protein can interact with IFI16 at the major
immediate-early promoter/enhancer (MIEP), promoting viral
gene transcription. Thus, entrapping cytoplasmic IFI16 into
virions might after all confer a fitness advantage to the virus
(Cristea et al., 2010). However, more recent findings have shown
that pp65 can also protect IFI16 from degradation, thereby
favoring the inhibitory effect of this latter on the promoter
region of UL54 (Biolatti et al., 2016). Interestingly, it has been
recently demonstrated that IFI16 is rapidly targeted during the
establishment of viral latency in a US28-dependent manner, but
only in undifferentiated myeloid cells, a natural site of latent
carriage (Elder et al., 2019). These authors have indeed proposed
that the consequent downregulation of IFI16 is beneficial to the
establishment of latency, since IFI16 overexpression drives MIEP
activity and IE gene expression via NF-κB.

In addition to its antiviral activity, IFI16 is also able to induce
IFN-β expression through cGAS interaction (Diner et al., 2016).
cGAS activity plays a major role in the STING/tank-binding
kinase (TBK-1)/IRF3 pathway, activated by herpes simplex virus
type 1 (HSV-1) and HCMV infection (Diner et al., 2016;

Biolatti et al., 2018c). Therefore, it does not come as a surprise
that also in this case HCMV has been able to develop a strategy to
counteract cGAS activity. Indeed, HCMV UL31 has been recently
identified as a cGAS inhibitor, acting through direct protein-
protein interaction followed by DNA dissociation from cGAS and
reduced cGAMP production (Huang et al., 2018).

ND10 Complex
One of the best characterized HCMV RFs is certainly the
ND10 complex, formed by the proteins PML, hDaxx, and
Sp100 (Zhang and van Drunen Littel-van den Hurk, 2017). In
addition to these components, other molecules, such as the
nuclear matrix protein microrchidia family CW-type zinc-finger
3 (MORC3/NXP-2), have been shown to associate with the
ND10 complex and exert antiviral activity through an unknown
mechanism (Sloan et al., 2016).

During HCMV infection, the viral genome is accumulated at
the periphery or within the central core of ND10 bodies, and all
the ND10 components are recruited at the site of viral replication
to exert their antiviral activity (Tavalai et al., 2008; Adler
et al., 2011; Cosme et al., 2011; Glass and Everett, 2013). This
is achieved by forming a transcriptionally inactive chromatin
complex binding the MIEP, which then silences IE gene
expression (Preston and Nicholl, 2006; Woodhall et al., 2006;
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Lukashchuk et al., 2008; Shin et al., 2012). Moreover, PML
is an E3 ligase mediating IE1 SUMOylation, thereby blocking
the antagonistic effect of IE1 on STAT-mediated IFN response
(Reuter et al., 2017).

Although PML, hDaxx, and Sp100 act as RFs during HCMV
lytic replication, they do not seem to affect HCMV latency,
as demonstrated by silencing experiments in non-differentiated
THP-1 monocytes (Wagenknecht et al., 2015). Meanwhile, other
have shown that hDaxx can act as an RF in several latency cellular
models, such as NT2 and THP-1 cells, myeloblastic cell lines and
primary human CD34+ cells (Saffert and Kalejta, 2006).

Also in this instance, HCMV has developed fine-tuned
strategies to subvert the gatekeeping functions of ND10. Perhaps
the most surprising solution adopted by HCMV relies on IE1,
probably because this viral protein is also the main target of the
ND10 complex. Specifically, IE1 can block ND10 SUMOylation
(Xu et al., 2001; Lee et al., 2004; Schilling et al., 2017), thereby
preventing ND10 oligomerization and activation (Korioth et al.,
1996; Ahn and Hayward, 1997; Wilkinson et al., 1998). Moreover,
the viral latency-associated gene product (LUNA), encoding a
deSUMOylase activity, promotes the disruption of cellular ND10
bodies during latency (Poole et al., 2018).

Other strings to the bow of HCMV are its tegument proteins.
Indeed, HCMV pp71 prevents hDaxx-mediated repression of
MIEP by binding this protein and stimulating its proteasome
degradation, leading to disruption of the ND10-MIEP complex
(Hofmann et al., 2002; Cantrell and Bresnahan, 2005). In
addition, two other tegument proteins, UL35 and UL35a, have
been found to cooperate in regulating pp71activity. In particular,
UL35 interacts with pp71, and this interaction has two different
effects: at early steps of viral replication, this complex activates
IE gene transcription (Schierling et al., 2004), whereas at later
stages UL35 independently remodels ND10 and co-localizes with
the remodeled structures, thus facilitating pp71-mediated hDaxx
disruption. Intriguingly, this activity appears to be negatively
regulated by UL35a, which prevents UL35 from shaping ND10
and delivers pp71 to the cytoplasm (Salsman et al., 2011).

Viperin
Another early identified HCMV RF is the IFN-inducible iron-
sulfur (4Fe-4S) cluster-binding protein viperin, whose main
antiviral activity is exerted during late phases of HCMV life cycle
(Chin and Cresswell, 2001). A curious aspect of this interplay
is that HCMV is not just able to inhibit viperin RF activity but
it has learned how to take advantage of it in different ways.
Firstly, HCMV promotes viperin translocation from the ER to
the mitochondria by encoding the viral mitochondria-localized
inhibitor of apoptosis (vMIA) protein. Once in the mitochondria,
viperin can inhibit viral replication by modulating the host
metabolism through three distinct mechanisms: (1) inhibition of
fatty acid β-oxidation; (2) downregulation of ATP levels; and (3)
rearrangement of the actin cytoskeleton (Seo et al., 2011). To this
end, viperin transcriptionally activates several mediators of fatty
acid metabolism, such as AMP-activated protein kinase (AMPK)
and GLUT4 (Seo and Cresswell, 2013). This processes leads to
enhanced lipid production in HCMV-infected cells, which in turn
favors viral envelope formation and virion release.

