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The family Cryomorphaceae for many years has been a poorly defined taxonomic
group within the order Flavobacteriales, phylum Bacteroidetes. Members of the
Cryomorphaceae, apparently consisting of multiple-family level clades, have been
mostly but not exclusively detected in saline ecosystems. The problems with the
taxonomy of this group have stemmed from inadequate resolution of taxonomic groups
using 16S rRNA gene sequences, sparse numbers of cultivated taxa, and limited
phenotypic distinctiveness. The Genome Tiaxonomc Database (GTDB), which is based
on normalized taxonomic ranks includes Cryomorphaceae as containing the genera
Owenweeksia and Schleiferia. This is at odds with the official taxonomy that places
these genera in the family Schleiferiaceae. The other Cryomorphaceae affiliated species
have even more uncertain taxonomic positions including Cryomorpha ignava. To clarify
the taxonomy of Cryomorphaceae, genomes were generated for all type strains of the
family Cryomorphaceae lacking such data. The GTDB-toolkit (GTDB-tk) was used to
place taxa in the GTDB, which revealed novelty at the family level for some of these
type strains. 16S rRNA gene sequences and concatenated protein sequences were
used to further evaluate the taxonomy of the order Flavobacteriales. From the data, the
GTDB enabled successful clarification of the taxonomy of the family Cryomorphaceae.
A number of placeholder families were given Latinized names. It is proposed that the
family Cryomorphaceae is emended to include only the species Cryomorpha ignava.
The family Schleiferiaceae is emended to account for the expansion of its membership.
Luteibaculum oceani represents a new family designated Luteibaculaceae fam. nov.
Vicingus serpentipes is the representative of Vicingaceae fam. nov. while Salibacter
halophilus represents Salibacteraceae fam. nov.

Keywords: cryomorphaceae, flavobacteriales, bacteroidetes, taxonomy, genomics, Genome Taxonomy Database

INTRODUCTION

The family Cryomorphaceae, a member of order Flavobacteriales within the phylum Bacteroidetes,
was created with the description of the psychrophilic bacterial species Cryomorpha ignava,
Crocinitomix catalasitica and Brumimicrobium glaciale (Bowman et al., 2003). Phylogenetically, the
family forms a clade within the order Flavobacteriales that overlaps an environmental sequence
clade sometimes referred to as “AGG58”, detected in seawater in one of the first molecular surveys
of uncultivated marine bacteria (DeLong et al., 1993). Initially it was thought Cryomorphaceae were
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largely marine in origin, however, the description of taxa from
freshwater ecosystems, such as of the genus Fluviicola (O’Sullivan
et al., 2004, 2005; Yang et al., 2014; Dahal and Kim, 2018;
Akter and Huq, 2019) instead indicates association with a wide
habitat range. Bacterial species that have been cultivated and
described, however, are mostly from saline ecosystems (Lau
et al., 2005; Lau et al., 2006; Lee et al., 2010; Muramatsu et al.,
2012; Shahina et al., 2013; Yang et al., 2013; Zhou et al., 2013;
Zheng et al., 2015; Dunlap et al., 2017; Lu et al., 2017; Wiese
et al., 2018). Environmental surveys have detected members
of Cryomorphaceae in diverse marine and terrestrial systems
(Pinhassi et al., 2004; Abell and Bowman, 2005; Aguilo-Ferretjans
et al., 2008; Casamayor et al., 2013) but they seem largely absent
from metazoan host systems.

Phenotypic data suggests cultivated Cryomorphaceae taxa
are to some extent nutritionally fastidious requiring several
amino acids and vitamins for growth. Some may exhibit
photoheterotrophy (Gómez-Consarnau et al., 2019) due to the
presence of proteorhodopsins. Early on, clones were found to
be associated with phytoplankton in seawater samples (Pinhassi
et al., 2004) as discovered in the study of DeLong et al. (1993).
No specific associations with organic matter with this group
are known but the taxa seem more predominant in productive
ocean and coastal regions (Abell and Bowman, 2005; Fodelianakis
et al., 2014; Campbell et al., 2015), amongst algal blooms
(Delmont et al., 2014, 2015; Shao et al., 2020), saline waters
with enhanced organic loads (Mitulla et al., 2016; Califano
et al., 2017; Nilsson et al., 2018; Corsino et al., 2019), and
are seemingly enriched in the marine surface layer (Zäncker
et al., 2018). Along with Flavobacteriaceae, members of the
Cryomorphaceae readily colonize ocean plastic waste though the
biofilm communities do not exhibit preference for this type of
surface with similar communities occurring on particulates and
glass surfaces (Oberbeckmann et al., 2016). The wide range of
habitats and diversity of this group suggests many niche and
particular nutritional preferences nevertheless Cryomorphaceae
are common enough to be detected in snow accumulating on the
high Antarctic Plateau 1100 km from the Southern Ocean coast
(Michaud et al., 2014).

