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The interaction between Aspergillus flavus and Zea mays is complex, and the
identification of plant genes and pathways conferring resistance to the fungus has been
challenging. Therefore, the authors undertook a systems biology approach involving
dual RNA-seq to determine the simultaneous response from the host and the pathogen.
What was dramatically highlighted in the analysis is the uniformity in the development
patterns of gene expression of the host and the pathogen during infection. This led
to the development of a “stage of infection index” that was subsequently used to
categorize the samples before down-stream system biology analysis. Additionally, we
were able to ascertain that key maize genes in pathways such as the jasmonate,
ethylene and ROS pathways, were up-regulated in the study. The stage of infection
index used for the transcriptomic analysis revealed that A. flavus produces a relatively
limited number of transcripts during the early stages (0 to 12 h) of infection. At later
stages, in A. flavus, transcripts and pathways involved in endosomal transport, aflatoxin
production, and carbohydrate metabolism were up-regulated. Multiple WRKY genes
targeting the activation of the resistance pathways (i.e., jasmonate, phenylpropanoid,
and ethylene) were detected using causal inference analysis. This analysis also revealed,
for the first time, the activation of Z. mays resistance genes influencing the expression
of specific A. flavus genes. Our results show that A. flavus seems to be reacting to a
hostile environment resulting from the activation of resistance pathways in Z. mays. This
study revealed the dynamic nature of the interaction between the two organisms.

Keywords: interactome, maize, Aspergillus flavus, aflatoxin, gene regulatory network

INTRODUCTION

Zea mays is one of the three largest cereal crops in the world (Z. mays, O. sativa, and T. aestivum)
in terms of annual production and in the United States alone 13.8 billion bushels of corn was
produced for the year 2020. It is also crucial as a staple crop that feeds millions of people
and animals daily. However, corn yields are affected by diseases caused by pests, including
fungal pathogens such as Aspergillus flavus. A. flavus is an opportunistic pathogen that adopts a
necrotrophic lifestyle, causing cell death in the host and feeding on dead host tissue. A. flavus
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has also been shown to infect multiple crops such as Gossypium
hirsutum, Arachis hypogaea, and Prunus dulcis (Bedre et al.,
2015; Fountain et al., 2015a). In addition to its effect on plant
health, A. flavus can also affect animal and human health
due to the production of aflatoxins in infected crops (Nesbitt
et al., 1962; Cole, 1986, Ostry et al., 2017). Aflatoxins, notably
aflatoxin B1, are potent mycotoxins and potential carcinogens
when consumed by animals. Hence, many countries have adopted
laws that restricting the marketing of crops that are contaminated
with aflatoxins in certain national or international markets.
Additionally, an intensive effort has been made to study the
A. flavus - Z. mays interaction at multiple levels to identify factors
involved in crop yield loss. Similarly, extensive research has been
conducted to study the life cycle and biology of the pathogen
A. flavus itself in genes such as VeA and LaeA (Amare and Keller,
2014; Fountain et al., 2015a, Tang et al., 2015).

The results from genome comparison with other Aspergillus
species have led to the identification of several genes that are
keys to the production of secondary metabolites and other
pathogenicity factors in A. flavus, (Rokas et al., 2007; Ehrlich
and Mack, 2014). The A. flavus aflatoxin gene cluster has been
elucidated by mutational studies. Some genes in this cluster
have also been linked to multiple developmental processes
(Yu et al., 2004; Price et al., 2006). At the cellular level, the
velvet complex is made up of multiple developmental genes
that also have an effect on secondary metabolism (Calvo et al.,
2004). Likewise, LaeA, another developmental gene in A. flavus,
linked to pathogenesis and secondary metabolism, was identified
through comparison to A. nidulans (Kale et al., 2008; Amaike and
Keller, 2009, Chang et al., 2013). Other studies have highlighted
the importance of hydrolytic processes and cellular transport at
the cellular level during pathogenesis, including the development
of aflatoxisomes, special organelles that harbor enzymes essential
for the biosynthesis of aflatoxins in A. flavus (Kistler and Broz,
2015). Early work attempting to understand the crosstalk between
A. flavus and Z. mays led to the identification of lipoxygenases in
both A. flavus and Z. mays as key genes in this process (Brown
et al., 2009). Since then, the girth of Aspergillus genomic data has
allowed the discovery of many new interactions highlighting the
involvement of proteins such as the A. flavus small ubiquitin-like
modifiers PdeH in the interaction between A. flavus and Z. mays
(Nie et al., 2016; Yang et al., 2017).

Genomic studies with Z. mays have also been successful
in elucidating mechanisms controlling resistance to fungal
pathogens. Unlike A. flavus, there are multiple post-genomics
resources available to Z. mays researchers, such as publicly
available interactomes, that can be used to associate complexes
and pathways with interacting proteins (Musungu et al., 2015).
Nevertheless, recent studies investigating resistance of Z. mays to
A. flavus almost exclusively involved utilizing singular genomics
approaches (using information from one genome at a time) such
as RNA-seq and DNA-seq. These have been able to identify and
analyze key maize disease resistance proteins such as PR10, PR5,
chitinases, trypsin inhibitors, and a vast array of other genes that
contribute to the resistance in Z. mays to A. flavus and other
pathogens (Brown et al., 1995; Chen et al., 2007). Moreover,
recent “single genomics” transcriptomic studies have shown that

the activation of key pathways, such as the jasmonate, ethylene
biosynthesis and several other signaling pathways, are implicated
in the resistance of Z. mays to A. flavus (Burow et al., 1997;
Scarpari et al., 2014, Christensen et al., 2015). Breeding and
genetic marker analysis efforts using genome wide association
and quantitative trait loci studies indicate that the A. flavus –
Z. mays interaction involves multiple genes for resistance. These
studies also show that there is a strong environmental influence
on resistance, which complicates breeding for resistance to
A. flavus in Z. mays (Wisser et al., 2006).