APOBEC3
Together with tetherin, cytidine deaminases belonging to the
APOBEC3 family are considered fundamental antiviral proteins,
known for their antiviral activity against HIV-1 (Blanco-Melo
et al., 2012). Over the years, their antiviral activity has also
been shown to affect DNA viruses, including HCMV (Harris
and Dudley, 2015). Specifically, the APOBEC3 family member
APOBEC3A (A3A) is upregulated in the maternal decidua
upon HCMV infection or IFN-β administration and displays a
strong inhibitory effect against HCMV replication (Weisblum
et al., 2017). Furthermore, A3A cytidine deamination activity is
responsible for hypermutations in the viral genome of HCMV-
infected epithelial cells, thereby impairing HCMV replication
through a poorly defined mechanism, presumably involving IFN-
β (Weisblum et al., 2017).

The observation that A3A is not the only APOBEC3 isoform
induced by HCMV comes from one of our recent studies showing
that A3G is also strongly upregulated in HCMV-infected HFFs,
an induction apparently mediated by IFN-β (Pautasso et al.,
2018). However, the fact that the HCMV genome almost totally
lacks A3G motifs (i.e., CCC) rules out the possibility that this
protein is a bona fide HCMV RF, raising the hypothesis that host-
virus coevolution might have shaped the nucleotide composition
of HCMV DNA to generate viruses able to dodge A3G-mediated
immune surveillance.

SPOC1
SPOC1, also known as PHF13 (PHD finger 13), was characterized
for the first time in patients with epithelial ovarian cancer
(Mohrmann et al., 2005). Many cellular functions of this
protein can be attributed to its ability to bind and modulate
chromatin by cooperating with several heterochromatin proteins.
By doing so, SPOC1 differentially regulates subsets of genes
mainly involved in DNA binding and chromatin organization,
cell cycle and differentiation (Kinkley et al., 2009; Bördlein et al.,
2011; Chung et al., 2016). SPOC1 is also a DNA repair factor
as it accumulates at DNA double-strand breaks and regulates
the DNA damage response (Mund et al., 2012). A restriction
activity of SPOC1 has been observed against human adenovirus
type 5 (HAdV5) (Schreiner et al., 2013) and HIV-1 (Hofmann
et al., 2017). In these specific contexts, SPOC1 inhibits viral
replication, but it is also degraded by viral proteins as a negative
feedback mechanism. Furthermore, SPOC1 inhibits early steps
of HCMV replication by specifically binding MIEP and driving
the recruitment of heterochromatin-building factors, in line
with its chromatin remodeling activity. Intriguingly, HCMV but
not HIV-1 and AdV5 infection promotes and early transient
upregulation of SPOC1 through an IE1-mediated mechanisms
independent of protein stabilization. At later steps of infection,
SPOC1 levels start to decline upon phosphorylation by the
serine-threonine kinase glycogen synthase kinase 3β (GSK-3β)
(Hofmann et al., 2017). However, contrary to HIV-1 infection,
where Vpr has already been identified as the viral protein
involved in SPOC1 degradation (Reichel et al., 2018), the
mechanism of HCMV-mediated downregulation of SPOC1 still
remains obscure.
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Gal-9
Among the most recently identified HCMV-RFs, Gal-9 is of
particular interest. It belongs to the widely expressed protein
family of galectins, playing an important role in both innate
and adaptive immunity (Rabinovich et al., 2007; Rabinovich and
Toscano, 2009). The immunomodulatory role of Gal-9 is due
to the presence of glycan structures on the surface of both host
cells and microorganisms, thus enabling galectins to orchestrate
antiviral immunity as well as host-virus interactions. For
example, Gal-1 and Gal-9 have shown antiviral activity against
Epstein-Barr virus (EBV), murine CMV infection (MCMV),
Nipah virus (NIV), enterovirus, HIV-1, influenza virus, and
dengue virus in a number of in vivo and in vitro models of
infection (reviewed in Merani et al., 2015).

Even though galectins can either enhance or inhibit viral
infection, a restriction activity of Gal-9 during HCMV infection
has been recently observed (Machala et al., 2019). In experiments
where Gal-9 was added at different time points after HCMV
infection it functioned as an antiviral lectin binding the virions
and blocking entry of HCMV into the host cell without
influencing post-entry events (Machala et al., 2019). On the
other hand, the same authors observed increased concentrations
of soluble Gal-9 in the plasma of hematopoietic stem cell
transplantation (HSCT) recipients during HCMV reactivation,
raising the possibility that Gal-9 may also exert a restriction
activity in vivo (Machala et al., 2019).

MxB
The Mx GTPases MxA and MxB are best known as RFs of
several RNA viruses, including influenza A virus, vesicular
stomatitis virus (VSV), measles virus (MeV) (Haller and Kochs,
2011), and HIV-1 (reviewed in Staeheli and Haller, 2018). The
antiviral activity of Mx against herpesviruses is somewhat more
controversial. Indeed, while it has recently been demonstrated
a pan-herpesvirus restriction activity for MxB against IE viral
gene expression, the precise mechanisms it relies on has not yet
been fully clarified (Schilling et al., 2018). The most consistent
hypothesis is that of a direct action of MxB during the uncoating
process aimed at targeting viral capsids or components of the
nuclear pore complexes, similarly to what happens during HSV-1
infection (Crameri et al., 2018).

ANTIGEN PRESENTING CELLS: A
TWO-EDGED SWORD

APCs are often defined as sentinels of the body, essential
for initiating the immune response against pathogens. They,
however, play an enigmatic role during HCMV infection. On
the one hand, many APCs, including monocytes, macrophages
and DCs, are critical to trigger specific T-cell responses. On the
other hand, they are permissive to HCMV infection, serving as
vehicles for viral spread during the first steps of infection, and
then becoming cozy and protective niches for virus replication
and persistence at later stages. Conversely, components of the
lymphoid lineage, such as NK cells and plasmacytoid DCs (pDCs)
are not just resistant to HCMV infection but they are also

activated early upon infection by viral components, triggering
an antiviral response. Despite the presence of these defense
mechanisms, HCMV has put in place multiple strategies to evade
APC-mediated immune control so as to establish latency and
persistence within the host (Sinclair and Reeves, 2014).

