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The fate of future food productivity depends primarily upon the health of soil used
for cultivation. For Atlantic Europe, increased precipitation is predicted during both
winter and summer months. Interactions between climate change and the fertilization
of land used for agriculture are therefore vital to understand. This is particularly relevant
for inorganic phosphorus (P) fertilization, which already suffers from resource and
sustainability issues. The soil microbiota are a key indicator of soil health and their
functioning is critical to plant productivity, playing an important role in nutrient acquisition,
particularly when plant available nutrients are limited. A multifactorial, mesocosm study
was established to assess the effects of increased soil water availability and inorganic P
fertilization, on spring wheat biomass, soil enzymatic activity (dehydrogenase and acid
phosphomonoesterase) and soil bacterial community assemblages. Our results highlight
the significance of the spring wheat rhizosphere in shaping soil bacterial community
assemblages and specific taxa under a moderate soil water content (60%), which
was diminished under a higher level of soil water availability (80%). In addition, an
interaction between soil water availability and plant presence overrode a long-term
bacterial sensitivity to inorganic P fertilization. Together this may have implications for
developing sustainable P mobilization through the use of the soil microbiota in future.
Spring wheat biomass grown under the higher soil water regime (80%) was reduced
compared to the constant water regime (60%) and a reduction in yield could be
exacerbated in the future when grown in cultivated soil that have been fertilized with
inorganic P. The potential feedback mechanisms for this need now need exploration to
understand how future management of crop productivity may be impacted.
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INTRODUCTION

Soil is an invaluable commodity urgently in need of protection if
we are to support the growing global human population (Arneth
et al., 2019). This is particularly poignant in the face of climate
change, as 95% of our food comes directly or indirectly from
soil (FAO, 2015; Spanner, 2015), with a 70% increase in demand
predicted by 2050 (Dubey et al., 2019). Grassland cultivation has
been a tool for increasing land used for agricultural purposes
(Qi et al., 2012) and management of these systems has steadily
intensified since the 1960’s (Isselstein et al., 2005). As this
looks set to continue, optimizing future grassland management,
whilst sustaining a healthy soil environment is therefore vital
(Lemanceau et al., 2015).

A key component to sustaining soil health is through the soil
microbiome (Glick, 2018; Dubey et al., 2019). As the drivers
of biogeochemical nutrient cycling, microbes disproportionately
influence soil processes, plants and wider ecosystem functioning
(Falkowski et al., 2008; Jansson and Hofmockel, 2019), and
can form a range of symbioses (Lambers et al., 2009).
However, climate change impacts on microbial communities,
and the repercussions this may cause for humanity are not
well understood, despite recent efforts to promote awareness
(Cavicchioli et al., 2019; Hartman and Tringe, 2019; Jansson and
Hofmockel, 2019; Timmis et al., 2019).

Across Atlantic Europe, robust increases in heavy
precipitation are predicted for both winter and summer
months (IPCC, 2014). With increased rainfall and flooding,
land degradation (Arneth et al., 2019) and soil erosion can be
exaggerated, particularly for agricultural soils where management
has weakened structure (St Clair and Lynch, 2010). Excessive
periods of waterlogging can increase nutrient loss via overland
flow (Di and Cameron, 2002; McDowell et al., 2003), impact root
development and soil nutrient availability (St Clair and Lynch,
2010; Hamonts et al., 2013). As a result, fertilization of soil and
the feedback onto plant productivity will likely be effected by
heightened periods of rainfall. For inorganic phosphorus (P)
fertilization, this is particularly concerning due to the political,
environmental and economic issues already dominating P
resource availability and production (Elser et al., 2007; EU
Commission, 2011; Ceci et al., 2018).

As concerns surrounding inorganic P availability within soil
have increased, research exploring the soil microbiota as a
sustainable tool for P mobilization has also increased. Whilst
some studies report an insensitivity of soil microbiota to
conservative application rates of inorganic P (Beauregard et al.,
2010; Wakelin et al., 2012; Gosling et al., 2013; Chen et al., 2014),
bacterial communities appear particularly responsive when soils
are unfertilized (Mander et al., 2012; Tan et al., 2013; Randall
et al., 2019). This has revealed bacterial taxa with potential roles in
improving soil P mobilization (Mander et al., 2012; Lakshmanan
et al., 2014; Randall et al., 2019), however, study of microbial
responses to elevated soil moisture content and P fertilization
within temperate regions is unexplored.

To-date, soil microbial studies concerning increased soil
moisture focus largely on the effect of re-wetting arid soils and
the microbiome of flooded paddy fields (Fierer et al., 2003;

Austin et al., 2004; Huxman et al., 2004; Liu et al., 2009). In such
scenarios, microbial community structure and activity profiles
have been found to significantly differ between flooded and
unflooded soils (Kimura and Asakawa, 2006; Breidenbach and
Conrad, 2014), with reductions in microbial biomass, aerobic
bacterial and mycorrhizal fungal PLFA biomarkers also being
observed (Unger et al., 2009). In addition, microbial functional
responses have shown an increased abundance of denitrifiers in
soil exposed to elevated water availability (Liu et al., 2014), as
well as increased production of the greenhouse gases (GHG)
CH4 and N2O, to which microbes contribute significantly (Ferré
et al., 2012; Tete et al., 2015). With more frequent and heavier
precipitation events, conditions imposed upon temperate regions
may select for soil anaerobic bacteria and archaea, the likes
which dominate paddy fields post flooding (Liesack et al., 2000;
Reim et al., 2012). Such consequences may impact future GHG
emissions, as demonstrated when temperate coastal grasslands
flood (Gebremichael et al., 2017).