The similarity level of the cultivated taxa of the family on
the basis of 16S rRNA gene sequences ranges from 87–89%
with exception of Phaeocystidibacter species which are more
closely related to Owenweeksia. For many years, this level of
sequence divergence was deemed reasonable for a family level
clade, however, with the steady accumulation of new taxa,
including description of the family Schleiferiaceae (Albuquerque
et al., 2011), the family Cryomorphaceae has lost coherence
(Bowman, 2015). The family Crocinitomicaceae was created by
Munoz et al. (2016) and accommodates several former members
of Cryomorphaceae including the recently described genus
Putridiphycobacter (Wang et al., 2019), however, its creation
only partly clarifies the taxonomy of the Cryomorphaceae. The
Genome Taxonomic Database (GTDB, Parks et al., 2018) was
used in this study to evaluate the taxonomic positions and
relatedness of cultivated species of the family Cryomorphaceae
and more broadly the order Flavobacteriales. The GTDB has
provided a major advance to the taxonomy of bacteria and

archaea by defining taxonomic ranks using a relative evolutionary
divergence (RED) value. This is calculated from branch lengths
generated in trees based on 120 conserved concatenated
proteins, referred to as the BAC120 set. There is some
compromise for taxa with unusual evolutionary rate changes, for
example as exemplified by the insect endosymbionts of family
Blattabacteriaceae, a distinct group within Flavobacteriales.
The Cryomorphaceae have evolutionary rates that seem more
typical for the order Flavobacteriales and most other bacteria,
thus it was deemed the GTDB was suitable in resolving the
taxonomy of the family. Furthermore, the GTDB includes the
rich biodiversity comprising single cell amplified genomes and
metagenome assembled genomes (MAGs). The suite of genome
data incorporating Cryomorphaceae and its relatives in order
Flavobacteriales is especially dominated by MAGs owing to
sparse descriptions of cultivated strains.

However, it is evident the taxonomy of the GTDB should be
considered to some extent provisional with the nomenclature
if not with the actual taxonomy. Relevant to this study the
usage of the term Cryomorphaceae by the GTDB and the
official taxonomy – as defined by the List of Prokaryotic names
with Standing in Nomenclature (Parte, 2018;1) is inconsistent.
García-López et al. (2019) emended the family Schleiferiaceae
to include the genera Schleiferia and Owenweeksia on the
basis of whole genome comparisons. In GTDB taxonomy these
genera are also grouped, however, are collectively referred to
as Cryomorphaceae contravening rule 55 of the Bacterial Code
(Lapage et al., 1990) in that legitimate names cannot be arbitrarily
replaced. This family group also should include the species
Thermaurantimonas aggregans (Iino et al., 2020). To resolve
the vague state of the taxonomy of Cryomorphaceae and its
disposition within the official and GTDB taxonomy the GTDB-
toolkit (Chaumeil et al., 2019) was used to first place newly
sequenced taxa within the GTDB. Some could be immediately
placed in placeholder or named families. Some taxa, however,
including Cryomorpha ignava and Luteibaculum oceani were
indicated as having phylogenetic novelty and thus required
further investigation.

MATERIALS AND METHODS

Genome Sequencing and Annotation
Genome sequences were generated from the following
strains: Brumimicrobium glaciale LMG 21434T, Cryomorpha
ignava ACAM 647T, Luteibaculum oceani JCM 18817T,
Phaeocystidibacter luteus LMG 25704T, Phaeocystidibacter
marisrubri JCM 30614T, Salibacter halophilus KCTC 52047T and
Vicingus serpentipes NCIMB 15042T. Accession codes are shown
in Supplementary Table S1 and the Data Availability section.
Genomes were generated either using 150 × 2 pair end ends
using the Illumina HiSeq platform or as 100 bp reads generated
using the NovaSeq 6000 platform. Sequence coverage was at least
150-fold. Contigs were assembled using Unicycler 0.4.8.0 (Wick
et al., 2017) and then annotated using Prokka v.1.14.5 (Seemann,

1https://lpsn.dsmz.de/
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2014) as implemented in Galaxy. The GTDB-tk (Chaumeil et al.,
2019) as implemented in KBase (Arkin et al., 2018) was used to
place genomes in the GTDB.