A significant limitation of the current body of genomic work
that tackles the A. flavus – Z. mays interaction, is the tendency to
analyze data from the pathogen and the host separately. Although
many co-expression networks can be found in the literature,
they describe transcription in A. flavus or Z. mays individually
(Sekhon et al., 2013; Asters et al., 2014). Thus, in those
studies, interactions between pathogenicity factors in A. flavus
and resistance genes in Z. mays merely denote inferences of
association. To gain a better understanding of these interactions
in the early stages of the infection, dual transcriptomic analysis of
both host and pathogen was undertaken in this study using high
depth RNA sequencing. Previous work involved understanding
A. flavus and Z. mays in a small study where there was
limited replication reducing the power for making statistical
inferences. The study did, however, find that there was significant
correlation between pathways in Z. mays and A. flavus (ref).
The experimental design was that of a high-density time series
transcriptomic study that allowed the use of casual inference to
predict gene regulatory interactions, and to identify key pathways
that are active during the early stages of the infection. This
provides insight into different gene regulators that are activated
at specific times during the infection process, and thus allows
for reverse engineering of the entire regulatory pathway. When
combined into a gene regulatory network (GRN), the inference of
cause-effect relationship between co-regulated genes in pathways
within and across species can be comprehensively mapped.
Two algorithms were used; GeneNet, a partial correlation/partial
variance-based algorithm, and TDARACNE, a time delay
algorithm. Both algorithms can determine cause and effect
(Opgen-Rhein and Strimmer, 2007; Schaefer et al., 2010, Schaefer
et al., 2015). In this work, we used this systems approach to
describe the underlying genetics of the molecular interactions
between a host and a pathogen in the early stages of infection
(SI). Likewise, we provide the first attempt to infer regulatory
connections between Z. mays and A. flavus.

MATERIALS AND METHODS

Growth and Inoculation of Maize
The maize inbred line B73 was grown in the field in Clayton,
NC at the Central Crops Research Station at North Carolina
State University, during the years 2011 and 2013. Both years were
planted on April and grown according to standard practices. Ears
were hand pollinated on July 5–8 and covered with a paper bag.
A. flavus NRRL 3357, was grown on potato dextrose agar (PDA)
and collected from plates with 0.05% (v/v) Triton X-100. In July,
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a time course study was performed by pin bar inoculating one ear
(per time point) from eight maize B73 with A. flavus NR3357, and
harvesting at 0, 6, 12, 18, 24, 30, 36, 42, 48, 72, 96, 120, and 140 h
post inoculation. Samples were frozen in liquid nitrogen, placed
on dry ice, and stored at−80◦C until RNA was isolated.

RNA Isolation
Eight kernels per ear were grounded using a mortar and
pestle in order to isolate RNA. Approximately one hundred
milligrams of ground tissue was homogenized (Virtis, Gardiner,
NY, United States) in saturated phenol, pH 6.6 for 2 min.
Samples were then dissolved in Tris EDTA buffer, pH 8.0
(ACROS Organics, Morris Plains, NJ, United States), extracted
with 5:1 acid phenol: chloroform, pH 4.5 (Fisher), and the
RNA precipitated with ice-cold 100% ethanol (ACROS Organics)
overnight. Total RNA was purified again with the RNeasy Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. The quality (RIN > 8) and concentration of RNA
was analyzed using an RNA Pico chip on an Agilent Bioanalyzer
(Agilent, Santa Clara, CA, United States).

Sequencing
cDNA library construction and sequencing was performed at the
Genomic Sciences Laboratory, North Carolina State University.
Individual libraries were made from each time point, pooled and
run on a single lane. Sequencing was performed on an Illumina
HiSeq 2500 platform. The data from the RNA-seq can be accessed
at NCBI using the accession (GSE101899).

Bioinformatics Analysis
For both Z. mays and A. flavus, mapping, trimming and fastqc
quality control of the reads was done with CLC workbench
4.9 (Workbench, 2010). CLC genomics workbench default
parameters were used to perform the mapping and trimming
similar to previous publication (Musungu et al., 2016). The
reference genomes used in the study where Z. mays (AGPv3,
INSDC Assembly GCA_000005005.5, Apr 2013) and A. flavus
(JCVI-afl1-v2.0, INSDC Assembly GCA_000006275.1, Jan 2009).
Reads that had a total gene count less than 1 were removed
from the counts table. The unique reads from CLC genomics
workbench were then used with Deseq2 package in R statistical
program (Table 1) with the default settings (Love et al., 2014).
For contrast selection in DESeq2, SI-1 was considered to be the
control. Whereas for the time-course control, the time point
samples 0 h were used as the control (Table 1). For A. flavus,
only samples from SI-8 to 18 where used in the differential
expression analysis. The heat maps of the differential expressed
genes were analyzed using K-means clustering and hierarchal
clustering using Tcluster3 (de Hoon et al., 2004).

Gene Network Generation
For gene network analysis, the samples fold changes = [genei –
genei+n (average)] were calculated by using the DESeq2
regularized log transformed data (Supplementary R Script
2) and then using R (Supplementary R Script 1). The R
package (GeneNet) was then used for network generation. The

TABLE 1 | The sum of unique reads that aligned to the Maize and
A. flavus genomes.

Time Maize Aspergillus

0 h 183546459 16774

4 h 175225669 3700771

6 h 165052452 7223

12 h 191346756 18611

18 h 189130692 119690

24 h 177574520 127124

30 h 149353775 210432

36 h 175423737 765709

42 h 173900923 3029592

48 h 168062408 2716143

72 h 167752678 21747211

96 h 167752678 21747211

120 h 129154376 45150333

144 h 88430362 69915184

criteria for selection into the high confidence networks was a
significant partial correlation q-value (0.05) and a significant
direction q-value (0.05) initially and an additional filtering of
the q-val.dir < 10−5. The gene network also included a “low
confidence set” of genes. This set consisted of edges that only had
a significant direction q-value. The cytoscape 3.0.1 visualization
software was used to visualize and display the gene expression
network. The edges were depicted as directed graphs to display
the causal inference between genes.

RESULTS

RNA-seq Analysis During Infection of
Z. mays Kernels by A. flavus
Zea mays kernels were infected by pinning with a conidial
suspension of A. flavus. Pinned kernels were harvested for RNA
extraction immediately after pinning (time point 0), and at
different time points up to 6 days post inoculation. To analyze
gene expression in both Z. mays and A. flavus, eight biological
replicates of each of the time points were sequenced. The Illumina
HiSeq reads were separated by organism by simultaneous
mapping to both Z. mays and A. flavus genomes. RNA sequences
of Z. mays and A. flavus were processed by quantile normalization
of counts per million of counts uniquely mapping to each gene
model. Only unique reads were retained to calculate normalized
gene expression as RPKM (Reads Per Kilobase of transcript per
Million mapped reads). On average, 20862468.45 reads where
mapped uniquely to each of the genomes.