Dendritic Cells (DCs)
DCs are specialized APCs mediating immune response induction
and maintenance. The major subsets in humans include classical
DCs (cDCs), which comprise Langerhans cells (LCs) and pDCs,
the main producers of IFN-I, and monocyte-related DCs (mDCs)
(Collin et al., 2013). The role of DCs during HCMV infection
remains somewhat controversial because, despite being critical
components for the establishment of an antiviral NK and T-cell
response, they are also targeted by HCMV for immune escape.

HCMV interacts with DCs in a pleiotropic manner. It is
in fact well established that HCMV strains with an intact
UL128-131A locus can infect DCs in vitro (Jahn et al., 1999;
Riegler et al., 2000). In addition, circulating mDCs isolated from
healthy seropositive donors can also support HCMV infection
(Reeves and Sinclair, 2013), a process probably favored by
the expression of the viral chemokine receptor-like protein
US28, which drives DC recirculation (Farrell et al., 2018). In
contrast, by using co-culture approaches, it has been shown that
mDCs or monocyte-derived macrophages can restrict HCMV
with interferon-unrelated mechanisms (Kasmapour et al., 2017;
Becker et al., 2018).

For pDCs, the scenario is even more complex. Different
subpopulations of pDCs obtained either from tonsils (tpDCs)
or blood (bpDCs) react to HCMV-infection in opposite
ways (Schneider et al., 2008). For instance, tpDCs are fully
permissive for HCMV replication despite the fact that their
IFN-α production and expression of costimulatory and adhesion
molecules are ultimately affected by HCMV. In contrast, bpDCs
appear to be resistant to HCMV infection (Schneider et al., 2008).

HCMV can latently infect DC precursors and then undergo
reactivation by taking advantage of chromatin remodeling
during differentiation of DC progenitors into mature DCs
(Reeves et al., 2005). Conversely, in undifferentiated myeloid
precursors, viral lytic genes are inhibited as a consequence
of histone modifications of the MIEP, leading to a repressive
chromatin structure eventually preventing IE transcriptional
activity (Sinclair, 2010). Furthermore, proinflammatory factors,
such as IL-6 and the ERK/MAPK pathway have been linked to the
reactivation of latent HCMV in DCs and other permissive cells
(Reeves and Compton, 2011).

The interplay between HCMV and DCs interaction can have
different outcomes in terms of immune response. For instance,
HCMV infection of mDCs in vitro triggers IFN and IL-12
release in a cGAS-dependent manner (Renneson et al., 2009;
Paijo et al., 2016). Subsequently, other immune mediators are
recruited to the infection site to amplify the immune reaction.
HCMV infection in mDCs can also modulate TLR3 signaling,
but this effect is more evident at later times post-infection
(Mezger et al., 2009).

Given the central role of DCs in virus clearance, it is not
surprising that HCMV has put in place multiple strategies
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to inhibit such process. For instance, HCMV can interfere
with MHC-I and -II antigen processing and presentation to
avoid detection by CD8+ and CD4+ T cells. This process
appears to be mediated by the HCMV-encoded protein US2,
capable of degrading both MHC-I and MHC-II proteins through
the proteasome (Loureiro and Ploegh, 2006). Likewise, other
HCMV proteins such as pp65, pp71, and US2-11 have been
implicated in HCMV evasion from T-cell recognition by
triggering accumulation and degradation of HLA-DR α-chain in
perinuclear vacuoles (Odeberg et al., 2003).

Among HCMV genes hindering APC function, a crucial role is
played by the viral interleukin-10 homolog (cmvIL-10), expressed
during lytic infection and capable of binding the IL-10 receptor of
host cells. Specifically, cmvIL-10 upregulates the HCMV putative
receptor DC-SIGN, thus enhancing viral infectivity (Raftery et al.,
2004), as well as the expression of hIL-10 by primary blood-
derived monocytes, thus modulating existing cellular pathways
and the viral immunomodulatory impact during infection (Avdic
et al., 2016). In addition, it inhibits a number of DCs functions,
including TLR-induced IFN-α/β production in nearby pDCs and
CD1-mediated antigen presentation (Raftery et al., 2008; Avdic
et al., 2014). This effect is also shared by other viruses, which
either upregulate hIL-10 (e.g., HIV and hepatitis C virus) (Reiser
et al., 1997; Brockman et al., 2009) or express homologs of this
cytokine (e.g., EBV and some cytomegaloviruses) (Slobedman
et al., 2009), highlighting the importance of IL-10 signaling in
viral escape mechanisms.

An important step of the immune response is the ability
of DCs to drift from the infection site to the lymph nodes,
a process driven by the chemokines CCL19 and CCL21.
Consequently, HCMV has developed strategies to impede DC
trafficking in response to lymphoid stimuli and induction of
T-cell proliferation (Beck et al., 2003; Moutaftsi et al., 2004).
For example, it can prevent CCR5 chemokine receptor from
switching to CCR7 in infected mDCs, thus inhibiting CCL19-
and CCL21-induced migration of mature mDCs (Moutaftsi
et al., 2004). Conversely, in immature mDCs, HCMV does not
modulate CCR7, but it affects chemotaxis by internalizing CCR1
and CCR5 (Varani et al., 2005). In this context, UL18, the
viral homolog of MHC-I, appears to play a controversial role.
Indeed, UL18 has been reported to inhibit CD40L-mediated
T-cell proliferation through DC maturation impairment (Wagner
et al., 2008), meanwhile stimulating the expression of CD83 on
mature mDCs. Moreover, at later times, HCMV downregulates
surface but not intracellular CD83 (Wagner et al., 2008).
Others have reported that soluble CD83, in turn, inhibits
T-cell proliferation (Sénéchal et al., 2004), and that UL18
is also able to reduce RANTES-driven chemotaxis of mDCs
(Wagner et al., 2008; Figure 3).