The aim of this study was to test the hypothesis that
a long-term difference in inorganic P fertilization, combined
with a short-term difference in soil water availability and
plant presence will significantly affect soil bacterial community
composition, plant biomass and soil enzymatic activity (acid
phosphomonoesterase and dehydrogenase activity). To achieve
this, a mesocosm, growth chamber study was conducted.

MATERIALS AND METHODS

Soil Sampling
Soil was sampled from a long established (44 years), inorganic
P grazed field trial located in Co. Wexford, Ireland (52◦16′ N,
06◦30′ W, during August 2020). Details are documented by
Randall et al. (2019). Soil from three continually unfertilized
(0 kg P ha−1 y−1) (P0) and three continually fertilized field
plots, (30 kg P ha−1 y−1) (P30) was sampled (Supplementary
Figure 1), ensuring consistent soil texture (Tunney et al., 2010).
For each field plot, 25 soil cores were sampled from the top 20 cm
of the soil profile using a Dutch auger (4 cm diameter) during
August 2012. A composite sample was then made for each field
plot by sieving (2 mm) the 25 cores and homogenizing, producing
six composite soil samples. Baseline biochemical and physico-
chemical properties were then determined. The remainder of
each composite sample was stored in separate containers and left
to settle in the dark for 1 week at 15◦C (Zeng, 2017; Comeau et al.,
2018; Randle-Boggis et al., 2018).

Experimental Set-Up
Mesocosms were constructed from plastic trunking
(100 cm × 3.6 cm × 3.6 cm) (Radionics Ltd., Dublin).
After 1 week of incubating the soil in the dark, the soil water
holding capacity (WHC) of each composite field sample (3 × P0
and 3 × P30) was determined (see Supplementary Material).
The overall experimental design is presented in Figure 1.

For each of the six composite samples (3 × P0 and 3 × P30),
the following protocol was performed; soil was packed into
six pre-weighed mesocosms at a bulk density of 1.1 g cm−3
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FIGURE 1 | Design of the mesocosm growth chamber experiment. Field soil was sampled from a long-term inorganic phosphorus (P) field trial (44 years), from
unfertilized (P0) (n = 3) and fertilized (P30) (30 kg ha−1 y−1) (n = 3) field plots. Soil water holding capacity (WHC) was then manipulated to either 60% or 80% and
was maintained. Mesocosms were either sown with an individual seed of spring wheat (T. aestivum), Trappe variety (Goldcrop Ltd., Co. Cork, Ireland), or remained
unplanted, serving as negative plant controls. The experiment ran for four months within a growth chamber.

(Dijkstra and Cheng, 2007). For ease, the addition of soil was
made in 10 cm sub-sections D1 (0–10 cm) to D8 (70–80 cm) (see
Supplementary Material).

Within these six mesocosms, three then had the soil
WHC adjusted to 60%, to reflect a moderate soil WHC
(60%). The remaining three mesocosms had the soil WHC
adjusted to 80%, representing a high soil water treatment
(80%) (Chen et al., 2007; Dijkstra and Cheng, 2007; Wang
et al., 2016). The final weight of each mesocosm was recorded
and was maintained for the duration of the experiment
using distilled water (Dijkstra and Cheng, 2007; Lazcano
et al., 2014) (see Supplementary Material). The mesocosms
detachable front cover provided access for watering and sampling
(Supplementary Figure 2).

A single seed of spring wheat (T. aestivum) was then sown
into two mesocosms, 5 cm below the surface. Two planted
mesocosms were required so one could be used to determine
total root biomass (+Plant_biomass), whilst the other was
used to determine bulk soil enzymatic activity and bacterial
community composition (+Plant_enzy + bac) (Figure 1). The
third mesocosm remained unplanted to serve as a negative

plant control. This set-up was repeated for the remaining
five composite field samples, with the final design consisting
of 36 mesocosms.

Growth Chamber Conditions
The experiment ran for a 4 month period and was conducted
in a controlled growth chamber (Series 3; Temperature Applied
Sciences Ltd.). Chamber parameters were set at 75% humidity
with a diurnal light intensity program (16 h daylight, 8 h night)
(Haworth et al., 2011, 2013). The temperature regime reflects
the 1.5◦C increase the IPCC wish to cap global warming (IPCC,
2018). A 1.5◦C increase was added to the previous year’s (2011)
mean monthly temperatures (March–June) recorded for the area
(Met Éireann, 2011). The block temperatures used to simulate the
4 month growing season were, 8.3, 10.0, 12.5, and 16◦C.

Experimental Sampling Protocol
After 4 months, all 36 mesocosms were destructively sampled.
At this stage, the plants had reached the end of their vegetative
growth stage (Zadoks et al., 1974). All sampling was conducted
under sterile conditions, with the front of the trunking removed
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to access soil within each mesocosm. All planted mesocosms were
carefully inspected to identify depth of root growth within each of
the 10 cm sub-sections (D1–D8). Across all planted mesocosms,
roots were present up to sub-section D5.

Plant Biomass (+plant_biomass)
To determine the shoot and root biomass of spring wheat,
one planted mesocosm per treatment, per original field plot
was sampled (Figure 1, +plant_biomass). The intact plant
was carefully removed from the soil. Shoots and roots were
severed and the fresh weights of both were recorded. Roots and
shoots were then individually oven dried for 48 h at 60◦C to
determine the dry weight.