Concatenated Protein Sets
Targeted Flavobacteriales and reference genomes
(Supplementary Table S1) were selected using the GTDB
browser and by performing BLAST-P searches using
chromosomal replication initiation (DnaA) protein to find more
recently deposited sequences. Protein sequences were obtained
from genomes downloaded from NCBI for concatenation.
Two concatenated arrays of proteins were created in Geneious
Prime (Biomatters Ltd., Auckland, New Zealand). The first set
was based on the BAC120 set from GTDB (Parks et al., 2018).
A second smaller set of proteins included a genomic region that
maintains high levels of synteny across many bacterial phyla.
This region typically starts with ribosomal protein S12 (RpsL)
and ends with ribosomal protein L17 (RplQ). In many genomes
the enolase protein follows RplQ and was thus included as
was DnaA. The proteins included: DnaA, RpsL, RpsG, FusA,
RpsJ, RplC, RplD, RplW, RplB, RpsS, RplV, RpsC, RplP, RpmC,
RpsQ, RplN, RplX, RplE, RpsN, RpsH, RplF, RplR, RpsE, RpmD,
RplO, SecY, InfA, RpsM, RpsK, RpsD, RpoA, RplQ, and Eno.
This set includes 33 proteins comprising 7530 amino acid
positions in total. This set was used to confirm conclusions
generated from the BAC120 set and is designated here as
“DnaA/RpsJ-RplQ/Eno.”

Tree Construction and Analysis
16S rRNA sequences were downloaded from NCBI and GTDB
and included those related to cultivated members of the
family Cryomorphaceae. Near full-length sequences were used
where possible, however, short sequences derived from MAGs
matching those used for protein sequence comparisons were
incorporated where possible. Sequence analysis was performed
using NGPhylogeny.fr (Lemoine et al., 2019) and IQ-Tree

(Nguyen et al., 2015; Trifinopoulos et al., 2016; Hoang
et al., 2018). BIONJ-joined consensus trees were assessed
with bootstrap analysis (either 200 or 1000 replicates) using
default options in the given pipelines. The trees were visualized
and annotated using ITOL (Letunic and Bork, 2019). Protein
alignments were also analyzed using NGphylogeny-fr (ran as a
Galaxy docker image) and IQ-tree using the LG model (Le and
Gascuel, 2008). Consensus BIONJ trees were generated as for 16S
rRNA gene sequences.

RESULTS

GTDB Assignments
GTDB-tk analysis determined provisional family-level
assignments for the Cryomorphaceae genomes sequenced
(Table 1). The 3.5 Mbp MAG Gem2.bin46 derived from a
soda lake metagenome (GCA_007695365; Zorz et al., 2019)
was also included since it had the closest relatedness to the
Cryomorpha ignava type strain 5.0 Mbp genome. Most of
the taxa, according to the GTDB-tk were indicated to have
taxonomic novelty since they were associated with families
with placeholder designations including PHOS-HE28, koll-22
and 1G12. Phaeocystidibacter species were grouped within
the family Schleiferiaceae while Brumimicrobium glaciale, as
expected, was related to other Brumimicrobium species but
is genetically distinct (average nucleotide identity score of
80.7% to Brumimicrobium mesophilum JCM 14063T). The
GTDB-tk assessment of the Cryomorpha ignava genome placed
it outside the GTDB representation of Cryomorphaceae. L. oceani
and Gem2-bin46 based on GTDB-tk outputs (Table 1) also
potentially form a separate family or belong to different families.

16S rRNA Gene Sequence Evaluation
To establish the family level relatedness of cultivated
Cryomorphaceae taxa as well as Gem2.bin46, 16S rRNA

TABLE 1 | GTDB-tk (KBase) analysis of taxa investigated in this study.

Strain GTDB-tk placement
(Flavobacteriales)

RED value BAC120 unique
gene content

(multiple copies)

Comment

Cryomorpha ignava QSSC 1–22T PHOS-HE28 0.7701 120 (0) Taxonomic novelty determined using RED

Gem2.bin46 (soda lake metagenome)a PHOS-HE28 0.7763 116 (1) Taxonomic novelty determined using RED; Rnc
(TIGR02191), PheS (TIGR00468), PheT
(TIGR00472) not detected; PurB (TIGR00928)
multiple copies

Luteibaculum oceani JCM 18817T PHOS-HE28 0.7657 119 (0) Taxonomic novelty determined using RED; Rnc
(TIGR02191) not detected

Vicingus serpentipes NCIMB 15042T koll-22 0.8647 120 (0) Taxonomic novelty determined using RED

Salibacter halophilus KCTC 52047T 1G12 0.8414 120 (0) Taxonomic novelty determined using RED

Phaeocystidibacter luteus LMG 25704T Cryomorphaceae 0.7744 120 (0) Taxonomic classification fully defined by topology