Depending on their stage of maturation, CD34+ progenitor
cell-derived LCs can be susceptible to HCMV infection. Indeed,
immature LCs are poorly supportive of viral replication, whereas
LC-derived mature DCs are highly responsive to infection due
to HCMV-mediated subversion of the T-cell response through
downregulation of several activation markers, such as MHC-I
and -II, CD1a, CD80, CD83, CD86, and CD54 (Hertel et al.,
2003). This also leads to a substantial loss of dendrites and

to impaired dendritic cell migration in response to lymphoid
chemokines (Lee et al., 2004; Figure 3).

Monocytes and Macrophages
Additional reservoirs for HCMV are represented by monocytes
and macrophages. In particular, monocytes have been long
involved in HCMV dissemination across the human body and
are generally regarded as the main source of latent HCMV in
the peripheral blood of seropositive people (Smith et al., 2004).
Even though they do not support productive HCMV replication
(Sinzger et al., 2008), once fully differentiated into macrophages,
they become permissive for viral replication. During this process,
a major role for virus reactivation and growth seems to be
played by IFN-γ and tumor necrosis factor (TNF)-α, produced by
allostimulated T cells (Söderberg-Nauclér et al., 1997). Moreover,
monocytes are known to release infectious HCMV directed
toward uninfected cells in vitro through a not fully defined
mechanism (Waldman et al., 1995).

Like DCs, monocyte-derived macrophages play a crucial role
in counteracting HCMV spread in vitro. In this context, the role
of IFN is controversial. Indeed, IFN-I plays an inhibitory role
on HCMV replication when macrophages are stimulated by cell-
free HCMV. In contrast, upon co-culture of infected cells and
macrophages, the antiviral effect appeared to be independent of
IFN-γ, TNF-α, and IFN-I (Becker et al., 2018).

Overall, it seems that HCMV has learned how to escape
from monocyte antiviral activity and use these cells as “Trojan
horses” to achieve viral spread. For instance, infected monocytes
display impaired migration and reduced ability to recruit
leukocytes and inflammatory mediators, allowing additional
“contact time” to transfer HCMV from infected monocytes
to uninfected cells (Frascaroli et al., 2006). Furthermore, the
observation that purified pUL128 – i.e., a CC chemokine
homolog, part of the HCMV pentamer complex (PC) – triggers
monocyte migration in vitro through a poorly characterized
mechanism suggests that HCMV might be able to attract
monocytes to the infection site and favor viral dissemination by
secreting specific chemokines (Zheng et al., 2012). In addition,
pUS2-US11-mediated MHC downregulation in DCs is only
partially functional in macrophages, which therefore retain
their ability to activate CD4+ and CD8+ T cells (Frascaroli
et al., 2018). Lastly, HCMV inhibits the differentiation of
both macrophages and DCs from monocytic precursors after
stimulation with IL-4 and GM-CSF, impairing immunological
functions (Gredmark and Söderberg-Nauclér, 2003). In this
context, the main inhibitors of macrophage differentiation are the
cell-surface aminopeptidase N/CD13 and HCMV glycoprotein B
(gB) (Gredmark et al., 2004; Figure 3).

As for DCs, cmvIL-10 can also impair cytokine production
of these cells through inhibition of phosphatidylinositol
3-kinase/Akt signaling (Spencer, 2007), with concurrent
downmodulation of integrin-like receptor surface expression
[i.e., CD11b/CD18 (CR3) and CD11c/CD18 (CR4)], a process
that strongly impairs DC phagocytic activity (Gafa et al., 2005).
Finally, downregulation of CCR1 and CCR5 is associated with
slower cell migration, reorganization of the cytoskeleton and
secretion of soluble inhibitors (Frascaroli et al., 2009; Figure 3).
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FIGURE 3 | Simplified model depicting the interplay among APCs during HCMV infection.

NK CELLS AND HCMV: A BALANCE OF
OPPOSING FORCES

NK cells play crucial role in eliminating HCMV-infected cells
through cytotoxicity and secretion of several cytokines and
chemokines able to directly impair viral replication (e.g., IFN-
g and TNF-a) or to recruit and/or activate other cells of the
immune system. However, if on one side there are examples
demonstrating the importance of NK cells in controlling HCMV
infection, on the other side there is a long list of viral proteins
capable of protecting HCMV from NK cell recognition and
killing (Brown and Scalzo, 2008; Schmiedel and Mandelboim,
2017; Patel et al., 2018).

The former case is best exemplified by human NK cell primary
immunodeficiencies (NKD), which inevitably results in high
susceptibility to herpesvirus infections [i.e., HCMV, HSV, EBV,
and varicella zoster virus (VZV)] (Biron et al., 1989). In this
regard, more than 60% of NKD patients are infected by one of
these viruses (Orange, 2013), also in the context of intact CTL
functions (Quinnan et al., 1982). The severity of this condition is
demonstrated by the fact that nearly half of patients with NKD
tend to die prematurely (Orange, 2013; Mace and Orange, 2019).

The antiviral activity of NK cells against HCMV also appears
to be mediated by NK cell receptors, whose expression can be to

some extent modulated upon viral entry. In particular, HCMV
infection can induce the selective expansion of a population of
NK cells expressing the activating receptor CD94/NKG2C, giving
rise to the so-called “adaptive-like” or “memory-like” NK cells
(Gumá et al., 2004). This aspect of NK and HCMV biology is
beyond the scope of this review and has already been extensively
described in recent reviews (López-Botet et al., 2014, p. 94;
O’Sullivan et al., 2015; Rölle and Brodin, 2016).