The total amount of sequenced RNA reads in this study, a
total of 2303938848 unique reads for maize and 157832429 for
A. flavus, exceeded what has been reported in other dual RNA-
seq studies that have characterized the transcriptomes of host
and pathogen simultaneously (Yazawa et al., 2013; Rudd et al.,
2015). In the early stages of infection, most of the RNA in each
sample was found to be host (Z. mays) RNA. This was observed
in other dual RNA-seq studies as well and was reported to be
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simply due to the small number of pathogen cells in the initial
inoculum, and the slow initial growth of the pathogen (Musungu
et al., 2016). The subsequent growth and spread of the pathogen
resulted in increasing the fraction of A. flavus RNA in later
samples. Interestingly, the number of total unique reads mapping
to Z. mays did not change significantly from sample to sample
until 24 hours post inoculation (hpi) (Table 1). Since the total
amount of tissue in each sample was the same for all samples
across all time points, the absolute decrease in host RNA reads
may also reflect a per gram decrease in living Z. mays tissue due to
necrosis caused by the pathogen in plant tissue at the later stages
of infection, as well as increased amount of pathogen mycelia per
gram tissue as the infection progresses.

Within our data we delve into the link between the standard
time course vs our stage of infection which represents grouped by
A. flavus infection dependence. In Figure 1 we highlight stage of
infection as opposed to time because it represents a correlation in
the activity of transcription for A. flavus and Z. mays interaction.
MA-plots that graphically illustrate the relationship of m-value
(log2 fold change) vs. absolute expression were used to determine
the mean expression distribution and differential expression
characteristic of each biological sample (Figure 1). Read counts
showed a significant skewing of data, especially for A. flavus,
that would affect the reliability of differentially expressed gene
calling; low counts, especially at early time points, and large
dynamic range of RNA-seq data, made log-fold change-based
analysis quite noise-prone (Love et al., 2014). DESeq2 regularized
log normalization was used during the analysis of the differential
expression of genes to reduce the amount of false positives
that could be present due to low counts. Additionally, genes
that had a total count less than 10 could be removed from
the analysis. Consequently, the A. flavus transcripts from the
early stages of infection (SI1–6) were excluded from the analysis
because of the low overall reads. Thus, SI7 was used as the
denominator in calculating log fold changes and differential gene
expression for A. flavus. Even though crucial, many of these early
infection stages, had too few overall counts to be considered
reliable estimates of relative expression for the pathogen. Similar
observations have been reported in other host-pathogen studies
(Teixeira et al., 2014).

Infection Index and Principle
Components Analysis
There was noticeable variability in the progress of infection
over time, with significant discrepancies occurring between
12 and 42 hpi. Not all time points in replicate experiments
overlapped in terms of the ratio of A. flavus to maize RNA,
indicating that our time-ordered samples may be out of order
in terms of the stage and progression of infection and disease
development. Given the presence of a significant number of
outliers in our data, outliers that are typically ignored during
differential expression analysis, we developed an additional index
to better gauge the progress of infection. The index was built
using the ratio of A. flavus to Z. mays unique RNA, rather
than using the time of tissue collection, as the sole criterion to
assess infection progress. Consequently, the individual biological

replicates were reordered and grouped into 18 Stages of Infection
(numbered SI1 to SI18) based on similar infection index values.
This reordering was used alongside a time-based ordering of
data for subsequent normalization and downstream analyses
of the experiments. The effect of this reordering reduced the
gene expression variance among replicates significantly. In
fact, using the stage of infection index, the maize MA-plots
revealed a large change in differential expression relative to
the early stage of infection (SI 0 compared SI18 in Figure 2).
The time course ordered samples also showed a significant
difference in expression as early as 4 h after inoculation. Using
the stage of infection index data, it took a few stages before
detecting significant differences in expression in maize. For
example, SI 2-4 had 36 total genes that were found to be
differentially expressed. The difference between time ordered
data and stage of infection data is likely resulting from variability
in pathogen success at very early time points, leading some
biological replicates to reach advanced stages of infection more
quickly than others.

When time points and stages of infection were both
analyzed using Principal Component Analysis (PCA), there
was some difference between replicates of samples using
either grouping, but replicates of the mid to late infection
stages, SI–7 to 15, were more tightly clustered together
when grouped by stage (Figure 3). Further analysis of the
two components revealed a similarity of variance in the
components for SI7 and SI8, which are the stages where the
transcripts of the pathogen begin to accumulate significantly.
Moreover, SI9 and SI10 shifts had similar variances in the
components based on PCA analysis. Therefore, SI progression
was accompanied by an increase in the A. flavus/Z. mays
expression ratio.

This analysis also showed that, for both host and pathogen,
most of the variation in the different biological replicates
occurred between samples collected at the same hpi. For
A. flavus, the clustering of the experiments grouped by SI was
more consistent, and tight clustering of experimental replicates
was observed. Additionally, the time ordered data displayed a
variance where most of the variance was explained by the x-axis
component. The hpi time points had multiple samples with
similar overlap between samples. For example, hpi 0, the point
after inoculation which was considered to be the control, shared a
tight cluster and overlapped with hpi 4 and 6. Similar results were
found with the later timepoints. For instance, this is reflected
in the difficulty to distinguish transcriptomes from the 5 and
6 days post inoculation samples. Similarly, the maize component
data was ordered by time with multiple samples showing overlap
between different hpi.

Differential Expression Analysis for
Z. mays
The differential expression analysis of Z. mays was performed
utilizing the (Stage of Infection) SI index to organize the samples
for the downstream analysis. Multiple genes were found to be
differentially expressed in at least one infection stage in Z. mays
when DESeq2 was used to compare later infection stages to
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FIGURE 1 | MA-plots were generated for the DESeq2 normalized RNA-seq samples of Aspergillus flavus. For this Stage of infection index (SI) analysis, SI7 was used
as the background (control). (A) MA-plot displays the SI8 treatment relative to SI7. (B) MA-plot displays the SI18 treatment relative to SI7. Significant genes are
denoted by the red color whereas non-significant genes are colored black.

FIGURE 2 | MA-plots were generated for the early and late maize infection stages. The MA-plots illustrate the distribution of the log fold change of the differentially
expressed genes. Genes that are significantly differentially expressed are highlighted in red, while those that are not, are displayed in black. For each of the graphs
the Y axis shows the log fold change, and X axis shows the mean normalized counts. The fold change is displayed for the stage of infection index (SI) data to
determine the distribution effect on differentially expressed genes in maize. (A) SI2 compared to the control SI0. (B) SI18, the latest stage, compared to SI0.
Differentially expressed genes were determined using DESeq2 (False discovery rate; FDR < 0.1).