Soil Bacterial Communities and Bulk Soil Enzymatic
Activity (+plant_enzy + bac, –plant_enzy + bac)
The remaining planted and all unplanted mesocosms were
sampled to determine bacterial community composition and
bulk soil enzymatic activity (Figure 1, +plant_enzy + bac and
–plant_enzy + bac).

For planted mesocosms, sampling was conducted separately
for each sub-section where roots were present (D1–D5). Planted
bulk and rhizosphere soil was also sampled within each sub-
section for molecular characterization of bacterial communities.
Rhizosphere soil was considered as soil adhering to root section
post 1 min of shaking by hand. The remaining soil within
the mesocosm was considered as the bulk soil. In unplanted
mesocosms, the equivalent sub-sections (D1–D5) were sampled,
with all soil considered as bulk. Soil samples intended for
molecular analysis were then frozen (−20◦C).

At the same time, additional bulk soil samples were
collected within planted (+plant_enzy + bac) and unplanted
(–plant_enzy + bac) mesocosm sub-sections (D1–
D5) to determine both dehydrogenase and acid
phosphomonoesterase activity and soil physico-chemcial
properties.

Soil Biochemical and Physico-Chemical
Properties
For details of how to determine the gravimetric soil water content
and WHC please refer to the Supplementary Material.

Soil pH
Soil pH was determined using a soil: deionized water
ratio of 1:2 (w/v) (McCormack, 2002), using 5 g of fresh
sieved soil and measured using a WTW pH526 pH meter
(Labsource, United States).

Soil Available Inorganic Phosphorus
Soil available inorganic P was determined using the Morgan’s
extraction method (McCormack, 2002) as described by Massey
et al. (2012) and measured spectrophotometrically at 880 nm
using the phosphomolybdate method (Murphy and Riley, 1962).

Dehydrogenase Activity
1 g of the freshly sampled soil was used to determine
dehydrogenase activity, using the method described by Alef and

Nannipieri (1995). The optical density of the supernatant was
measured at 546 nm using a spectrophotometer (Helios Unicam,
United Kingdom). Dehydrogenase activity was calculated using
standard curves constructed with known concentrations of TPF
and expressed as µg TPF g−1 dry soil 24 h−1.

Acid Phosphomonoesterase Activity
1 g of the freshly sampled soil was used to determine acid
phosphomonoesterase activity using a modified method of
Tabatabai and Bremner (1969), with the toluene step removed.
The optical density of the supernatant was measured at 400 nm
using a spectrophotometer (Helios Unicam, United Kingdom).
Acid phosphomonoesterase activity was calculated with respect
to standard curves from known concentrations of p-nitrophenol
and expressed as µg p-NP g−1 soil h−1.

DNA Extraction and 16S rRNA Bacterial
Amplicon Library Creation
DNA extractions followed a modified version of the method by
Griffiths et al. (2000) (Storey et al., 2014). Triplicate extractions
were performed for each biological sample and pooled. DNA was
extracted from the D1 section and the deepest section containing
roots (D5). For planted mesocosms (+plant_enzy + bac), DNA
was extracted from bulk and rhizosphere soil from both
the D1 and D5 sub-sections. For the unplanted mesocosms
(–plant_enzy + bac), DNA was extracted from soil within D1
and D5 sub-sections. Library preparation for high throughput
sequencing (HTS) followed Randall et al. (2019).

Bioinformatic Pipeline for High
Throughput Sequencing (HTS) Data
After downloading the raw sequencing reads, the forward and
reverse reads were combined into contigs using Mothur (Schloss
et al., 2009) and uploaded to the NCBI SRA (PRJNA610548).
Read processing and quality control (QC) followed Randall
et al. (2019). After QC, identical sequences were grouped into
“unique” sequences. Chimeric sequences were identified using
the UCHIME algorithm within Mothur with 142,556 chimeric
sequences removed. From 3,467,214 contigs, 1,723,604 paired
end reads were constructed and 516,752 unique sequences
detected. 201,430 sequences were assigned to operational
taxonomic units (OTUs) using the “cluster” command and
the average neighbor algorithm. OTU-based analyses were
performed using a cutoff of 0.03. Taxonomy was assigned to
the aligned sequences by comparing data to the SILVA database
for bacteria (arb-silva.de/silva-license-information) and relative
abundances were calculated.

Statistical Data Analysis
All univariate analyses were performed using Minitab v15
(Minitab Ltd.). For the analysis of baseline soil biochemical
and physico-chemical parameters (pH, available inorganic
P, dehydrogenase and acid phosphomonoesterase activity)
the design was an independent between-subjects design,
with inorganic P fertilization rate (P0 vs. P30) as the
independent variable.
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Univariate data from the experiment was analyzed by applying
general linear models (GLM) (Minitab Ltd.) to test main and
interactive effects of the independent variables, inorganic P
fertilization rate (P0 vs. P30), soil water content (60% vs. 80%
soil WHC) and where appropriate, plant (unplanted vs. planted)
on the dependent variables; spring wheat shoot and root biomass
and bulk soil dehydrogenase and acid phosphomonoesterase
activity. Significance levels were set at the 0.05 probability level.