What is important to point out in this context is that NKG2C
receptor skewing is accompanied by other phenotypic, functional
and epigenetic modifications, which lead to the generation of a
pool of long-living NK cells with increased effector responses
upon restimulation. Importantly, Hammer et al. (2018) have
recently shown that the triggering event driving NKG2C+ NK
cell expansion is mediated by an HCMV-encoded peptide derived
from the viral protein UL40 and by the NKG2C ligand HLA-
E. However, it is worth pointing out that the emergence of
NK cell memory in response to HCMV can also occur in
individuals lacking expression of NKG2C – i.e., carrying the
null allele KLRC2 encoding for NKG2C – (Noyola et al., 2012),
suggesting that alternative or compensatory mechanisms may
be in place. This mode of activation is nonetheless complex,
as HLA-E is also recognized by CD94/NKG2A, the inhibitory
counterpart of CD94/NKG2C, with identical peptide specificity
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(Braud et al., 1998; Lee et al., 1998; Brooks et al., 1999; Cerboni
et al., 2000; Ulbrecht et al., 2000; Tomasec et al., 2005).
Stabilization of HLA-E by the UL40-derived peptide can thus
have opposite effects on NK cells, depending on which receptor
is involved. However, it seems that the NKG2C+ NK cell
population expanding in HCMV seropositive individuals lacks
the inhibitory NKG2A heterodimer (Hammer et al., 2018). In
addition, the peptide repertoire encoded by different HCMV
UL40 variants may result in an intermediate state, where peptides
able to efficiently inhibit NKG2A and simultaneously trigger
suboptimal activation of NKG2C+ NK cells are more prevalent
(Hammer et al., 2018).

The important role of NK cells in CMV infection comes
also from a plethora of studies conducted in mice. In
general, the absence of NK cells – due to genetic or
neutralizing/depleting antibody manipulations – results in a
significantly diminished, and sometimes lethal, control of
MCMV (Bukowski et al., 1984; Brown and Scalzo, 2008).
Similarly to HCMV, it has been reported a pathogen-specific
recognition mechanism for protection, involving the NK cell-
activating Ly49H receptor, which specifically recognizes the
MCMV protein m157 (Arase et al., 2002).

Another important strategy for immune escape is the ability
of HCMV to manipulate the expression of several ligands of the
NKG2D receptor, expressed on all NK cells, CD8+ T cells and
other T-lymphocyte subsets (e.g., CD4 + T cells, gd, and NKT
cells) (Lanier, 2015; Zingoni et al., 2018). There are eight different
NKG2D ligands (i.e., MICA, MICB, and ULBP1-6), all belonging
to the MHC class I-like family and possessing two or three
αdomains, but not able to bind peptides or β2-microglobulin.
These molecules are also known as “stress-induced ligands”
or “induced self ” as they are rarely expressed on the plasma
membrane of healthy cells but can be rapidly up-regulated
upon different types of stress, including those triggered by viral
infection (Cerboni et al., 2014; Lanier, 2015). In the absence of a
specific viral countermeasure, up-regulation of NKG2D ligands
(NKG2DLs) would likely result in the killing of infected cells, as
it has been observed in some experimental conditions (Cerboni
et al., 2000; Wang et al., 2002; Pignoloni et al., 2016). However,
in vitro studies have shown that this is not always the case
since HCMV encodes at least seven different molecules – among
which a few identified very recently – able to inhibit NKG2DL
expression, thus conferring protection to the infected cells. In
particular, MICA seems to be the most frequently targeted
ligand, with UL142, UL148a, US9, US18, and US20 viral proteins
dedicated to block its expression at different levels, sometimes
in an allelic-specific manner (Schmiedel and Mandelboim, 2017;
Patel et al., 2018; Figure 4). Although the reason for such a high
number of HCMV proteins targeting just one ligand is currently
unknown, their existence may be ascribed to the fact that, among
NKG2D ligands, MICA has the highest affinity for its receptor
(Steinle et al., 2001) as well as the largest number of variant alleles,
with more than 100 identified thus far1. Based on these findings,
it is tempting to speculate that the antiviral activity of MICA
may have selected viruses able to block MICA expression and

1http://www.ebi.ac.uk/imgt/hla/html

the ensuing NKG2D-mediated killing, and that this in turn might
have promoted MICA polymorphism.

Among NKG2D ligands, we find MICB, a polymorphic gene
with more than 40 allelic variants, and 6 ULBP genes boasting
a total of 16 allelic variants2 (Radosavljevic et al., 2002). MICB
expression is inhibited by miR-UL112, the only HCMV-encoded
miRNA described to date targeting this ligand (Stern-Ginossar
et al., 2012), and by the viral protein UL16, which is a sort
of promiscuous immunoevasin since it can also inhibit the
expression of ULBP1, ULBP2, and ULBP6 (Cosman et al., 2001;
Kubin et al., 2001; Dunn et al., 2003; Rölle et al., 2003; Wu
et al., 2003; Eagle et al., 2009). ULBP3 is instead targeted by
UL142, also blocking MICA expression (Ashiru et al., 2009;
Bennett et al., 2010). The ability to simultaneously evade multiple
cellular pathways has also been reported for US18 and US20,
capable of inhibiting both MICA and the NKp30 ligand B7-H6
(Charpak-Amikam et al., 2017; Fielding et al., 2017).

Other targets of HCMV include CD155/PVR and
CD112/Nectin-2, two adhesion molecules belonging to
the Ig-like superfamily able to bind the activating receptor
CD226/DNAM-1 expressed on cytotoxic lymphocytes (Figure 4;
Shibuya et al., 1996; Bottino et al., 2003; Tahara-Hanaoka et al.,
2004). Similar to NKG2DLs, DNAM-1 ligands (DNAM-1Ls) are
often induced by cellular stresses and can trigger cytotoxicity
and cytokine release (Shibuya et al., 1996; Bottino et al., 2003;
Iguchi-Manaka et al., 2008). For this reason, DNAM-1Ls are also
targeted by HCMV, with UL141 downregulating both of them,
alone or in combination with US2 through different mechanisms
(Tomasec et al., 2005; Prod’homme et al., 2007; Hsu et al., 2015).
Of note, UL141 is also able to downregulate the TRAIL receptors
R1 and R2, thus preventing TRAIL-dependent NK-cell killing
(Nemčovičová et al., 2013; Smith et al., 2013). UL141 is thus a
remarkable immunoevasion protein as it targets at least four
different molecules regulating NK cell-mediated cytotoxicity.