SI-1 (Supplementary Table S1). It should be noted that the
samples at the early stage of infection showed very low pathogen
RNA levels. However, at SI-3, there was an increase in both
the number of significantly differentially expressed up/down
regulated maize genes (7 genes) as well as higher levels of
pathogen RNA. The largest increase from SI-2 in terms of
the number of detected differentially expressed genes did not
occur until SI-6 when the activation of multiple genes that are
known to be involved in the resistance to A. flavus was observed

(Table 2). The one gene (GRMZM2G175574) detected in SI-
2 that had a significant differential expression (p-adj < 0.1)
probably indicating a lack of response to the pathogen at
this stage (Table 2). For SI-3, there were only 7 additional
differentially expressed genes (Table 2). Genes in Z. mays kernels
began to show significant differential regulation around 30 hpi
when the datasets were arranged by time, or at SI-7 when
evaluated by infection index. Notably, this is the same stage at
which A. flavus RNA became abundant enough to be analyzed
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FIGURE 3 | Principal component analysis of the A. flavus transcriptomic data. SI7 to SI18 were used to observe variation between samples. Each circle in the graph
represents a RNA-seq sample and each color represent a stage of infection (Tr represents Treatment and Ctrl represents Control).

reliably. At the crux of the infection (144 h, infection stage 18),
2345 maize genes were significantly up-regulated, and another
4057 were suppressed. Many of these genes were components of
pathogen resistance pathways.

Gene Ontology Enrichment Analysis
Using SI for Z. mays and A. flavus
Functional enrichment analysis was used to reveal pathways in
both the host and the pathogen, involved in the interaction
between the two organisms. Analysis of data from the
early infection stage (SI-2) identified the Z. mays gene
GRMZM2G175574 to be the only differentially expressed gene
in the SI-2 dataset (Supplementary Table S1) therefore no geno
ontology analysis was possible during those early SI’s. When
observing the groups of SI genes found in the data set many of
the common resistance genes were found. These genes included
the late embryogenesis abundant 3 gene (GRMZM2G072890),
sucrose synthase 4 (GRMZM2G008507), as well as multiple
chitinase-related genes.

At SI-9, 235 genes were differentially expressed. These
included key marker genes involved in pathogen resistance such
as 12-oxophytodienoate reductase 2 (GRMZM2G156712), a
gene involved in the biosynthesis of jasmonate that has been
implicated in resistance to necrotrophs (Robert-Seilaniantz et al.,
2011; Mur et al., 2012, Lyons et al., 2013), and endochitinase

A (GRMZM2G051943), an antifungal enzyme implicated
in resistance to A. flavus (Dolezal et al., 2014). Later stages
showed a dramatic increase in the number of differentially

TABLE 2 | Differentially expressed genes of maize at each of the
Stages of Infection.

Stage of Infection Differential expression count Up Down

SI 2 1 1 0

SI 3 7 6 1

SI 4 28 24 4

SI 5 50 50 0

SI 6 359 279 80

SI 7 39 32 7

SI 8 159 56 103

SI 9 235 200 35

SI 10 470 270 200

SI 11 872 664 208

SI 12 2173 1611 562

SI 13 1851 1309 542

SI 14 5157 3499 1658

SI 15 4267 2094 2173

SI 16 6274 2910 3364

SI 17 9416 4539 4877

SI 18 6402 2345 4057
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expressed maize genes at SI-12, and a corresponding increase
in the number of A. flavus genes at the final stage SI-18.
Common A. flavus resistance gene markers were observed in
both mid- and late-infection stages. For Z. mays, there was
also a considerable overlap between genes in the late stages.
Notably, only one of the early stages genes, the uncharacterized
GRMZM2G175574, was still differentially expressed at the later
stages of infection. The overlap that was observed from SI-10
to SI-18 consisted of 60 genes including resistance genes, such
as (GRMZM2G117942) and (GRMZM2G117971) which are
chitinases, (GRMZM2G475059) and (GRMZM2G156877)
glutathione S-transferase, and (GRMZM5G894619)
1-Aminocyclopropane-1 carboxylate synthase.

GO-term enrichment analysis of maize genes differentially
expressed at SI-18 revealed multiple pathogen resistance
pathways. Up-regulated genes detected by SI-18 included
Endochitinase A (GRMZM2G051943) and Coronatine-
insensitive protein 1 (GRMZM2G151536) (Naumann et al.,
2009; Hawkins et al., 2015). Several of the genes were linked to
the following GO pathways: GO:0055114- oxidation-reduction
process, GO:0016491-oxidoreductase activity and GO:0004497-
monooxygenase activity. Analysis of this stage of infection
also revealed multiple unique genes that were not detected in
any of the earlier stages. In fact, 1890 genes were unique to
SI-18. Many of these genes did not significantly correlate to
any known pathways. Fifteen of the genes that became active
between S-18 and S-I9 are known resistance genes previously
implicated in resistance to A. flavus. Most of the GO-terms
that were highlighted at these later stages of the infection were
primarily involved in responses to stimuli and in the production
of secondary metabolites. This could be linked to the progression
of A. flavus at these late stages. By SI-18, down regulated defense
GO-terms began to appear. These included known resistance
genes like lipoxygenase (GRMZM2G109056), PR-10 genes
(GRMZM2G112524, GRMZM2G112538, GRMZM2G112488)
and chitinase (GRMZM2G145518) which are involved in
signaling and combating fungal infection (Chen et al.,
2010; Christensen et al., 2015, Hawkins et al., 2015). Many
processes were initially upregulated in the early stages of the
infection index and appeared to peak in the later (SI12–18)
(Hawkins et al., 2013).

Although only a few transcripts of the pathogen genes were
detectable at the early stages of infection (SI1–6), many shared
orthologs with developmental genes found in other fungi. For
instance, the most abundant A. flavus gene detected at SI-1 was
(AFLA_090780), the translation elongation factor EF-1 alpha
subunit. This gene retained one of the highest mean values
for absolute expression throughout the study, although it was
not significantly differentially expressed. This makes this gene
a useful marker to assess the relative abundance of A. flavus
in a sample. The total abundance of reads for A. flavus in the
complete data set was 169272008 reads, most occurring in the
later infection stages.