Multivariate analyses to test for differences in beta diversity
of bacterial assemblages were performed using PRIMER-E
v6.1.10 with the PERMANOVA +add-on package (PRIMER-E
Ltd., Plymouth, United Kingdom) (Anderson, 2001). The
relative abundance data for bacterial communities were initially
transformed to the 4th root (Clarke and Warwick, 2001).
The dataset was sub-divided and analyzed to answer specific
questions for paired samples (i.e., D1 vs. D5 sub-sections
and bulk vs. rhizosphere soil) and Bray-Curtis resemblance
matrices were generated (Clarke et al., 2006). Data was tested
for homogeneity of variances at the lowest level of factor
combinations using the PermDisp function in PRIMER-E
and permutation analysis of variance (PERMANOVA) were
conducted, applying 9,999 permutations of residuals under
a reduced model.

RESULTS

Baseline Soil Characteristics
Prior to the experimental manipulation, baseline field soil
characteristics were determined (Table 1). A significant
main effect of inorganic P fertilization rate was detected
for soil pH, available inorganic P concentration and acid
phosphomonoesterase activity (Table 1). Across all the plots,
unfertilized (P0) soil had significantly lower pH [t(6) = 23.09,
p = 0.003] and available inorganic P [t(6) = 123.00, p = 0.001]
compared to fertilized (P30) soil (Table 1).

For baseline enzymatic activity measurements, whilst
dehydrogenase activity did not significantly differ between
unfertilized (P0) and fertilized (P30) soil (Table 1), acid

TABLE 1 | Mean baseline soil pH, available inorganic phosphorus (P)
concentrations and enzymatic activities measured in unfertilized (P0) (n = 3) and
fertilized (P30) field soil (n = 3) from a long running (44 years) P fertilization trial
(prior to experimental manipulation).

Inorganic P fertilization rate
(kg P ha−1 y−1)

P0 P30

pH 5.33 (0.01)a 5.64 (0.01)b

Available inorganic P (µg P g−1 dry soil) 1.18 (0.01)a 7.22 (0.07)b

Dehydrogenase activity
(µg TPF g−1 dwt soil 24 h−1)

129.27 (4.34)a 126.41 (14.59)a

Acid phosphomonoesterase activity
(µg PNP g−1 dwt soil h−1)

17.22 (0.31)a 12.01 (0.25)b

Standard errors are shown in parentheses with significant differences between P
treatment denoted by different letters (p < 0.05) and highlighted in bold.

phosphomonoesterase activity was significantly higher in the
unfertilized (P0) soil compared to the fertilized (P30) soil
[t(6) = 5.00, p = 0.003] (Table 1).

Aboveground and Belowground Spring
Wheat Biomass at Harvest
Both the shoot [F(1,12) = 30.50, p = 0.001] and root spring
wheat biomass [F(1,12) = 62.64, p = 0.001] were significantly
impacted by the main effect of soil water availability, whilst an
independent effect of P fertilization was not observed (Figure 2).
For the roots, significantly lower biomass was observed for spring
wheat grown under the higher water (80%) compared to the
moderate soil water treatment (60%), regardless of inorganic P
fertilization (Figure 2B).

As for roots, regardless of P fertilization, shoot biomass
was significantly reduced when grown under the higher soil

FIGURE 2 | (A) Mean shoot and (B) root biomass of individually sown spring
wheat (T. aestivum), grown within mesocosms using field soil sampled from a
long-term inorganic phosphorus (P) fertilization experiment (44 years). Soil
used was sampled from field plots that were either unfertilized (P0) (n = 3) or
fertilized at a rate of 30 kg P ha−1 y−1 (P30) (n = 3). Soil water holding
capacity was altered to 60% or 80% and was maintained within a growth
chamber for four months. Error bars represent standard error of the mean.
Significant differences in mean dry weight biomass are indicated by
differences in letters (p < 0.05).
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water treatments (80%) compared to the moderate treatment
(60%). An additive reduction in shoot biomass was due to the
significant interaction between inorganic P fertilization rate and
soil water availability [F(1,12) = 7.29, p = 0.027] (Figure 2A).
This meant that while wheat plants grown in the fertilized soil
under the higher soil water treatment (P30-80%) had the lowest
shoot biomass (Figure 2A), shoot biomass from unfertilized soil
exposed to same water regime (P0-80%) was significantly lower
than fertilized soil maintained at the moderate water content
(P30-60%) (Figure 2A).

Soil Bacterial Community Responses at
Harvest
A Generally Consistent Soil Bacterial Microbiome
No main effect of positioning along the developing root system
of spring wheat was detected for bacterial community structure
(D1 vs. D5) (Supplementary Table 1). Subsequent analysis of
bacterial beta diversity was performed on the sub-section D5
only. Within this sub-section, further comparison between the
bulk and rhizosphere soil found the main effect of soil region
did not significantly alter bacterial communities (Supplementary
Table 2). Data used for further analysis of bacterial beta diversity
was therefore from D5 rhizosphere samples and was considered
to be representative of bacterial communities within planted soil.

A Consistent Interaction Between Soil Water
Availability and Plant for Bacterial Beta Diversity
Across the experiment, soil water availability, inorganic P
fertilization rate and plant presence had consistent and significant
independent main effects on the bacterial community structure
at multiple taxonomic levels (Table 2). Analysis of the 2nd
order interactive terms revealed an additionally consistent and
significant interaction between soil water availability and plant
presence (Table 2). The 3rd order interaction was not found to be
significant (Table 2).