Phaeocystidibacter marisrubri JCM 30614T Cryomorphaceae 0.7737 120 (0) Taxonomic classification fully defined by topology

Brumimicrobium glaciale IC156T Brumimicrobium,
Crocinitomicaceae

0.986 119 (0) Taxonomic classification fully defined by topology;
SecE (TIGR00964) not detected; ANI 80.7% with
Brumimicrobium mesophilum

aFrom Zorz et al. (2019).
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FIGURE 1 | 16S rRNA gene sequence based BioNJ tree focusing on sequences related to the family Cryomorphaceae and related taxa of the order Flavobacteriales,
phylum Bacteroidetes. The tree is a consensus tree generated in IQ-Tree. Bootstrap values converted to a percentile scale are based on 1000 replicates determined
using the ultrafast method of Hoang et al. (2018). Only bootstraps exceeding 50% are shown. Color strips indicate location of family-level lineages based on the
GTDB framework. Family designations include the GTDB and the revised taxonomy determined in this study. Star symbols located on branches indicate validated
described type strains relevant to this study. More detailed information on taxa compared is shown in Table 2 and Supplementary Table S1.

genes and two concatenated protein sets were compared. For
the 16S rRNA gene dataset most sequences related to the
Cryomorphaceae include sequences from environmental sample
surveys (Figure 1). 16S rRNA data from MAGs, as is normally
the case, was relatively sparse. Family level clades are shown in
the 16S rRNA tree with designations guided by GTDB, the new
genome data (Figure 1) and the taxonomic revisions proposed

by García-López and colleagues (2019). The family clade level
designations are the same as given for all trees shown here.
Within the 16S rRNA gene sequence based tree the Cryomorpha
ignava type strain and Gem2.bin46 formed two clusters with
insignificant bootstrap support. These clusters were positioned
adjacent to the PHOS-HE28 and UBA2798 clades, but negligible
bootstrap values occur between these clades and those designated
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FIGURE 2 | GTDB Bac120 protein set based BioNJ tree focusing on sequences related to the family Cryomorphaceae and related taxa of the order
Flavobacteriales, phylum Bacteroidetes. The tree is a consensus tree generated in IQ-Tree. Bootstrap values converted to a percentile scale are based on 200
replicates. Only bootstraps exceeding 50% are shown. Color strips indicate location of family-level lineages based on the GTDB framework. Family designations
include the GTDB and the revised taxonomy determined in this study. Star symbols located on branches indicate validated described type strains relevant to this
study. More detailed information on taxa compared is shown in Table 2 and Supplementary Table S1.

as being Cryomorphaceae sensu stricto. L. oceani forms a distinct
clade that branches deeply with no connection to other taxa.
V. serpentipes grouped clearly within the koll-22 clade forming
a lineage distinct at the genus level. S. halophilus 16S rRNA also
formed a distinct group in terms of 16S rRNA sequences. As is
shown below with protein-based trees S. halophilus groups with
the GTDB 1G12 clade, however, this clade was polyphyletic in
the 16S rRNA tree. One complication is the lack of 16S rRNA
gene sequences associated with MAGS belonging to 1G12, so

sequences retrieved are based largely on similarity. A low level
of relatedness between members of 1G12 at the protein level (see
below and Figures 2, 3) also adds potentially to the disparity
observed in the 16S rRNA gene tree. Nevertheless, S. halophilus
demonstrates a position distinct from other cultivated species.
Phaeocystidibacter species by comparison show affiliation to
Owenweeksia hongkongensis and its relatives.

The 16S rRNA gene sequence position of Schleiferia
thermophila disagrees with the results from the protein
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FIGURE 3 | Concatenated protein based BioNJ tree covering family Cryomorphaceae and related taxa of the order Flavobacteriales and including other taxa of the
phylum Bacteroidetes. The protein set used is based 33 proteins covering 7530 amino acid positions designated the DnaA/RpsJ-RplQ/Eno set (see “Materials and
Methods” for protein list). The tree is a consensus tree generated in IQ-Tree. Bootstrap values converted to a percentile scale are based on 200 replicates. Only
bootstraps exceeding 50% are shown. Color strips indicate location of family-level lineages based on the GTDB framework. Family designations include the GTDB
and the revised taxonomy determined in this study. Star symbols located on branches indicate validated described type strains relevant to this study. More detailed
information on taxa compared is shown in Table 2 and Supplementary Table S1.

alignments (Figures 2, 3). Though not shown in Figure 1,
Thermaurantimonas aggregans also falls into the same lineage as
it closely related to S. thermophila (sequence similarity 94%). The
data from Figures 2, 3 is consistent with data from GTDB and
the whole genome comparisons by García-López et al. (2019).
The discrepancy in the 16S rRNA gene tree appears to reflect
an aspect of the phylogeny of the Schleiferia clade. Since these

taxa derive from thermal hot springs the rates of change in genes
and proteins could differ relative to the marine-derived other
members of the family Schleiferiaceae.