Adhesion molecules involved in the formation of NK-target
cell conjugates are also affected by HCMV. In particular, UL148
down-regulates CD58/LFA-3, the ligand of the CD2 receptor
expressed by different leukocyte populations, including NK and
CD8+ T cells. The CD2/CD58 axis promotes cell-to-cell adhesion
and immunological synapse formation, providing an important
co-stimulatory signal on effectors (Siliciano et al., 1985; Selvaraj
et al., 1987; Browne et al., 1990) (Leitner et al., 2015). More
recently, CD2 has been shown to play a role in costimulation
of adaptive NK cells (Rölle et al., 2003; Liu et al., 2016).
Furthermore, inhibition of CD58/LFA-3 expression by the viral
protein UL148 has revealed that the CD2/CD58 axis is also
needed for the recognition of HCMV-infected cells by NK cells
and HCMV-specific CTLs (Wang et al., 2018).

In summary, it appears that there is a steadily increasing
number of HCMV-encoded proteins evading NK cell recognition
and killing. However, to date there is no single viral protein
or RNA able to interfere with all the molecules involved in the
anti-viral NK cell response.

It is also important to point out that development,
proliferation and effector functions of NK cells are tightly

2https://www.ebi.ac.uk/ipd/imgt/hla/
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FIGURE 4 | Schematic illustration of the strategies used by HCMV to modulate NK cell receptor ligands. The viral proteins mainly involved are depicted in a
representative infected cell (right, color outlines), and activating (green) or inhibitory (red) signals relative to specific receptors on a NK cell (left) are shown.

regulated by both activating and inhibitory receptors, with an
outcome that strongly depends on the balance between opposing
signals. Inhibition is delivered via MHC-I molecules expressed
on the surface of target cells. However, HCMV, like many
other viruses, negatively affects MHC-I expression in infected
cells, as this is a crucial step to avoid cell-mediated killing by
viral-specific cytotoxic T cells. In theory, this would render
infected cells more susceptible to NK cell recognition due to
the absence of inhibitory signals. However, the observation
that HCMV-infected cells are resistant to NK lysis in vitro
seems to suggest otherwise (Cerboni et al., 2000; Wang et al.,
2002). What we have in fact described in this section is
a plethora of viral molecules evolved by HCMV to escape
from NK cell activation, which otherwise would be detrimental
for viral fitness.

To complete this picture, HCMV can fully accomplish
immunoevasion from NK cells thanks to its own MHC-I
surrogate, called UL18. This protein is markedly similar to
cellular MHC-I molecules (Beck and Barrell, 1988; Browne et al.,
1990) and acts as a viral homolog by binding with high affinity the
MHC-I NK cell inhibitory receptor CD85j/LIR1/ILT2, thereby
suppressing NK cell functions (Chapman et al., 1999; Cosman
et al., 2001; Cerboni et al., 2006; Prod’homme et al., 2007).

In conclusion, HCMV is a driving force in shaping the NK cell
receptor repertoire and modes of recognition of infected cells.
The virus is not only capable of “hitting the brakes” of NK cells
through its own MHC-I surrogate (UL18) or by engaging the
CD94/NKG2A inhibitory receptor with UL40, but it can also
“block the gas pedal” by inhibiting the expression of several
ligands of NK cell activating receptors. The outcome is a million-
year-long host-pathogen equilibrium, where neither the host nor
the pathogen is at risk of extinction.

HCMV AND APOPTOSIS: “NOT TODAY!”

Apoptosis, or programmed cell death (PCD), is essential for
the maintenance of homeostasis and survival of most multi-
cellular organisms. Apoptosis occurs predominantly through
the following three pathways: (1) extracellular ligand-mediated
extrinsic pathway; (2) mitochondria-mediated intrinsic pathway;
and (3) ER-mediated pathway. The extrinsic pathway is initiated
upon binding of extracellular ligands to death receptors (DRs),
leading to the formation of the death-inducing signaling
complex (DISC), required for the activation of initiator
caspases (i.e., cysteine proteases), caspase-8 and caspase-10. The
intrinsic pathway is regulated by B-cell lymphoma 2 (Bcl-2)
proteins and is characterized by mitochondrial outer membrane
permeabilization (MOMP) (Elmore, 2007). The ER-mediated
pathway is instead induced by stress signals, such as excessive
unfolded proteins in the ER and triggers the activation of
caspases-7, -9, and -12 (Bhat et al., 2017). All these pathways
lead to the activation of the executioner caspases-3 and -7 that
contribute to the majority of events taking place during apoptosis
(Elmore, 2007).

Apoptosis is also one of the main steps of the innate
response against viral infections, including HCMV. Also in this
case, HCMV has evolved several strategies to subvert host cell
apoptotic defenses by targeting key effector molecules in the
apoptotic cascade. Upon infection, the slowly replicating HCMV
modulates cellular apoptosis pathways in various cell types, such
as endothelial cells, fibroblasts and macrophages by encoding
numerous death inhibitors to block premature death of host cells,
thus favoring its replication (Brune and Andoniou, 2017; Collins-
McMillen et al., 2018; Figure 5). The following paragraphs will
contain a comprehensive review and discussion of some of the
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FIGURE 5 | Overview of the main apoptotic pathways and evasion strategies employed by HCMV.

main mechanisms used by HCMV to modulate or prevent the
apoptotic pathways of infected host cells.