The significant 2nd order interaction between plant presence
and soil water was driven by plant presence. The interaction was
driven by plant presence, where bacterial community structure
differed significantly between planted and unplanted soil only
when soil water conditions were moderate (60%), irrespective
of long-term inorganic P fertilization (Supplementary
Table 3). Additionally, the water regime only significantly
impacted bacterial beta diversity when soil was planted. This
effect was again regardless of inorganic P fertilization rate
(Supplementary Table 4).

Individual Responses of Bacterial Taxa
The top three dominant phyla across all treatments were the
Firmicutes (35.3%), Acidiobacteria (16.9%), and Proteobacteria
(13.3%) (Supplementary Table 5). On average 104 (±18)
bacterial families were identified across all experimental
treatments ranging from 85 in P0-60% unplanted soil to 143 in
P0-60% planted rhizosphere soil.

Based on the relative abundance data, the top 25 most
relatively abundant bacterial families detected across the
experiment are presented in Supplementary Table S6. Within
this top 25, the individual responses of six bacterial families were

found to significantly respond to experimental treatments. These
families were, Bacillaceae 1, Clostridiaceae 1, Subdivision3 family
incertae sedis, Gp7 family incertae sedis, Thermomonosporaceae,
and Planococcaceae (Figure 3).

Main Effects
For Subdivision3 family incertae sedis, the main effects of
inorganic P fertilization, soil water availability and plant presence
all had significant main effects on the relative abundance of
this bacterial family (Table 3). For Gp7 family incertae sedis,
the relative abundance of this family significantly responded
to the two main effects of soil water availability and plant
presence (Table 3). Different main effects were significant
for Bacillaceae 1 and Thermomonosporaceae, with the plant
being significant for Bacillaceae 1 and inorganic P fertilization
significant for Thermomonosporaceae (Table 3). Clostridiaceae 1
and Planococcaceae were not significantly influenced by any of
the three experimental treatments as main effects.

Interactive Effects
Despite an absence of significant main effects for Clostridiaceae
1 and Planococcaceae, all six bacterial families, (Bacillaceae 1,
Clostridiaceae 1, Subdivision3 family incertae sedis, Gp7 family
incertae sedis, Thermomonosporaceae, and Planococcaceae) were
all significantly affected by a consistent 2nd order interaction
between soil water availability and plant presence (Table 3).

For the Bacillaceae 1, Planococcaceae and Clostridiaceae
1 these results manifested themselves by a reduced relative
abundance in planted soil maintained at the moderate soil water
content (60%) compared to equivalent planted soil exposed to
the higher soil water content (80%), regardless of inorganic P
fertilization rate. In addition, these three families reduced in
relative abundance significantly compared to most unplanted
treatments (Supplementary Table 6).

For Subdivision3 family incertae sedis and Gp7 family
incertae sedis, the opposite response was generally observed,
with their relative abundances increasing in the planted soil
maintained at the moderate soil water content (60%) compared
to other treatments including the unplanted treatments
(Supplementary Table 6).

For the Thermomonosporaceae family, whilst not
consistently significant across all P30 treatments, a significant
reduction in this bacterial family was observed within some
fertilized (P30) soil when compared to unfertilized soils
(Supplementary Table 6).

Soil Enzymatic Activity at Harvest
The activity measurements of D1 and D5 bulk soil at
the end of the experiment for dehydrogenase and acid
phosphomonoesterase activity are presented in Figure 4.

Dehydrogenase Activity Along the Soil Profile
Within the top sub-section of the mesocosms, (D1), mean soil
dehydrogenase activity did not differ significantly across the
experimental treatments as a result of main treatment effects, or
due to any of the 2nd, or even the 3rd order interaction (Table 4
and Figure 4A).
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TABLE 2 | PERMANOVA results testing for differences between experimental treatments within the D5 sub-section of mesocosms.

Phylum Class Family

Pseudo-F p (perm) Pseudo-F p (perm) Pseudo-F p (perm)

Phosphorus (P) 2.855 0.037 3.080 0.013 3.623 0.001

Water (W) 6.767 0.003 5.420 0.002 8.805 0.001

Plant (Pl) 4.160 0.015 5.028 0.002 8.841 0.001

P × W 0.782 ns 0.823 ns 0.569 ns

P × Pl 0.702 ns 0.617 ns 1.062 ns

W × Pl 4.891 0.011 5.500 0.002 7.410 0.001

P × Pl × W 1.226 ns 1.471 ns 1.625 ns

Soil was sampled from unplanted and planted mesocosms containing field soil that was unfertilized (P0) or had received long-term additions of inorganic phosphorus
(P) at 30 kg ha−1 y−1 (P30) for 44 years. The soil water holding capacity was then adjusted to 60% or 80% and maintained within a growth chamber for 4 months. For
planted mesocosms, an individual pre-germinated seed of spring wheat (T. aestivum) was sown. Significant differences are highlighted in bold (p < 0.05).

FIGURE 3 | The mean relative abundances of bacterial families significantly responding to experimental treatments from the top 25 most relatively abundant.
Experimental treatments are unplanted and planted soil sampled from mesocosms using field soil that was unfertilized (P0) (n = 3) or had received long-term
additions of inorganic phosphorus (P) at 30 kg ha−1 y−1 (P30) (n = 3) (44 years). The soil water holding capacity was then adjusted to 60% or 80% and was
maintained within a growth chamber for four months. For planted mesocosms, an individual pre-germinated seed of spring wheat (T. aestivum) was sown and the
experiment ran for 4 months within a growth chamber. Samples were sent for targeted amplicon sequencing of the bacterial 16S rRNA gene.