Due to the low coverage of A. flavus reads at early stages
of infection, SI-1 to 6 were not included in the analysis for
differential gene expression in A. flavus. SI-7 was chosen as the
starting point for differential gene expression analysis rather

than using RNA from a conidial suspension, because it is
more likely that the infection started by already germinated
conidia. Throughout (SI 8-18), shifts in gene expression in
A. flavus, reflected more up-regulation of genes rather than
down-regulation (Figure 4); 159 A flavus genes were found to be
differentially expressed (157 up-regulated and 2 down-regulated)
at SI-8 (Table 3). Many of the genes observed at this initial stage
involved primary metabolism and were enriched for primary
metabolism - related GO terms. Gene Ontology pathways
involving the carboxylic acid metabolic process GO:0019752 and
the monocarboxylic acid metabolic process pathway GO:0032787
were significantly enriched. At SI-9, 857 A. flavus genes were
found to be differentially expressed and GO-TERMS involving
nitrogen metabolism, such as the nitrogen compound metabolic
process GO:0006807, proteolysis GO:0006508, organ nitrogen
compound metabolic process GO:1901564, and the cellular
nitrogen compound biosynthetic process GO:0044271. At SI-
10 there was a large increase in differentially up-regulated
A. flavus genes detected in the data (Table 3). Interestingly, this
stage was marked by a significant increase in the expression
of aflatoxin cluster genes. The global regulators AflR and AflS
were detected within this dataset to be differentially expressed.
There were also biological processes that were enriched at SI-10
including GO:0032502 (developmental processes), GO:0006897
(endocytosis) and GO:0043436 (oxoacid metabolic process). As
A. flavus progressed at later SI’s, there was significant overlap
with biological processes reported in other studies involving
terms such as GO: 0005975 (carbohydrate metabolic process),
GO:0019538 (metabolic processes), and GO:0016192 (vesicle-
mediated transport) (Bai et al., 2015).

Clustering Analysis
Clustering is widely used to determine correlations between
pathways. Therefore, differentially expressed A. flavus and
Z. mays genes were clustered using K-means. The genes clustered
into 100 groups capturing “unions” and “intersections” between
Z. mays and A. flavus. It is to be noted that Z. mays genes
reported to be involved in disease resistance often clustered
together, even when their presumed biological roles are different.
Furthermore, K-means clustering revealed the polygenic nature
of the interaction between Z. mays and A. flavus.

Further analysis of the clusters uncovered maize defense genes
such as (GRMZM2G156006) AP2/EREBP transcription factor,
(GRMZM2G088765) Peroxidase 54 and other uncharacterized
genes. Moreover, one of Z. mays co-clusters included genes that
were initially up-regulated, but later displayed depleted levels of
expression (Supplementary File S1). This group of genes may
comprise resistance genes that are part of the earlier responders
to A. flavus infection and to the exposure to mycotoxins.

The analysis of differential gene expression in A. flavus with
K-means clustering revealed shifts in gene expression patterns
from SI-7 to SI-18. The A. flavus transcriptome transitioned from
an inactive state in SI-6 to an active state in SI-7 as revealed
by a dramatic shift in gene expression. Multiple pathways were
initially activated and later down-regulated (Supplementary
Table S3). Further analysis revealed multiple pathways that
were significantly enriched and down-regulated; the oxidative
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FIGURE 4 | Differential expression analysis was conducted with DESeq2 to identify genes that were significantly differentially expressed at the stages of infection.
The color gray denotes genes that were up-regulated, and the color orange indicates genes that were down-regulated. The FDR cutoff used to call differentially
expressed genes was (p adjusted value < 0.05).

phosphorylation pathway (Figure 5), multiple genes involved
in RNA transport, and genes involved in ribosome biogenesis,
were among the pathways that were significantly down-regulated
(Supplementary File S1 and Figure 6). Interestingly, the
oxidative phosphorylation pathway includes genes that have
previously been implicated in the biosynthesis of mycotoxins
(Grintzalis et al., 2014).

In some cases, gene expression was highly elevated during
the later stages of infection. For example, cluster 32 contained
A. flavus and maize genes that were activated at the mid
stage of infection. The A. flavus arsenal of hydrolytic enzymes,

TABLE 3 | Differentially expressed genes identified following the DESeq2 analysis
of stages 7 to 18.

Stages of Infection Aspergillus Total Up Down

SI8 159 157 2

SI9 857 848 9

SI10 1771 1714 57

SI11 2729 2644 85

SI12 3442 3259 183

SI13 6579 3695 2884

SI14 7946 4574 3372

SI15 5812 2636 3176

SI16 5514 2426 3088

SI17 5663 2537 3126

SI18 4398 1679 2719

such as (AFLA_007720) pectin lyase, (AFLA_124660) pectin
lyase precursor and (AFLA_023340) pectinesterase precursor,
were found to be upregulated at the later stages of infection.
This cluster also surprisingly contained pectinesterase 11
(GRMZM2G070913) of maize.

The aflatoxin cluster gene AflR clustered with aflatoxin cluster
genes AflMA, AflQ. Our data did not find all the aflatoxin
cluster genes to be located in a single cluster in the analysis.
The jasmonate biosynthesis 12-oxophytodienoate reductase 2
maize gene (GRMZM2G000236) was included in the same
cluster, and appeared to be co-expressed with AflR, AflMA and
AflQ. Additionally, that same cluster contained the maize genes
for chalcone synthase (C2), an AP2/EREBP type transcription
factor (GRMZM2G159592), and multiple reactive oxygen species
domain containing genes.

KEGG Analysis for Z. mays and A. flavus
When the dual transcriptomic SI data was analyzed using
Kegg Pathview package in R, the first pathway found to be
significantly enriched was the DNA replication pathway for
Z. mays (Luo et al., 2017). In the earlier stages, there was not
a significant enrichment in the pathways usually involved in
resistance to A. flavus. The detection of these enriched pathways
did not occur until SI-6 when the flavonoid biosynthesis and the
glutathione metabolism pathways were found to be significantly
enriched (Figure 7). This result was also reported in other
GWAS metabolic analysis studies involving the A. flavus and
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FIGURE 5 | KEGG pathway analysis on the different Stages of Infection (SI) was done to observe the enrichment of pathways in the pathogen in vivo. The current
pathway was a significant enriched and differentially expressed within the dataset (q-val < 0.1) when comparing SI8 vs. SI7.