The family level clades of the Flavobacteriales as designated in
GTDB that lack cultivated strains, otherwise formed quite distinct
clusters based on 16S rRNA gene sequences including TMED113,
BACL11, GCA-002722245, UA16, UBA10066, UBA2798, and
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PHOS HE-28 (Figure 1). This list is not complete as other
minor groups not included lacked 16S rRNA gene sequence
information. The UBA10066 clade includes the sequence
designated “Agg58” (L10946, DeLong et al., 1993) as mentioned
in the introduction.

Protein-Level Phylogenetic Evaluation of
Cryomorphaceae-Related Bacteria
A BAC120 protein-alignment tree was used to further investigate
the relationships of Cryomorphaceae related taxa. A smaller
protein set (designated DnaA/RpsJ-RplQ/Eno) was also tested,
essentially as a means to non-orthogonally validate the relations
evidenced in the BAC120 tree. This data indicated Cryomorpha
ignava, Gem2.bin46, and L. oceani form a common deep cluster
or form adjacent deep-branching lineages depending on the
tree (Figures 2, 3). The consensus trees indicate Cryomorpha
ignava is reliably affiliated with Gem2.bin 46, however, the
connection to L. oceani differed between trees. An affiliation
is suggested in the DnaA/RpsJ-RplQ/Eno tree (98% bootstrap)
but was unsupported in the BAC120 tree. The position of
these three taxa again fell adjacent to the PHOS-HE28 clade
but were distinct on the basis of bootstrap values and branch
distributions, which supports the 16S rRNA gene data. In any
case within both protein-based trees these lineages were roughly
equidistant to each other and to several other family clades
including Crocinitomicaceae, UA16, UBA2798, GCA-002722245,
and koll-22. L. oceani having no closely related genomes
likely undergoes branch attraction into the Cryomorphaceae
sensu stricto with the DnaA/RpsJ-RplQ/Eno protein dataset
but as this dataset is expanded the relationship seems to
become more ambiguous. Since BAC120 data is eight-fold
greater in extent than the DnaA/RpsJ-RplQ/Eno set the BAC120
tree was considered to be more robust for final taxonomic
deliberations. Phenotypic comparisons, including mol% G+C
were unfortunately not helpful in these considerations due to
sparse data, general inactivity in tests but also due to the fact a
family level lineage would not be expected to have constrained
phenotype range at least for those that are traditionally
determined. Fatty acid data composition is quite different while
menaquinone content is unknown for Cryomorpha ignava. Fatty
acid profiles can also vary considerably between species within
family level lineages.

For the other taxa, the affiliations are less complicated.
V. serpentipes clustered in the midst of the koll-22 clade in both
trees. Closest related MAGs include those from the BRH-c54
clade derived from rock porewater and groundwater, marine
subsurface and pelagic zone metagenomes. All within this group
have moderate sized genomes of around 3 Mbp and G+C
contents of 32–33 mol%. This group exemplifies the habitat
diversity that can occur within the family groups examined.
Source information is detailed in Supplementary Table S1.
S. halophilus is clearly a member of the 1G12 clade being
centrally positioned and most closely related to MAGs SAT99,
UBA6049, and UBA10426 which represent different genus-level
lineages in the GTDB. The 1G12 clade includes 3 clusters that
form quite deep-branches in both protein trees. The bootstrap

support for the 1G12 clade was very weak (average 30%) in
the DnaA/RpsJ-RplQ/Eno tree but was much stronger in the
BAC120 tree (96%). Of all Flavobacteriales family level clades,
1G12 is perhaps the least cohesive. More genome data would be
useful to confirm the memberships in this group and the overall
phylogenetic structure.

Phaeocystidibacter species formed a distinct lineage in
family Schleiferiaceae containing Owenweeksia, Schleiferia,
Thermaurantimonas and two sub-clusters of MAGs from marine
sources. The arrangements of these lineages were reproduced in
both protein trees. The affiliation of the moderate thermophiles
S. thermophila and Thermaurantimonas aggregata as the
outermost members of this clade has strong bootstrap support
and is congruent with the GTDB taxonomy and taxonomy based
on whole genome comparisons (García-López et al., 2019).