At the lower mesocosm sub-section (D5), however,
dehydrogenase activity differed significantly due to the main
effect of the plant (Table 4), with activity of the unplanted
mesocosms showing heightened activity (Figure 4B).

Acid Phosphomonoesterase Activity Along the Soil
Profile
For acid phosphomonoesterase activity, a significant independent
effect of inorganic P fertilization rate was detected, regardless
of position descending the soil profile within the mesocosms
(D1 and D5) (Figures 4C,D). The result mirrors the baseline
field observation prior to experimental manipulation (Table 1).
As a result of this sole main effect, a significantly lower acid

phosphomonoesterase activity was determined for all fertilized
(P30) treatments, compared to all unfertilized (P0) treatment
regardless of water regime and plant presence (Figures 4C,D).

DISCUSSION

The mesocosm study provides insight into complex above and
belowground plant-soil-microbial interactions to increased soil
water availability and inorganic P fertilization rate. Whilst studies
have attempted to model wheat productivity to a range of climate
change scenarios (Southworth et al., 2002; Tao and Zhang, 2013;
Mohan, 2014; Váry et al., 2015), study of the spring wheat-soil
microbiome in this context is unexplored.
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TABLE 3 | Test statistics and p value summary table for bacterial families within the top 25 most relatively abundant that were significantly affected by main and
interactive terms across the experiments.

Bacterial families significantly affected by experimental treatments from top 25 most relatively abundant

Bacillaceae 1 Clostridiaceae 1 Gp7 family
incertae sedis

Subdivision3 family
incertae sedis

Thermomonosporaceae Planococcaceae

Treatment F(1,24) p F(1,24) p F(1,24) p F(1,24) p F(1,24) p F(1,24) p

P 2.284 ns 1.470 ns 0.079 ns 3.852 0.007 28.272 0.001 0.516 ns

W 1.003 ns 2.618 ns 24.704 0.001 11.310 0.004 0.206 ns 2.322 ns

Pl 5.958 0.022 0.893 ns 57.355 0.001 6.432 0.022 1.518 ns 1.562 ns

P × W 0.229 ns 0.203 ns 0.468 ns 0.141 ns 0.341 ns 0.414 ns

P × Pl 0.957 ns 0.088 ns 0.826 ns 0.054 ns 0.024 ns 0.313 ns

W × Pl 5.089 0.038 6.050 0.020 38.218 0.001 16.465 0.001 8.389 0.011 10.716 0.005

P × W × Pl 0.574 ns 0.103 ns 1.284 ns 1.097 ns 0.420 ns 0.117 ns

Relative abundances are from soil receiving long-term differences in inorganic phosphorus (P) fertilization (0 or 30 kg ha−1 y−1), which were subjected to differential
changes in soil water holding capacity (W) (60% or 80% soil WHC). Within these treatments mesocosms were planted with an individual pre-germinated seed of spring
wheat (T. aestivum), or unplanted. Mesocosms were maintained at these conditions for 4 months within a growth chamber. Significant differences are highlighted in bold
(p < 0.05).

Soil used within the study was sampled from an established
(44 year), inorganic P fertilization field trial, where differences
in total and available inorganic P, soil microbial biomass P and
bacterial community structure have been documented (Griffiths
et al., 2012; Chen et al., 2014; Randall et al., 2019). The aim

of this study was to determine if this effect persisted when
combined with a short-term change in soil water availability,
whilst exploring the role of the spring wheat rhizosphere as a
mediator. Whilst large scale field studies are desirable, parameters
such as soil water availability are difficult to control in situ.

FIGURE 4 | Mean dehydrogenase activity measured in bulk soil within the (A) D1 and (B) D5 and mean acid phosphomonoesterase measured in bulk soil within the
(C) D1 and (D) D5 sub-sections of sampled mesocosm. Activity was measured after four months incubation in a growth chamber. Soil used in the experiment
originated from an established inorganic phosphorus (P) fertilization field trial (44 years) which had either remained unfertilized (P0) or had received 30 kg ha−1 y−1

(P30) of inorganic P. Soil water holding capacity was altered to 60% and 80% and was maintained within a growth chamber for four months. Error bars represent
standard error of the mean (n = 3). Significant differences are indicated by letters (p < 0.05).
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TABLE 4 | Test statistics and p value summary table for dehydrogenase and acid phosphomonoesterase.

Dehydrogenase activity Acid phosphomonoesterase activity

D1 D5 D1 D5

Treatment F(1,24) p F(1,24) p F(1,24) p F(1,24) p

P 0.029 ns 0.085 ns 110.740 0.001 68.190 0.001

W 0.214 ns 0.007 ns 0.374 ns 1.913 ns

Pl 3.847 ns 5.958 0.022 0.035 ns 0.221 ns

P × W 0.310 ns 2.582 ns 0.015 ns 1.407 ns

P × Pl 1.277 ns 3.446 ns 0.267 ns 2.090 ns

W × Pl 0.068 ns 1.252 ns 0.611 ns 0.021 ns

P × W × Pl 1.034 ns 0.170 ns 1.885 ns 0.122 ns

Measurements are from bulk soil receiving long-term differences in inorganic phosphorus (P) fertilization (0 or 30 kg ha−1 y−1), which were further subjected to differential
changes in soil water (W) availability (60% or 80% soil WHC). Within these treatments mesocosms were both planted and unplanted. Mesocosms were then maintained
at these conditions for 4 months within a growth chamber. Significant differences are highlighted in bold (p < 0.05).