Z. mays interaction (Tang et al., 2015; Warburton et al., 2015).
Our results also agree with the identified pathways, like amino
acid metabolism, which was found to be significantly enriched
as early as S-I5 in the data set (Tang et al., 2015). The
ethylene biosynthesis pathway was found not to be significantly
enriched in the KEGG pathway analysis, whereas the building
blocks for the pathways regulating cysteine and methionine
metabolism were enriched in the GO-analysis for the data
set. Furthermore, α-linolenic acid metabolism (jasmonate) was
significantly enriched at the SI-14.

Further investigation using KEGG pathway analysis for
A. flavus revealed additional pathways that were initially
activated and later down-regulated (Luo and Brouwer, 2013).
When SI-9 was analyzed, pathways such as the biosynthesis
of secondary metabolites, biosynthesis of amino acids and
carbohydrate metabolism were up-regulated and significantly
enriched. The aflatoxin pathway was found to be significantly
enriched in the SI-10 data set. The analysis also revealed
multiple pathways that were significantly up-regulated and
enriched; the oxidative phosphorylation pathway (SI-10-18),
and multiple genes involved in RNA transport (SI-10-18).
One pathway that was significantly enriched in the analysis
of the early stages of infection and that was later depleted,
was the ribosome biogenesis pathway (Figure 6). Interestingly,

it was the only pathway to deplete significantly in the later
stages of infection.

Interactome Analysis
The differentially expressed genes for A. flavus and Z. mays, were
then analyzed in their respective predicted protein interactomes
to allow for inference for of novel protein protein interactions
(Musungu et al., 2015; Szklarczyk et al., 2015). There was a
total of 1451 proteins that were found to be in the Z. mays
interactome. Some of the highest connective proteins that
were identified was GRMZM2G030299 (Protein-ribulosamine 3-
kinase chloroplastic). This transcript was highly down-regulated
in the DESeq2 analysis, with a log fold change of −0.54 (DeSeq2
Fold Changes). This was followed by GRMZM2G097878 serine-
threonine protein kinase, which had 299 connections. The
corresponding gene was also down-regulated in the data set.
The next gene GRMZM2G004356 (transcription factor UNE12-
related) had 254 connections and was up-regulated through the
initial stages of infection and down-regulated from stage 13 to
18. At each stage of infection, the differentially expressed genes
had different amounts of interacting partners in the interactome
of Z. mays. The largest subnetwork for the infection study was
produced from the later stages that had the largest number of
differentially expressed genes. Additionally, analysis from the

Frontiers in Microbiology | www.frontiersin.org 9 June 2020 | Volume 11 | Article 853

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00853 June 3, 2020 Time: 13:36 # 10

Musungu et al. Host Pathogen Interaction of Aspergillus flavus and Zea mays

FIGURE 6 | Hierarchal clustering analysis of the KEGG Pathways by q.value was performed to identify the pathways that are significantly involved in the interaction.
The color red denotes genes with the lowest q.value. Orange indicates genes with moderate significance within the data set. Yellow indicates genes that do not
exhibit significant differential expression. The blue lines through each stage indicate the strength of the clustering by the q.value. The order of the matrix is stored in
Supplementary Table S1.

PiZeaM disease subnet differential identified 400 common targets
that are predicted to be involved in biotic response. From the
hormonal response network, 23 genes were identified within the
interactome with 31 interacting partners. With many of the genes
involving reactive oxygen species pathways, heat shock proteins
and jasmonate pathway genes. The multiple proteins identified
and pathways determined demonstrate the polygenic nature of
the resistance to A. flavus.

With A. flavus, the network was highly dense including
927 differentially expressed genes with 3584 interacting protein
partners. The network contains proteins that are involved
in development, which were also shown to play a role in
mycotoxin and aflatoxin production. Networks also contained
carbohydrate and nitrogen metabolism subnetworks. The
A. flavus subnetworks followed a pattern similar to that seen
in Z. mays subnetworks, where the connectivity or interacting
protein partners increased over time.

Gene Regulatory Network Analysis
The multiple time points allowed the generation of a stage
of infection index for the transcriptomic study. The GeneNet

(Schaefer et al., 2015) module was utilized to develop a
partial correlation network where both host and pathogen
transcriptomes were present. The criteria for cutoff in edge
selection was done using familywise false discovery corrected
p-values (q-val and q-val.dir < 10−5) (Figure 8). As expected,
this produced a large amount of edges which agrees with what
was reported in many gene regulatory network identification
studies. Therefore, to determine if the edges were significant
in the network connectivity, genome wide association data,
and quantitative loci information involved with resistance to
A. flavus were used to mine for significant genes in the directed
network. The edges for the network can be retrieved using
(Supplementary Code S1). The network was generated from
47,801 genes. We did not find any significant enrichment within
the unused genes from the transcriptome for both Z. mays and
A. flavus. This network adds to previous work that only utilized
gene co-expression from Pearson Correlation and utilizes partial
correlation to determine significant genes within the network.

First, the differentially expressed genes were evaluated for
hub enrichment to determine connectivity. The connectivity
(or Degree) has previously been shown to be an indicator
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of biological importance (Horvath and Dong, 2008). Second,
publicly available data from chip-seq and GWAS (genome-wide
association studies) studies was used to determine coverage of
resistance marker genes and transcription factors (Bolduc et al.,
2012; Eveland et al., 2014, Tang et al., 2015). The connectivity of
A. flavus genes highest interactors were found to include genes
from the up-regulated KEGG pathway involved in endocytosis
(Supplementary Table S4). Of the Z. mays genes found in
the network to contain the most connection was a predicted

translation initiation factor SUI1 (GRMZM2G017966) which
according to qteller (Schnable, 2014) has strong expression in the
pericarp of the tissue (Table 4). When looking at the DESeq2
log2Fold changes, the gene was activated in the earlier stages
(SI-2-9), but expression was not detected at later stages of
infection. Early expression was observed for many of the top
20 highly connected genes within the network. Included in this
group of highly connected genes were RPM1, SAM and a leucine
rich repeat receptor gene previously implicated in resistance.

FIGURE 7 | Continued
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FIGURE 7 | (A,B) Kegg analysis was done on the Stage of Infection (SI) 6 index to determine pathways that were significantly enriched within the Zea mays data set.
For the boxes that are white indicate genes where it was unable to find a match in the pathway. (A) Signifies the gluthatione pathway (KEGG pathway id: ko00480)
and (B) signifies the flavonoid pathway (KEGG Pathway: ko00941). The cutoff for a significant pathway was signified with a (qval < 0.1) for each of the SI.