Overall Phylogenetic Structure of the
Order Flavobacteriales
The protein trees also have consistent phylogenetic arrangements
of 21 known family equivalent groups that GTDB assigns
within Flavobacteriales and also reveal a possible 22nd family
level member. Crocinitomicaceae is affiliated most closely with
UBA10066 in both trees. UA16 is most closely affiliated with
PHOS HE-28, UBA2798 and Cryomorphaceae sensu stricto,
and L. oceani though the bootstrap support is weak in the
BAC120 tree for the overall cluster. The koll-22, 1G12, GCA-
002746335, GCA-002722245, and UBA10329 clades cluster
together, however, bootstrap analysis does not support any
meaningful specific relatedness between the clades since they
deeply branch. This group also includes the hot spring MAG
J034 (Ward et al., 2019; GCA-003696585.1). Its phylogenetic
arrangement potentially suggests it forms another family
level lineage. J034 typically branches distantly with the MAG
Norp27 that belongs to GTDB placeholder family GCA-
002746335. The families Flavobacteriaceae, Weeksellaceae
(García-López et al., 2019) UJ101, UBA1820, Blattabacteriaceae,
Ichthyobacteriaceae and Schleiferiaceae form a common large
clade. The family represented by the xanthid crab (Atergatis
reticulatus) gut isolate UJ101 (Yang et al., 2017) happens to be
closely related to the species Spongiimonas flava (Yoon et al.,
2013) on the basis of 16S rRNA gene sequences (Figure 1).
Due to the lack of genome data for Spongiimonas flava and
the close relatedness UJ101 has with the family Weeksellaceae
(Figures 2, 3) creating a family for this taxon seems premature
without additional information. The BACL11, TMED113
and UBA7430 clades also form a common large group –
these family placeholder clades include MAGs entirely from
seawater metagenomes. A summary of some features of
Flavobacteriales named and placeholder families are summarized
in Table 2.

DISCUSSION

One of the main taxonomic issues with the order Flavobacteriales
has been the inability to confidently designate family level
ranks due to a lack of understanding of its biodiversity and
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TABLE 2 | Genomic-level and habitat characteristics of family level lineages of order Flavobacteriales (based on data investigated in this study).

Family designation Genomes
analyzed/compared

G+C range Genome size Mbpa Associated ecosystems

Cryomorphaceae (emended) 2 40.4–49.3 3.5–5.0 Mildly saline marine and terrestrial ecosystems

Luteibaculaceae fam. nov. 1 39.9 2.9 Coastal seawater

Schleiferiaceae emended (NS9b) 34 36.5–57.9 >1.3–4.7 (1.8) Seawater, marine algal cultures, riverine/lake/hot spring
freshwater

Salibacteraceae fam. nov. (1G12, NS7b) 12 36.0–49.1 >2.2–5.4 (3.3) Seawater, solar saltern, coral mucus, salt marsh/swamp
water

Vicingaceae fam. nov. (koll-22) 17 31.0–42.8 >1.8–5.0 (3.1) Seawater, marine biofilm, riverine/lake/aquifer freshwater

Crocinitomicaceae (NS6b) 40 31.4–49.5 >1.1–5.1 (3.6) Seawater, saline lakes, sea-ice, marine sediment, coral
mucus, seaweed surface, riverine/lake/aquifer
freshwater/sediment, wastewater/bioreactor samples, soil

Blattabacteriaceae 5 20.9–37.0 0.2–1.3 (0.3) Insect obligate endosymbionts

Weeksellaceae 14 29.1–45.1 2.0–5.6 (3.0) Insect, animal and human microbiomes

Flavobacteriaceae 21 29.8–47.1 2.5–5.0 (3.8) Marine ecosystems (seawater, sediment, fauna, flora), fish
microbiomes, freshwater, soil, animal oral microbiome

BACL11 17 28.2–38.5 >1.0–3.0 (1.7) Seawater

GCA-002722245 (NS8b) 3 33.9–34.7 >2.0–3.1 (3.0) Seawater

GCA-002746335 1 41.6 >4.2 Seawater

J034 1 37.2 ∼2.5 Iron-rich hot spring (Japan)

NORP154 2 40.8–43.6 >2.5–3.0 Seawater

PHOS-HE28 4 59–65 >3.2–4.5 Wastewater, activated sludge

TMED113 7 28.0–31.2 >0.9–1.5 (1.5) Seawater

UA16 (NS10b) 32 37.4–61.1 >1.4–2.9 (2.3) Seawater; lake water

UBA1820 2 47.9–56.6 >1.8–2.0 Avian and human gut microbiomes

UBA2798 1 41.8 >3.8 Activated sludge

UBA7430 2 26.9–38.8 >1.7–1.8 Seawater

UBA10066 (“Agg58” clade) 15 29.5–41.0 >0.9–2.8 (2.3) Seawater

UBA10329 2 42.1–49.4 >1.8–2.9 Marine water and sediment

UJ101 1 30.7 3.1 Marine fauna

aGenome size in relation to MAGs is based on genomes that have at least 90% completeness. bAffiliation of NS (North Sea seawater) clades as designated by Alonso
et al. (2007).