Mesocosm studies therefore allow such variables to be controlled
(Williams and Rice, 2007). Albeit not representative of realistic
field scenarios, this study lays foundations for future research, in
an area currently understudied.

Soil by its very nature is heterogeneous, as such, equal soil
WHC and moisture content between our field plots was unlikely.
To control this aspect of the experiment, the soil WHC of
each field plot was adjusted to two equal levels (60% and 80%),
using an experimental approach typical of similar studies (Barratt
et al., 2003; Uhlírová et al., 2005; Chen et al., 2007; Dijkstra and
Cheng, 2007). Selection of the moderate soil water treatment
(60% WHC) simulated “optimal” moisture content for aerobic
microbial processes (Papendick and Campbell, 1981). The 80%
soil WHC was selected to represent heightened periods of rainfall,
as opposed to flooding events (100% WHC) (Barratt et al., 2003).

Baseline Soil Enzymatic Activity and Soil
Characteristics
Despite a lower soil pH in the P0 soils, the average pH of both
unfertilized (5.33) and fertilized (P30) (5.64) soils was acidic. This
is important, as soil pH is an important driver of inorganic P
availability within soils (Alt et al., 2011; Brod et al., 2015) and can
be a significant driver of changes in soil microbial communities
(Griffiths et al., 2011; Zhalnina et al., 2014).

Measures of soil enzymatic activity can serve as bioindicators
of changes within the soil (Henry, 2012; Stone et al., 2016).
The two enzymes assayed in the current study provide
indication of the P mineralizing (acid phosphomonoesterase) and
aerobically active (dehydrogenase) potential of soil (Nannipieri
et al., 2011). The significant difference in baseline activity of
acid phosphomonoesterase between unfertilized (P0) and P30
fertilized field plots supports the use of this enzymes as an
indicator of soil P status. Typically activity increases when
available inorganic P concentrations are low (Olander and
Vitousek, 2000; Shi et al., 2013; Turner and Joseph Wright, 2014),
which is supported by the low concentrations detected at the
unfertilized (P0) plots in the current study. The similarity in
baseline measurements of dehydrogenase activity between the
unfertilized and fertilized (P30) field plots suggests soil aerobic

activity has not impacted by long-term differences in soil P status
due to P fertilization. Whilst an insensitivity of this enzyme is not
uncommon (Chu et al., 2007; Shi et al., 2013), opposing responses
have been noted with P fertilization (Beauregard et al., 2010;
Luo et al., 2015).

Bulk Soil Enzymatic Activity at
Experimental Harvest
Elevated soil water availability has the ability to impact a large
portion of the soil microbial community. Waterlogging events
have been shown to decrease redox potential, O2 diffusion
(Sharma and Swarup, 1988; Yaduvanshi et al., 2012) and
concentration to 2% (Belford et al., 1980). As a result, changes
to soil processes such as enzyme activities are likely. In the
mesocosm experiment, however, the unaltered activity of acid
phosphomonoesterase measurements, suggests an insensitivity
to elevated water availability compared to long-term differences
in soil P status.

As a measure of the aerobic potential of soil, it may be expected
for dehydrogenase activity to be negatively impacted by increased
soil water availability. Here we failed to observe this. Instead
a significant reduction in dehydrogenase activity was measured
at the root tip for all planted soil. Whilst difficult to untangle,
the rhizosphere can significantly facilitate changes in the soil
environment (Luster et al., 2009; Neumann et al., 2009; Philippot
et al., 2013), perhaps relevant for dehydrogenase, which is not
solely microbial, as is acid phosphomonoesterase. Future work
should adopt a molecular functional approach, targeting genes
associated with microbial P cycling (Fraser et al., 2014; Ragot
et al., 2016) and anaerobic conditions such as methanogenesis
(Angel et al., 2011). This will provide a refined measure of the
microbial contribution to important soil processes as opposed to
broader enzyme responses.

Response of Spring Wheat Biomass at
Experimental Harvest
Typically, metrics used to determine wheat quality and grain yield
(grain weight and kernels per ear head) develop during the post
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vegetative growth stage (Hütsch et al., 2019). Nonetheless, the end
of the vegetative growth period can provide significant indication
of downstream wheat development (Santos and Diola, 2015). It is
therefore important to understand how the vegetative growth of
spring wheat can be impacted as it may be useful for early stage
wheat management.

Known to be sensitive to changes in climate (Dubey et al.,
2019), both waterlogging (Araki et al., 2012; Yaduvanshi et al.,
2012) and short-term flooding (Sharma and Swarup, 1988)
can impact wheat development. This result was mirrored in
the current study at the early growth stage. As a globally
significant crop, wheat is used within 21% of food sources
(Wu et al., 2004; Ortiz et al., 2008), with recent figures of
European production reaching 142.7 million tonnes (Eurostat,
2019). Importantly the interaction between P fertilization and
soil water content in the current study, may indicate a negative
impact on yield as future precipitation increases across Atlantic
Europe (IPCC, 2014). Naturally, this requires testing at a larger
scale and over longer periods, but we may see costs for the agri-
sector, particularly for soils fertilized by inorganic P, such as
cultivated grasslands.