Inhibition of Extrinsic Apoptosis
Caspase-8 is required for initiation of apoptosis in response
to death factors such as Fas-L or TNF-a. Within the Fas-
FADD-Caspase-8 complex, also known as DISC, caspase-8
undergoes self-cleavage to convert to the active form. Fully-
cleaved caspase-8 is released from DISC to the cytosol to trigger
the apoptotic signal to downstream caspase effectors or to cleave
the Bcl-2-interacting protein (Bid), which leads to the release
of cytochrome c from mitochondria, inducing activation of
caspase-9 in a complex with dATP and Apaf-1 (Kruidering
and Evan, 2000). To counteract DR- mediated apoptosis and
gain a survival advantage, HCMV encodes the viral inhibitor
of caspase-8-induced apoptosis vICA/pUL36, which binds the
prodomain of procaspase-8, impedes the recruitment of FADD,
and prevents the formation of a functional DISC. The fact
that homologs of HCMV vICA have been identified in the
vast majority of mammalian betaherpesviruses implies that the
function of vICA is important and conserved. This is exemplified
by M36, the vICA counterpart of MCMV, which also displays

an anti-apoptotic activity by interacting with procaspase-8, and
that has been shown to be rescued by vICA in order to allow
viral replication, confirming the reliability of the murine model
(Chaudhry et al., 2017).

Moreover, the replication of UL36-deficient virus can
be restored by treatment with the pan-caspase inhibitor
z-VAD(OMe)-fluoromethyl ketone (fmk) only in immature but
not mature macrophages, suggesting that apoptosis impairs the
replication of UL36-deficient virus in defined cell types. However,
according to McCormick et al. (2010), it seems that cell death
pathways activated by HCMV infection are altered as monocytes
differentiate to macrophages. Indeed, early during differentiation,
UL36-deficient virus-induced apoptosis is dependent on caspases
and can be blocked by z-VAD-fmk, while at later stages of
differentiation it appears to be caspase-independent.

Inhibition of Intrinsic Apoptosis
Mitochondria play a pivotal role in the intrinsic apoptosis
pathway. Initiation and execution of this pathway is regulated
by the Bcl-2 effector proteins Bax (Bcl-2-associated X protein)
and Bcl-2 antagonist or killer (Bak) that control MOMP. MOMP
prompts the release of proapoptotic intermembrane space (IMS)
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proteins that promote the formation of the apoptosome –
composed by cytochrome c and Apaf-1 – and activation of
caspase-9. Once active, caspase-9 can directly cleave the effector
caspases 3 and 7 (Estaquier et al., 2012). HCMV prevents
MOMP by encoding the viral mitochondria-localized inhibitor
of apoptosis (pUL37x1/vMIA). UL37x1, highly conserved among
HCMV strains, is located in a complex transcription unit
encoding several transcription variants expressed during the
IE phase. Two functionally longer splice variants (i.e., gpUL37
and gp37M) share with pUL37x1 an NH2-terminal 162 aa
sequence responsible for inhibiting apoptosis, localize partially
to mitochondria and have similar, albeit weaker, anti-apoptotic
activities (Goldmacher et al., 1999; Colberg-Poley et al., 2000;
Reboredo et al., 2004; Kaarbø et al., 2011). pUL37x1 blocks
mitochondria-mediated apoptosis by interacting at the level
of the mitochondrial outer membrane (MOM) with Bax, thus
preventing cytochrome-c release. It still remains to be clarified
whether vMIA can inhibit Bak during infection (Sharon-Friling
et al., 2006; Sharon-Friling and Shenk, 2014).

Moreover, by using U251 glioma cells a mechanisms of
viral apoptosis inhibition and enhancement of cell proliferation
has been shown, relying on the activity of the immediate-
early protein IE86 on heterogeneous ribonucleoprotein A2/B1
(hnRNP A2/B1) and consequent alternative splicing of Bcl-x
(Zhao et al., 2019).

In addition to the aforementioned strategies, HCMV is also
involved in preserving the mitochondrial membrane potential
and metabolism to prevent cell death. This is achieved thanks to
the production of the long non-coding RNA-lncRNA Beta2.7 that
enhances cell survival through interaction with gene associated
with retinoid/interferon-induced mortality 19 (GRIM19). This
interaction causes the stabilization of mitochondrial membrane
functions, thereby preserving ATP production and conserving
metabolic activity during stress conditions (Poole et al., 2016).

Inhibition of Necroptosis
Necroptosis is an alternative form of programmed cells death
that, despite mimicking features of apoptosis, cannot be
prevented by caspase inhibitors. Necroptosis can be triggered
following activation of DRs as well as after stimulation with
LPS, poly(I:C) or CpG DNA, which are ligands of the
pattern recognition receptors (PRRs) TLR3, TLR4, and TLR9,
respectively. Many downstream signaling pathways cooperate
with a complex formed by the receptor interacting protein
kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like
(MLKL). Necroptosis and apoptosis are strictly interconnected,
as confirmed by the observation that the inhibition of caspase-8,
the main mediator of the extrinsic apoptotic pathway, promotes
the shift from DR-mediated cells death to necroptosis due to
activation of RIPK3 and, consequently, MLKL. Phosphorylation
of MLKL generates structural changes allowing its insertion
into the inner leaflet of the plasma membrane leading to the
disruption of cellular membranes (Green, 2019).

Inhibition of Cellular Stress Response
Disturbances of the normal functions of the ER, causing
accumulation of unfolded proteins, trigger an evolutionarily

conserved cell stress response, known as unfolded protein
response (UPR), which, initially aimed to damage compensation,
can eventually lead to cell death to avoid viral spread. HCMV
prevents this process, in part, via UL38, a multifunctional protein
well conserved among different CMV species. In particular, viral
DNA replication is severely impaired in viruses lacking UL38
(i.e., ADdlUL38), a feature associated with enhanced death of
infected cells (Terhune et al., 2007). Moreover, pUL38 itself
can inhibit cell death induced by thapsigargin, which perturbs
calcium homeostasis followed by ER-mediated cell death, or by
a mutant adenovirus lacking the antiapoptotic E1B-19K protein.
Of note, pUL38 cannot counteract cell death triggered by anti-Fas
antibodies (Xuan et al., 2009).