The transcription factors that were present in the network
are the WRKYs, AP2, MYB and NAC that were previously
found in the gene ontology enrichment analysis. The largest
WRKY transcription factor found within the network was
(GRMZM2G383594) which has already been implicated in
resistance studies with other pathogens as well as with A. flavus
(Gao et al., 2014) (Supplementary Table S3). There was
also WRKY genes that were targeted by A. flavus genes;
the network contained 107 different WKRY genes based on
UniProt Consortium (2015).

Z. mays genes identified from previous GWAS analysis studies
formed a network where multiple GWAS genes were correlated
with differentially expressed genes (Figure 8). Hub genes were
likely to occur more for the target genes compared to the source
genes. This indicates that the network can capture hypothetical
upstream targets as well as downstream targets. The latter can be
used as likely candidates for marker assisted breeding, Further
analysis was performed utilizing the genes identified through
GWAS studies involved in resistance to A. flavus. This list

contained 66 genes that were originally found to be associated
with aflatoxin resistance in grain (Warburton et al., 2015).
When mining the differentially expressed genes, 56 genes were
inferred to be involved with 30 other maize genes. The gene
from the GWAS study with the largest connectivity within our
total network was GRMZM2G162233, which is still predicted
to be uncharacterized according to the latest maize genomics
data. It however, shares orthology with AT1G18730 which is
predicted to be a NAD(P)H gene. Overall the network analysis
was able to capture 56 genes out of the 66 highlighted in
recent GWAS studies (Figure 9).

DISCUSSION

To uncover some of the complexity of the interaction between
Z. mays and A. flavus, a systems biology approach was
undertaken (Figure 10; Saito and Matsuda, 2010). This has
been demonstrated to beneficial in reusing available data build
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FIGURE 8 | Gene regulatory inference using the Stage of Infection ordered data to observe partial correlated interactions within the network constructed from
combined A. flavus and Z. mays data.

complex models and networks (Brandl and Andersen, 2017;
Rodenburg et al., 2018). In addition, a classical qualitative
epidemiological approach of categorically ranking samples by
the detection of A. flavus was utilized for the first time to

group samples for differential expression analysis and gene
regulatory network inference. This was beneficial in that the
traditional time series analysis assumes that the host pathogen
interaction is theoretically synchronous upon the point of
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FIGURE 9 | The network represents 83 genes, which were inferred from the Stage of Infection transcriptomic analysis. Since the network was large, only edges with
a FDR < 10-5 were used in building the network. Additionally, the edges in the network connect genes that were found to be partially correlated and that have a
downstream effect. The blue nodes indicate genes that have not been described in previous aflatoxin/ear rot- related genome wide association studies (GWAS).
Gray nodes indicate genes that have been previously associated in resistance from GWAS to A. flavus.

infection (OBrian et al., 2003; Chang et al., 2007). However, our
data for Z. mays and A. flavus suggested that that is not the case
as revealed by the PCA analysis; the samples showed variability
with confounding factors which are common in vivo studies,
justified the development and adoption of the novel stage of
infection index. This was noted upon observing the reads values
for A. flavus genes that were identified in the initial time points
and stages of infection.

The amount of A. flavus genes detected in the study
was highly variable depending on the sample, and it ranged
from 158 to 11961 genes. This is probably due to the low
levels of detected pathogen RNA in the earlier stages of
the infection, when only highly expressed genes could be
detected. The subset of A. flavus genes in these samples
represent the pathogen beginning to be able to establish itself
in the kernel tissue. This has been attributed to background
amounts of pathogen originating from the field or the
soil used in those experiments. For example, the pathogen

Moniliophthora perniciosa was detected with less than 1000
transcripts using RNA-seq libraries with close to 80 million reads
(Teixeira et al., 2014).

Our data also shows a unique increase/decrease in the amount
of gene expression activity between the host and pathogen.
The progressive increase of unique A. flavus RNA reflected the
progression of disease; the increase of the relative amount of
A. flavus RNA with time indicates fungal growth. On the other
hand, the level of Z. maize RNA remained unchanged and
eventually dropped. This is likely due to significant cell death
from necrosis, which is one of the reported outcomes of infection
by A. flavus (Dolezal et al., 2013).

Our approach of using stages of infection captures the
divergent properties observed in the transcriptomes of the
host and the pathogen during the early, mid and late stages
of infection based on our study of early infection. The
gene regulatory network approach was then further utilized
to infer causal relationships between genes within host and

Frontiers in Microbiology | www.frontiersin.org 14 June 2020 | Volume 11 | Article 853

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00853 June 3, 2020 Time: 13:36 # 15

Musungu et al. Host Pathogen Interaction of Aspergillus flavus and Zea mays

TABLE 4 | Connectivity/Degree for genes identified in the host pathogen network. Gene ID refer to the maizegdb annotated gff3 file.

Gene ID Annotation Node1 Node2 Total

GRMZM2G017966 Uncharacterized protein 3112 14556 17668

GRMZM2G073308 Uncharacterized protein 6009 10045 16054

GRMZM2G122563 ribulose bisphosphate carboxylase 7535 8212 15747

ESR3 embryo surrounding region 1740 13816 15556

GRMZM2G105085 Porin_dom 6646 8867 15513

PSBB Photosystem II CP47 reaction center protein 15258 59 15317

GRMZM2G464891 Uncharacterized protein 13153 2079 15232

GRMZM2G063438 S-adenosyl-L-methionine-dependent methyltransferases 4566 10544 15110

GRMZM2G397788 (RPM1, RPS3) NB-ARC disease resistance protein 11611 3241 14852

GRMZM2G119717 leucine-rich repeat receptor-like protein kinase family protein 7189 7651 14840

GRMZM2G358180 PS_antenna-like 10817 3880 14697

GRMZM2G075386 Acanthoscurrin-2 4732 9860 14592

RBCL Ribulose bisphosphate carboxylase large chain 14511 45 14556

GRMZM2G096792 PSI_PsaC 5689 8816 14505

GRMZM2G445961 predicted pleiotropic drug resistance protein 11950 2170 14120

GRMZM2G116137 Transcription factor PCF6 6664 7184 13848

GRMZM2G404453 Uncharacterized protein 10778 2835 13613

GRMZM2G148605 Flavin_mOase 7532 5815 13347

GRMZM2G370044 Uncharacterized protein 10126 3190 13316

NDHG NAD(P)H-quinone oxidoreductase subunit 6, chloroplastic 13228 70 13298

FIGURE 10 | Summary of the different methods used for analyzing the dual RNA-seq study for Zea mays and Aspergillus flavus.