phylogeny. The Cryomorphaceae group with its lack of distinctive
phenotypes and sparse descriptions hindered making meaningful
taxonomic decisions. The rapid expansion of metagenome
information, highly relevant for this group of bacteria was
instrumental since the phylogenetic structure becomes much
more resolved with the inclusion of MAGs. A number of
comparisons were used in this study – 16S rRNA genes,
the BAC120 and the DnaA/RpsJ-RplQ/Eno protein sets - all
of which largely support the conclusions made here. The
BAC120 is a highly suitable standardized protein set and when
combined with data analysis as provided by GTDB-tk allows
identification of novel taxa. The evaluation of a smaller, more
manageable protein set should be taken as a confirmatory
approach and that mirrored the phylogenetic structure achieved
with the BAC120 set. Bootstrap values for some groups, such
as the IG12 clade (Figures 2, 3) are less supported by the
reduced information level of the DnaA/RpsJ-RplQ/Eno set.
Nevertheless, using these and equivalent datasets complemented
by whole genome comparisons will continue to improve the
taxonomy considering the continued sequencing of type strains
and discovery of new isolates and MAGs filling in remaining
taxonomic “gaps.”

The analyses provide evidence for the creation of new families
within the order Flavobacteriales and designating Latinized
names to placeholder GTDB families. In particular, the data
provides evidence that Cryomorpha ignava, the type of family
Cryomorphaceae forms a distinct family lineage. Gem2.bin46
a MAG derived from a soda lake located within British
Columbia, Canada (Zorz et al., 2019) was the closest relative
with genome data. Its membership to the family was confirmed
by protein comparisons though additional genome sequences
would be useful for further understanding of this family
given 16S rRNA gene sequences evidences a rich diversity
(Figure 1). The lack of such data leads L. oceani to have a
more ambiguous taxonomic situation. Based on the BAC120
tree as well as the more dubious support of 16S rRNA gene
sequence data the decision is to place this species into its
own family level group. All the other taxa analyzed could
be readily inserted into placeholder or named families within
the GTDB taxonomy.

Family Cryomorphaceae must be emended to only include
the cultivated species Cryomorpha ignava, based on rules
21a, 23a, and 23b of the Bacterial Code (Lapage et al.,
1990). Similarly, the deep position of L. oceani leads to the
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proposal it also forms a clade distinct at the family level and
thus it is proposed as the type representative of the family
Luteibaculaceae fam. nov. The position of V. serpentipes within
the koll-22 placeholder family results in this clade being named
Vicingaceae fam. nov. Similarly, S. halophilus represents the
family Salibacteraceae fam. nov., which effectively replaces the
placeholder term 1G12. Additional isolates and metagenomes
with 16S rRNA gene sequences would be ideal to further define
the cohesiveness of Salibacteraceae. Since Cryomorphaceae is
restricted to Cryomorpha the representation of Cryomorphaceae
in the GTDB must also be altered though at this stage does
not affect the official nomenclature as such. It is proposed the
family Schleiferiaceae be again emended (García-López et al.,
2019) here to incorporate common traits of the cultivated
members of family and mol% G+C data of its broader
membership. To be consistent the family Crocinitomicaceae
(Munoz et al., 2016) is similarly emended. Comparative
evaluation of genome contents and metabolic prediction for the
other placeholder families in relation to families with cultivated
taxa is required to realize their taxonomy (Chuvochina et al.,
2019) in a more concrete fashion but was not implemented as
part of this study.

TAXONOMIC CONSEQUENCES

Emended Description of the Family
Crocinitomicaceae (Munoz et al., 2016)
As for the current description (Munoz et al., 2016) as well as:
gliding motility may occur. Metabolism is chemoorganotrophic
and is either strictly aerobic or facultatively anaerobic. May
form carotenoids and possess proteorhodopsin. Occur in
either freshwater or marine environments and thus salt
requirement may occur. Species may have complex growth
requirements requiring amino acids, vitamins and other
compounds for growth. Major fatty acid is iso-C15:0. The
main respiratory lipoquinone is MK6 and/or MK7. The G+C
content calculated from available genome species is around
31.4–49.5 mol%.

Includes the genera Crocinitomix (type genus),
Brumimicrobium, Fluviicola, Lishizhenia, Putridiphycobacter,
Salinirepens, and Wandonia. Also includes the following
placeholder genera based on the GTDB: 40-80, SZUA-381,
UBA2040, UBA4466, UBA5422, UBA6165, and UBA952.