Overall, the aforementioned findings suggest that pUL38
hampers both intrinsic and ER-mediated cell death, but it
only slightly affects extrinsic apoptosis. UL38, expressed both
at early and late stages of infection, is localized in a complex
transcription unit that also retains the unspliced transcripts of
UL36 and several variants of UL37, expressed during the IE
phase. Probably, pUL36, pUL37x1 and pUL38 act synergically
to inhibit cell death at different times during infection. As
described above, while pUL36 inhibits caspase-8 activation,
pUL37x1 blocks mitochondria-mediated intrinsic apoptosis.
Furthermore, UL38 inhibits c-Jun N-terminal kinase (JNK)
signaling through interaction with the activating transcription
factor 4 (ATF4), which leads to caspase-12 or caspase-2 activation
(Xuan et al., 2009).

More recently, Luganini et al. (2018) have shown that HCMV
encodes for a viral-Ca2+-permeable channel, pUS21, able to
reduce Ca2+ content of intracellular stores and to protect
cells from apoptosis. Among the US12 gene family members,
which includes a set of 10 contiguous tandemly arranged genes
(US12-21), pUS21 shows the highest level of identity with
two cellular transmembrane BAX inhibitor motif-containing
(TMBIM) proteins: Bax inhibitor-1 and Golgi anti-apoptotic
protein, both involved in the regulation of cellular Ca2+

homeostasis and adaptive cell responses to stress conditions.
Thus, alongside pUL36, pUL37x1 and pUL38, pUS21 contributes
to maintaining the viability of the host cell until the virus has
completed the infection cycle.

A second mechanism used by CMV to counteract ER
stress response involves the downregulation of inositol-requiring
enzyme 1 (IRE1) protein levels, an ER stress sensor and cell
death executor (Maly and Papa, 2014). Misfolded proteins
activate IRE1, which in turn oligomerizes and self-activates its
RNase activity, leading to degradation of unfolded proteins and
upregulation of ER chaperon to enhance protein folding. IRE1
activation also leads to the recruitment of the TNF receptor
associated factor (TRAF)-2 and activation of caspase-12 or JNK.
Activated JNK induces cells death by activating proapoptotic BH3
proteins while inhibiting the antiapoptotic Bcl-2. Lastly, both
MCMV and HCMV homologs M50 and UL50 enhance IRE1
degradation at later times post-infection, thus preventing all IRE1
signaling events (Stahl et al., 2013).

A second form of stress response induced by HCMV
infection is that elicited by DNA damage. To ensure faithful
duplication and inheritance of genetic material, cells have
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evolved mechanisms – collectively termed the DNA-damage
response (DDR) – of DNA damage detection to induce DNA
repair or, if the damage is too severe, to induce cell death
(Xiaofei and Kowalik, 2014). After cell entry, HCMV capsids
travel to the nucleus where the linear genome is released
and circularized to serve as a template for transcription and
replication by a rolling circle mechanism. This process generates
multiple exposed ends that can be recognized as dsDNA by
activating ataxia-telangiectasia mutated protein (ATM) and rad-
3 related kinases (ATR), which initiate the DNA damage signal
transduction pathway by targeting proteins involved in the
checkpoint response, such as checkpoint kinase 2 (Chk2). In this
regard, recent studies have revealed that HCMV can neutralize
host DDR at the level of Chk2. In particular, ATM and ChK2
are mislocalized from the nucleus to the cytoplasm where they
colocalize with virion structural proteins, which prevents them
from initiating the DNA repair process (Gaspar and Shenk, 2006;
Luo et al., 2007).

CONCLUSION

Here, we have provided a comprehensive overview of the main
characteristics of HCMV that have allowed this virus to evolve
multiple immune evasion strategies and achieve latency and
seroprevalence. These include the advanced organization and
large size of its genome, restricted host specificity, viral latency
and sporadic reactivation.

We have also highlighted how the host innate immune
response reacts against HCMV infection through different
effector cells (e.g., APCs, NK cells, and phagocytes), anti-
inflammatory cytokines and IFNs. Briefly, while APCs mediate
early immune activation by triggering specific T-cell responses,
and cytotoxic NK cells are potent eliminators of HCMV-infected
cells, early release of IFN-I and other pro-inflammatory cytokines
limit the infection spread through the establishment of the so-
called “antiviral state.” In addition, several IFN-inducible RFs,
which belong to an additional autonomous branch of innate
immunity, play a central role in inhibiting viral replication.
Lastly, a significant part of the innate immune response is
represented by programmed cell death, as apoptotic control
greatly contributes to the removal of original population of
HCMV-infected cells. Thus, thanks to the presence of multiple
innate immune protective mechanisms the host, in most cases, is
able to counteract HCMV spread.

However, in the course of host-virus coevolution, as described
in this review, HCMV has acquired an extremely wide range
of counter-defense mechanisms and manipulation strategies
directed against each arm of innate immunity. For instance,
HCMV is able to inhibit NK cell activation by encoding

numerous proteins targeting multiple host ligands, which are
likely to promote viral persistence in vivo. The virus is also
capable of subverting the immune functions of APCs by
reprogramming them as efficient means of viral dissemination,
while offsetting their immune surveillance by interfering with
MHC-I and MHC-II antigen presentation. Moreover, HCMV can
block premature death of infected cells, thereby promoting viral
replication. Major interfering with IFN-signaling pathways is also
accomplished via a wide range of viral proteins that counteract
and manipulate IFN production by the host. Thus, there is
growing evidence of a highly dynamic and complex interplay
between the virus and the IFN system.

From all these data, it is clear that HCMV disease progression
depends on the balance between antiviral immune response and
viral attempts to manipulate such response to its own advantage.
Given the clinical burden of HCMV in immunocompromised
patients and congenitally infected infants, there is undoubtedly
an urgent and unmet medical need for an effective vaccine against
this virus. Significant efforts should also be directed toward the
development of more effective therapeutic agents with fewer side
effects capable of targeting the virus during both its lytic and
latent phases. In this regard, an in-depth analysis of the interplay
among HCMV, RFs and INFs resulting in immune evasion should
provide potential novel druggable targets.
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