pathogen, and between host and pathogen (Guo et al., 2016;
Banf and Rhee, 2017). This novel approach expands on the
previous Pearson correlation analysis which studied the two
organisms independently, and revealed a significant dependence
between the interactions of the two organisms (Musungu
et al., 2016; Zheng and Huang, 2018). In addition, genes
were modeled into correlative interactions groups using linear
correlation methods. Connections between expression patterns

and expression clusters in transcriptomes were drawn by
mapping them to biological functions. Similar approaches were
previously used in research were transcriptomes of hosts and
pathogens were studied separately (Musungu et al., 2016).
Moreover, we examined correlations and clusters between
host and pathogen genes that may indicate inter-organismal
interactions of biological functions or pathways. This study
captured all known regulators and identified several new
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regulators that activate their targets at time points not covered
in previous studies.

An A. flavus and Z. mays gene regulatory network,
containing 47,801 genes and multiple regulatory connections,
was constructed to observe causal relationships. The network
can be used to study many pathways not directly involved in
host-pathogen response, but that are active in this 7-day time
series. We focused on subnetworks and key pathways involved
in resistance in Z. mays and in affecting the mechanisms of
pathogenicity that A. flavus utilizes to infect susceptible hosts.
Our initial selection of the SI-1 point is key for capturing possible
circadian genes that were likely to be affected throughout the
SI’s. This was confirmed with the maize KEGG analysis. This was
also reflected by the significance of down-regulation of multiple
Z. mays circadian rhythm genes.

Upon assessing the differential expression data, the A. flavus
transcriptome seemed to have a progressive effect on the Z. mays
transcription. A similar conclusion was reached in a previous
study using Pearson correlation exclusively (Musungu et al.,
2016). Until SI-2, A. flavus did not have any differentially
expressed genes that were up-regulated. This could have been
due to A. flavus utilizing preformed transcripts as it has
been suggested in other studies with different Aspergillus
spp.(van Leeuwen et al., 2013). SI-6 was when an increase in
transcriptional activity in A. flavus was noted. Moreover, multiple
resistance marker genes such as PR1, OPR2 and PR10 were
activated by SI-4. Although none of these marker genes were
found to be statistically significant in the differential expression
analysis, they were captured within the gene regulatory network.
The GRN was able to visualize genes activated at these early stages
for A. flavus, with many of these genes serving as downstream
targets within the network.

The aflatoxin cluster was significantly differently expressed for
many of the genes in the cluster. However, we were unable to
capture the complete aflatoxin cluster in the GRN network. This
is most likely due to limitations of the genes that were kept for the
analysis as well as the partial correlation significance values. This
could be also due to the complexity effects on the expression of
the aflatoxin pathway as shown in studies involving temperature,
pH and carbohydrates (Yu et al., 2004; Amare and Keller, 2014,
Grintzalis et al., 2014; Medina et al., 2017, Gilbert et al., 2018).
There is also the possibility when dealing with partial correlation
that the connection was lost due to hidden confounders within
the dataset. AflR was the only aflatoxin cluster gene not to be
detected during the gene regulatory analysis. We however, found
the rest of the cluster to be present including AflS which has been
implicated to be a co-regulator in the cluster.

A shift in many of the pathways, including starch and
sucrose metabolism as well as the oxidative phosphorylation
pathway, was observed at SI-9. These pathways were down-
regulated by SI-18 for A. flavus. This likely reflects the
abundance of cytochrome P450s that were present in the
differentially expressed gene set. The presence of these oxidative
stress genes is most likely related to the abundance of
reactive oxygen species causing genes, such as the peroxidase
(GRMZM2G177792, AC210003.2_FG004, GRMZM2G410175,
GRMZM2G408963, and GRMZM2G089982) to be activated in

the kernel at this infection stage. Interestingly, it has been
reported that in A. fumigatus, the loss of cytochrome expression
can lead to an increase in pathogenesis in vivo (Grahl et al., 2012).
This was the case in our study at SI-18. A similar process pattern
was noted for A. fumigatus in vivo studies involving aspergillosis
(Grahl et al., 2012). In our study, this switch in A. flavus was
probably induced by the activation of resistance genes in Z. mays.

Our data also agrees with the previous work showing
the importance of the WRKY TF family (Fountain et al.,
2015b). For example, WRKY TFs which have been shown
to be involved in abiotic and biotic stress, were found in
our study targeting multiple jasmonate induced proteins
(GRMZM2G020423, AC206425.3_FG002) and heat shock
proteins that were conserved in the maize interactome. With our
GRN, Z. mays genes, orthologous to biological stress pathway
genes in Arabidopsis thaliana, being also initially targeted by
specific WRKY genes. Moreover, the induction of WRKY TFs
affected primarily resistance genes, but A. flavus oxidative stress
genes such the O-methyltransferase group, lipase, and hydrolase
were observed in the network as well. This was interesting
because our data showed that the differentially expressed genes
such as alternative oxidase (AOX2) and Cytochrome P450
(GRMZM2G147774) to be correlated with the aflatoxin cluster
genes. This agrees with previous work involving environments
rich in reactive oxygen species and their effect on A. flavus
(Reverberi et al., 2012; Zaccaria et al., 2015). This subset of the
network identified targets that were induced in the expression
study and that share functional similarity to genes involved in
resistance to pathogens.

In conclusion, this system biological approach utilized the
available body of information to determine gene regulatory
networks as well as motifs for co-regulated partners. The
produced information can improve the broad understanding
about early processes that are involved in resistance to A. flavus.
However, it is important to note that one of the limitation of
the data-set was that it was not complete by not encompassing
the analysis of every possible gene that was expressed in the
transcriptome. It is likely that even though many genes were
unable to pass the threshold of detection for selection as a
node, they could still make up the motifs with the network
intermediates. Another observation made during the analysis
of the GRN was that there were not many of the linear
relationships typically seen in co-expression analyses given the
partial correlation preferential detection of motifs. This is to
be expected given the inclusion of multiple variables, once
considered to be governed by a common regulator that are now
partially explained by multiple regulators. Previously these partial
regulations would have been masked using analyses that rely
solely on Pearson correlation. To date, this analysis provides one
of the first comprehensive transcriptomic dual RNA-seq studies
in a plant-pathogen system.
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