Emended Description of the Family
Cryomorphaceae Bowman et al. (2003)
The genus Cryomorpha remains as the type genus (Bowman
et al., 2003). The description of Cryomorphaceae is emended
as follows. Gram-negative, non-spore forming, non-flagellated.
Gliding motility may occur. Metabolism is strictly aerobic
and chemoorganotrophic. Usually strictly halophilic. May
form carotenoids and possess proteorhodopsin. Species may
have complex growth requirements requiring sea-water salts,
amino acids, vitamins and other compounds for growth.
Fatty acids are mainly C14–C16 saturated, monounsaturated

and 2-hydroxylated branched-chain fatty acids. The G+C
content calculated from available genome species is around
39.9–49.3 mol%.

Includes the soda lake derived-MAG Gem2.Bin46 as a
genus level lineage.

The genera Owenweeksia, Phaeocystidibacter, Luteibaculum,
Salibacter, and Vicingus are excluded from the family
Cryomorphaceae on the basis of phylogenetic data.

Emended Description of the Family
Schleiferiaceae Albuquerque et al. (2011)
emend. García-López et al. (2019)
As described previously (Albuquerque et al., 2011; García-
López et al., 2019) and including Gram-negative, non-spore
forming, non-flagellated cells. Either non-motile or motile
by gliding motility. Taxa can be mesophilic or moderately
thermophilic. Metabolism is mostly strictly aerobic and
chemoorganotrophic. Oxidase positive. Catalase activity varies.
Includes marine and freshwater species thus taxa may or may
not require salt for growth. Usually form carotenoids and
may possess proteorhodopsin. Species usually have complex
growth requirements requiring amino acids, vitamins and
other compounds for growth. The major menaquinone
present is MK-6. Possess phosphatidylethanolamine. Major
fatty acid present is iso-C15:0. The G+C content calculated
from available genomes is around 36.5-57.9 mol%. Member
genera include Schleiferia, Owenweeksia, Phaeocystidibacter and
Thermaurantimonas. The family also includes the following
placeholder genera based on the GTDB: TMED14, UBA10364,
UBA7878 and UBA3442.

Description of Luteibaculaceae fam. nov.
Lu.te. i.ba. cu.la.ce’ae (L. neut. n. Luteibaculum type genus of
the family; -aceae ending to denote a family; N.L. fem. pl. n.
Luteibaculaceae, the Luteibaculum family).

Gram-negative, non-spore forming, non-flagellated.
Gliding motility may occur. Metabolism is strictly aerobic
and chemoorganotrophic. May require salt for growth.
May form carotenoids. Species may have complex growth
requirements requiring sea-water salts, amino acids, vitamins
and other compounds for growth. Fatty acids include
iso-C15:0. The G+C content calculated from available
genome species is around 40 mol%. The type genus
is Luteibaculum.

Description of Vicingaceae fam. nov.
Vi.cing.a ce’ae (L. masc. n. Vicingus type genus of the family; -
aceae ending to denote a family; N.L. fem. pl. n. Vicingaceae, the
Vicingus family).

Gram-negative, non-spore forming, non-flagellated. Gliding
motility may occur. Metabolism is usually strictly aerobic and
chemoorganotrophic. Requirement for salt varies. May form
carotenoids and possess proteorhodopsin. Member species may
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have complex growth requirements requiring sea-water salts,
amino acids, vitamins and other compounds for growth. The
major menaquinones present include MK-7. The G+C content
calculated from available genome species is around 31.0–
42.8 mol%. The type genus is Vicingus.

The family includes the following placeholder genera based
on the GTDB: BRH-c54, GCA-002793235, UBA11591, UBA1494,
UBA1494-A, UBA5081, and UBA852.

Description of Salibacteraceae fam. nov.
Sa. li.bac.te.ra.ce’ae (L. masc. n. Salibacter type genus of the
family; -aceae ending to denote a family; N.L. fem. pl. n.
Salibacter, the Salibacteraceae family).

Gram-negative, non-spore forming, non-flagellated.
Metabolism is chemoorganotrophic with growth occurring
potentially under both aerobic and anaerobic conditions.
Requirement for salt for growth. May form carotenoids and
possess proteorhodopsin. Species may have complex growth
requirements requiring sea-water salts, amino acids, vitamins
and other compounds for growth. The major menaquinones
present may include MK-7. The G+C content calculated from
available genome species is around 36.0–44.6 mol%. The type
genus is Salibacter.

The family includes the following placeholder
genera based on the GTDB: GCA-2705995, SHAN690,
UBA10426, UBA2108, UBA4419, UBA6049, UBA6057,
and UBA6770.
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