Response of Bacterial Communities at
Experimental Harvest
Plants significantly contribute and mediate C translocation
belowground, via the roots and into the rhizosphere
(Lakshmanan et al., 2014). This introduction can influence soil
heterotrophic respiration, microbial community composition
and activity (Hinsinger et al., 2009; Ai et al., 2013; Skwarylo-
Bednarz and Krzepilko, 2013; Nie et al., 2014). By sampling
at two proximities away from the root system of spring
wheat, the ability of the rhizosphere to shape bacterial
communities was assessed. Studies comparing bulk and
rhizosphere microbial community assemblages from the same
samples often observe differences in structure (Ai et al., 2013;
Bakker et al., 2015; Praeg et al., 2019). In the current study,
however, this was not so. As demonstrated by the effect of
cabbage age in shaping bacterial beta diversity (O’Brien et al.,
2018), the experimental and plant establishment time may
have influenced this. The need for future studies to run for
longer, capturing the entire crop growing season is additionally
cemented by this.

Despite no distinction between bulk and rhizosphere bacterial
community structure during the 4 month experiment, planted
and unplanted soil showed clear distinctions. The significant
ability of spring wheat to influence this microbial group is clear,
and it is only through the plant that soil water content becomes
significant. This result demonstrates the complexity of plant-
soil-microbial interactions which will require consideration
in future crop production (de Vries and Wallenstein, 2017).
It also suggests a heightened sensitivity of wheat associated
bacterial communities to soil water content, compared to
those within unplanted soil. Under drought experiments, it
appears bacteria are sensitive to water fluctuations, more so
than fungal communities (Borowik and Wyszkowska, 2016),
likely driven by changes in root exudation (de Vries et al.,

2018; Gargallo-Garriga et al., 2018; Naylor and Coleman-Derr,
2018). Exploration of both root exudation and the wider soil
microbiome within the context of our research is therefore
welcomed. By demonstrating a strong water-plant interaction
within the current study, we have also shown how elevated soil
water availability can override the effect of long-term differences
in inorganic P fertilization on soil bacterial community structure
(Griffiths et al., 2012; Chen et al., 2014; Randall et al., 2019). The
use of key bacterial taxa found within unfertilized (P0) soils with
potential roles as sustainable modes of P mobilization (Owen
et al., 2015; Stamenković et al., 2018) may therefore be impacted
under wetter conditions.

Response of Individual Bacterial Taxa
Collectively, the individual responses of the bacterial families
support the significant influence of the spring wheat rhizosphere
in shaping the wider bacterial community. The individual
responses also support the observation that the plant effect is
significantly mediated by the soil water content. These significant
responses of individual bacterial taxa may therefore be indicative
of changes to communities within future temperate cultivated
grassland soils.

Whilst Bacillaceae and Clostridiaceae are commonly found
in soil (Mandic-Mulec et al., 2015), the comparatively lower
relative abundances of these families and Planococcaceae in
planted soil, at moderate (60%) soil water regimes suggests
a potential suppression due to this treatment. Members
within the Bacillaceae family are mostly aerobic or facultative
anaerobic chemoorganotrophs, phylogenetically similar to the
Bacillaceae family (Shivaji et al., 2014). The Clostridiaceae,
however, are strict anaerobes (Mandic-Mulec et al., 2015).
Organisms belonging to both Bacillaceae and Clostridiaceae
families can exhibit increased tolerance to environmental
stressors. This is due to their endospore forming capabilities
(Nessner Kavamura et al., 2013), with Clostridiaceae important
within the pre-treatment consortia of anaerobic digesters
to enhance CH4 production from plant waste (Suksong
et al., 2019). Our response within temperate grassland soil
for this family is complemented by significantly greater
relative abundance within both anoxic regions of rice paddy
fields (Lüdemann et al., 2000), but also upon soil re-
wetting events (Liesack et al., 2000; Noll et al., 2005;
Reim et al., 2017).

Conversely, the two bacterial families that significantly
increased within the same treatment (60% planted soil) belong to
the phylum Acidobacteria. Acidobacteria are commonly profiled
in grassland soil (Quaiser et al., 2003; da Rocha et al., 2013)
and whilst relatively little is known about this diverse phylum,
Acidobacteria are detected across a range of habitats (Quaiser
et al., 2003; Naether et al., 2012) and are highly abundant (Janssen,
2006), particularly in acidic soils (Jones et al., 2009; Griffiths et al.,
2011; Dedysh et al., 2017) as used in the current study. Our
results reflect this phylum’s ability to dominate environments
with reduced substrate inputs such as the P0 soil (Naether et al.,
2012), but they do not fully support it, due to an insensitivity
to P fertilization. Previous studies have noted both positive
and negative responses by members of the Acidobacteria to
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soil moisture (Naether et al., 2012). The negative response to
heightened water availability observed in planted mesocosms
suggests a potentially important sensitivity.

Finally, varied response in the relative abundance of the family
Thermomonosporaceae across treatments suggests a complex
interaction with plant and soil water availability, influenced
by P fertilization or other soil parameters. Unfortunately,
limited knowledge surrounds Thermomonosporaceae in terms
of responses to environmental perturbations, however, the
phylum Actinobacteria, to which it belongs is associated with
increased solubilization of inorganic P (Mander et al., 2012). The
general decreased relative abundance of Thermomonosporaceae
to high P fertilization may support this, however, it is not a
significant observation.

CONCLUSION

This study has attempted to address a knowledge gap in soil-
microbial-climate change research that is relevant for Atlantic
Europe. Clearly much work is still needed in this area, but,
the fact a relatively short-term increase in soil water availability
and plant significantly overrode effects of long-term inorganic
P fertilization is interesting for the future health of temperate
cultivated grassland soils.
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